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The 91-eigenpolytopes of the' Hamming

graphs

‘Takayuki Mohri
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Graduate School of Mathmatics, Kyusyu University

Abstract

We can introduce geometric methods into the study of the Ham-
ming graphs as follows.” Let X be the Hamming graph H(n,q) and
identify the i-th vertex of X with the i-th standard basis vector e; in
RT". Let 6; be the second largest eeigenvalue of the Hamming graph
and let U be the corresponding eigenspace. We then associate to the
i-th point of X the image of e; under orthogonal projection onto U.

U has dimmension n(q— 1) and we have a mapping from X into RY".

Then it can be shown that the image of X lies in a sphere centred at

110

the origin, and that the cosine of the angle between the vectors rep-

resenting two vertices u and v is determined by the distance between
them in X. In this paper we describe about convex polytopes of the

image of X (it is called #;-eigenpolytopes of the Hamming graphs)'

and their faces.

Intoroduction

A convex polytope is the convex hull of finite poinits. An affine hyperplane
H is a suppotting hyperplane for a convex polytope P, if it contains at least
one point of P, and if all points of P not on H lie on the same side of H. A
face of P is any set of points P(H, where H is a suppporting hyperplane.
We will determine the faces of the §;-eigenpolytopes of the Hamming graphs.
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2 Representations of graphs

We define a representation of a graph .

Definition 2.1 A representation of a graph I' in R™ is a map, p, from
V(T) into R™, such that for any two vertices u and v, the inner product
(p(u), p(v)) depends only on the distance O(u,v) between u and v in .

Because any vertex is at distance 0 from itself, this implies that the image
of V(I') under p lies on a sphere centred at the origin. We introduce one
concept from linear algebra

Definition 2.2 The Gram matriz of a set of vectors v,,--,v, isthenxn
matric M with M ; equal to (v;,v;).

It is not hard to see that a Gram matrix is a positive semi-definite matrix
and symmetric.The converse is also true, any symmetric positive semi-definite
matrix is a Gram matrix. If I is a graph with diameter d, let I'; denote the
graph with the same vertex set as I', with two vertices adjacent in I'; if and
only if they are at distance i in I'. Let A; denote the adjacency matrix of T';,
with the understanding that Ag=I. We call Ay, -- -, A4 the distance matrices
of I. If p is a representation of I’ in R™, then the matrix M (p) has rows
and colunms indexed by the vertices of T and, if u,v € V(T'), then

(M(0))up = (p(u), p(0)) -+~ (2,1).

The matrix M (p) is a linear combination of the matrices A;. It is a Gram
matrix, of the vectors p for u in V(I'), and so it is positive semi-definite.
As every symmetric positive semi-definite matrix is a Gram matrix, we see
conversely that each positive semi-definite matrix in the span of Ag,:--,Aq
the distance matrices determines a representation of I

3 ’Distvance regular graphs

Definition 3.1 A graph is distance regular if it is connected and,given any
two vertices u and v at distace i, the number of vertices = at distance j from
u and k from v is determined by the triple (i, 4, k).
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Let I' be a distance regular graph with the vertex set X={zy,---,z,}, and

the distance matrices Ag, -+, Az. We identify the vertex z; with the stan-
dard basis vector in R™ ' ,
. The distance matrices Ay, - - -, Aq form a basis of a commutative algebra of

dimension d 4 1 over the reals, called the Bose-Mesner algebra . Thus, if p
is a representation of I', then M(p) is a positive semi-definite matrix in
conversely every such matrix gives rise to a representation of I.

One class of positive semi-definite matrices can be obtained using projec-
tions. Let 6 be an eigenvalue of A=A; with multiplicity m, let U be the
corresponding eigenspace and let-Ey be the matrix representating orthogo-
nal projection on U. Then Ey can be shown to be a polynomial in A, and
therefore it lies in the Bose-Mesner algebra of I'(see [4]). Hence we obtain a
representation of I' in R", which we call an eigenspace representation of I'.
As Ejy lies in the span of the matrices Ay, - - -, Ag, its diagonal entries are all
equal. Because E}=Fy, all eigenvalues of E, are equal to 0 or 1; therefore
traceEy=rankE, and each diagonal entry of E, is equal to (-

So there are constants wo, - - -, wg, With wo=1, such that
v( d
VO &,
m i=0

As this matrix is positive semi-definite, each principal 2 x 2 submatrix has
non-negative determinant, which implies that

lwil < 1.

- We can view w; as the cosine of the angle between p(u) and p(v), for any two
vertices v and v at distance i in I'.

We call wy, - - -, wq the sequence of cosines of I'; this sequence depends on the
eigenvalue §. We can summarise our conclusions as follows.

Lemma 3.1 Let T be a distance reqular graph with diameter d, let 0 be an
eigenvalue of I', with cosine sequence wy, - -+, wy and let p be the correspond-
ing representation of I'. Then ’

d
M(p) = ZLU,A,

1=0
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4 Convex polytope
In this section, we describe about convex polytopes.

Definition 4.1 Let X be a non-empty subset of RY. Then the covez hull
of X, denoted by CONV (X)), is the smallest convez set containing X .

In perticular, if X is finite, then we obtain the following proposition.

Proposition 4.1 Let X be a finite set {xy,- - -, x,} in RY. Then the con-
vez hull of X is the following; ,
CONV(X) = {Z tzszO <t€eR, Zti = 1}

i=1 i=1

proof: See theoreom 2.2 [1].0

Definition 4.2 A subset P in RY is a convez polytope, for short polytope’,
if there ezists a finite set in RY such that P = CONV(X).

The dimension of a polytope is the dimension of the smallest affine space
which contains all its points; we will often refer to a polytope of dimension
m as an m-polytope.

- Definition 4.3 A subset H in RN is an affine hyperplane, if there erist
the vector a and the real b such that the following equation are satisfied;

H = {z € R"|(a,z) = b}.

Let H = {x € R"|(a, a:) = b} be an afﬁhe hyperplane in RY. Then we
define H™) as the set H = { € R"|(a,z) < b}, and HD as the set
H = {z € R"|(a,x) > b}, where a is the vector in R", and b is real.

Definition 4.4 Let P be a polytope in RN, and let H be an affine hyper-
- plane in RN. Then 'H is the supporting hyperplane for P, if the following
conditions (1) and (2) are satisfied;

(1) PCcHWD, orPcH;
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Definition 4.5 A face of a polytope P is any set of points P(\'H, where
H is a supporting hyperplane for P.

Since any face is itself a convex polytope, a face with dimension ¢ with respect
to polytope is called an i-face. A O-face is usually called a vertex and a 1-face
is called an edge. An (m.— 1)-face of an m-polytope is a facet. The vertices
and edges of a polytope form a graph, which is called the 1-skelton of the

polytope.

Prop.os‘itio'nv4'.v 2 Let P be a polytope which is the convex hull of a finite
set X in RY, and let H be the supporting hyperplane for P. Then

PNH = CO'NV(XﬂH).

‘proof: See pp.21-22 [5].0

Proposition 4.3 Let V be the vertex set of a polytope P. Then

P = CONV(V).
proof: See theorem 7.2 [1).0

Proposition 4.4 Let V be the vertex set of a polytope P, and let F be a
face of P. Then the vertex set of F is equal to VP.

proof: See Theorem 7.3 [2].0

Proposition 4.5 Let F, and F, be faces of a polytope P. If F, contains
F., then F, is also a face of F,. In perticular, a face of a face of P is a face
of P. | |

proof: See Theorem 5.2 [1].0
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Proposition 4.6 Let F, and F, be faces of a polytope P in RY . Then
(@) IfF, CF, and F, # F,, then dim F, < dim F,;
(b) flﬂfz is a face of P.
proof: See Corollary 5.4 and Theorem 5.9 [1].0

5 The Hamming graphs H (n,q)

In this section, we introduce the Hamming graphs, which are very famous
examples of distance regular graphs, and its 6;-eigenpolytopes.
Let Q be a fixed set of size g. The Hamming scheme H(n, q) has vertex set
Q", and two elements of Q™ are adjacent if they differ in exactly one coor-
dinate. (We can identify @ with the set {0,1,---,¢ — 1} .) We denote the
vertex set of H(n, q) by X(n,q and the vertex (0,---,0) by zo.

The cosine sequence of the Hamming graph H(n,q) is also known (See

[4])-

Proposition 5.1 Let 6y < 0; < --- < 8, be the eigenvalues of the Ham-
‘ming graph H(n,q), and let wo,wy,,w, be the cosine sequence of H(n,q)
corresponding to 6. Then

Y 0<j<n).

=1 =
“i (g—1)n =7~

prob f See [4].0

6 The 6;-eigenpolytopes of the Hamming schemes

Let T be a distance regular graph with diameter d and with eigenvalues
8o, - - -, 04 in decresing order and let p be an eigenspace representation of I’
into Rm corresponding to the eigenvalue ;. We call the convex hull of the
points in the image of p(I") a 6;- ezgenpolytope of I.
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In this section we describe about the 6;-eigenpolytopes of the Hamming
graphs H(n,q) and properties of them.

Let 0y < 8; < --- < 8, be the eigenvales of the Hamming graph H(n,q) and
let p be the eigenspace representation of H(n,q) corresponding to 6;. Since
the vertex set Xp(nq) of the Hamming graph H(n,q) has ¢™ elements, p is
the representation from Xy q) into RY. We denote the 6;-eigenpolytope
of the Hamming graph H(n,q) by Pr(n,q), its 1-skelton by T'gnq), and the
eigenspace representation of H(n,q) corresponding to 6, as p.

Theorem 6.1 Let Py(ngq) be the 6:-eigenpolytope of the Hamming graph
" H(n,q) and let T y(n q) be the I1-skelton of Punq). Then I'hn,q) is isomorphic
to H(n,q).

proof: See [3].0

From theorem 6.1 we see that p(X H(n,g)) is the vertex set of the ;- eigenpoly-
tope Py(n,q), and we denote it by Vi(n,q). Moreover, we obtain the following
lemma with respect to the edge of Prr(n,q)-

Lemma 6.1 Let z,y € Xp(ng). Then z and y in the verter set Xg(nq) of
"H(n,q) are adjacent in Xpg(nq) if and only if p(z) and p(y) in the vertex set
- Vi(n,g) of Xu(n,q are adjacent in I g(nq).

proof: Let 2,y € Xp(n,q and let wy, - - -, w, be the cosine sequence of H(n, q)
corresponding to 8;. Suppose that = and y are adjacent Then from (2,1) and
lemma 3.1 we have (p(z), p(y)) = w;. Since wy < - -+ < wy, by proposition 5.5,
for any z2€ Xy (nq) — {z,y}, we have (p ( ), p(2)) _<_ wy and {p(y), p(2)) < w;.
Then an affine hyperplane H = {v € R?"|(v, p(z)+ p(y)) = wo+w1} is a sup-
- porting hyperplane for Py q), and we have Py, N H = CONV{p(z), p(y)}
Since CONV{p(z), p(y)} is an 1-face of Py(sq), p(2) and p(y) are adjacent
in FH(n,q).D ’

From lemma 6.1 and theorem 6.1 we can identify H(n,q) with [ g(n, ).

Deﬁmtlon 6.1 An m-polytope is simple if every k-face lzes in exactlym—k
facets.

There is a more intuitive characterization, given as Theorem 12.12 [1]

Theorem 6.2 An m-polytope is simple if and only if its 1-skelton is regular
of valency m.O
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Theorem 6.3 If a polytope P is simple, then every face of P is simple.

proof: See Theorem 12.15 [1].0
Since m; = (¢ — 1)n by proposition 5.1 and T H(n,q) has the valency (¢ — 1)n,

(g — 1)n-polytope Pry(n,q) is simple.

Lemma 6.2 Let P be a simple polytope let v and vy, - - -, vy, be vertices of
P such that wv; is an edge of P fori=1,---,k and let .7-"1 and F, be faces of
’P which contain u and v;. Then if dsz = dimF,, then we have F, = F,.

proof: Since {u,vy, -+, v} C FyNFo, FiNF, is not empty and a face
of P by proposition 4.6 (a). It follows by theorem 6.3 that the face F, N F,
is simple and dim(F,NF,) > k. On the other hand F,NF, C F, and
F.NF. # F, by assumption. Then dim(F,NF,) < k and it is contradic-
tion. Therefore we have F, = F,.0

7 The faces of the 6;-eigenpolytopes of the
Hamming graphs

In this section we shall determine the faces of the 6;-eigenpolytopes of the
Hamming graphs and calculate some numbers with respect to the faces.

Let ¥1 (1 < I < n) be non-empty subsets of @ = {0,1,---,¢g — 1}. We
define the subset Y7 x -+ x Y,, of X H(n,g) @ the following;

| Yy XYn:{(yl:"v'ayn) € Xnumgl v €Y1 (11 <)}

We define the subset ['i(z) (1 < i < n, £ € Xy, g) of XH(n g as the
following;
| Li(z) = {y € Xung| 0(,y) = i}

We can determine the faces of Ppy,q) by the following theorem.
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Theorem 7.1 LetY; (1 <1 < n) be non-empty subsets of @ = {0,1,---,q9—
" 1}. Then the followz'ng (1) (2) and (8) hold.

(1) CONV (p(Yy1 X ---x Yy,)), denoted by F(Y, x - -+ XYy), is a face of Py(n,g)
with vertex set P(Yl - X Y,).

(2) If i, Y| =n +z’ then F(Yy X -+ xY,) is an i-face of’PH(n,q).

(8) Any face F of Pr(n,q) is equal to F(Y, x --- X Yy,) for some non-empty
subsetsY; (1 <1< n) of Q.

proof: (1) Suppose )/l ‘—'A{Pll,“',lez} (1 S [ S n, 1 S my S q — 1)
Let us fix u € Y} X --- X Y, arbitrarily. Then we may assume that u =
(P11, P21, * * » Pn1) w1thout loss of generality. By definition of distance in the
Hammlng graph it is not hard to show that

lru)ﬂ(yl : ' n - E (mll"l)"'(mli_l)"'(7'1)

h<<l;

We see that | ['(u) ﬂ(Yl -XY,) | is determined independent of u. Then
we denote | T'(w) ﬂ(Y1 - X Yn) | by C;, ie. | D(w)N(Y1 X -+ X Yn) | =C,
foranyv €Yy x---xY,. Let w= (w1, -+, W) € Xrgng) — (Y1 X -+ x Yp).
Then there exist at least one w; such that w; ¢ Y;. Then it is not hard to
show that

| | L)\ % x Ya) | < G

~and in particular
| To(w)(Y(Y1 % - x ¥,) | =0 < 1=Cy.

Let wyg,--+,w, be cosine sequence of H(n,q) corresponding to the second
largest eigenvalue 6. Then from proposition 5.1 we see that wy < --- < wp.
Set @ = ¥ ey xxv, () € RY and b= Y%, Ciw;. Since | T'(u) N(Y: X
Y,) | =C;for any v € Y] X --- X Y,,, we obtain

(@,p(0))y=b (ueYix--xY)---(7.2).

Since | Tiy(w)N(Yi X --- x Y,) | < Csand | To(w)N(Y1 X -+ X Yy) | < Co we
~obtain ' '

| (@, p(w)) <b (w € Xpmg — (Y1 X --xYp))---(7.3).

We define affine hyperplane H C R, as the following;
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H={z € RT| (z,a) = b}.
From (7.2) and proposition 4.1 we obtain
0 # PungYH = CONV(p(Y; x --- x Y,) C PHin,g) "~ (7-4).
From (7.2) and (7.3)‘ we obtain
o Pang) C H®- - (7.5).

From (7. 4) and (7.5) we see that an affine hyperplane H is a supporting
hyperplane for Py (n g and CONV (p(Y; X --- X Y,)) is a face of ’PH(n a)-
Furthermore, from proposmon 4.4 we see that p(Y; x --- x Yy) is vertex
set of a face CONV(P(YI - X Yy,)), that is F(Y; x --- x Yn).
(2) Suppose Y, = {py,-- 1plm¢} 1 <1< 1 g m; < ¢—1) and
S Yl =n+4. From (1) we see that F(Y; x --- x Y},) is a face of Pyn g
with vertex set p(Y1- x -+ X ¥;). It follows from proposition 4.5 and 6.1
that 1-skelton of F(Y; x -+ X Y,) is an induced subgraph of that of PH(n,q)s
LH(n,g). Further more, it follows from theorem 6.2 and theorem 6.3 that the
F(Y1x---xY,) is simple and hence its 1-skelton is regular graph. Then we see
that (2) holds if and only if 1-skelton of F(Y; x- - - xY,,) is regular of valency s.

Set u = (p11, P21, **, Pim;) €Y1 X - -+ X Y;,. From (7.1) we obtain

n .
| Ty )M )I—Z(mz—l) IZIYzl—n=i,
=1 =1

and hence p(u) is adjacent to i vertices in 1-skelton of F(Y; X --- X Y},) by
lemma 6.1, i.e. 1-skelton of F (Y, x - -+ x Y,) is regular of valency 1. |
(3) Let F be a face of Prn,q with vertex set Vir. Then from proposition
4.4 we see that Vr C.Vi(nq). Suppose that p(u) € Vr (v € Xg(nq), and
that {p(v1),- -, p(vk)} C Vg is all vertices adjacent to p(u) in 1-skelton of
‘F. Since F is simple by theorem 6.3, from theorem6.2 we see that 1-skelton
os F is regular of valency k£ and hence F is a k-face of Py(nq). Since p(u)
and p(v;) (1 <! < k) are adjacent in 1-skelton of F, we see that u and
v (1 <1 L k) are adjacent in H(n,q), i.e.

O(u,v) =1 (1<1I<k)---(7.6).



120

Set u = (ug, -, u,) € XH(n g and v = (vyy, - - wn) € XH(n g (1 <1< n).
We define non—empty subsets Y (1<j<n)of Q =0,1,- ,q — 1 as the

following;
Y; = {Uj} U{vil 1 <1<k, vy # ui}
Then from (7.6) it is not hard to show that

u,vl,---,vkell/lx---xl'/n -+ (7.7),

and Y |Yj|=n+k ---(7.8).
Jj=1 :
From (1), (2), and (7 8) we see that F(Y; x - --x Y,) is a k-face of Pri(n,g With

vertex set. p(Yl - x Yp). From (7.7) we see that p(u) pv1), -+, p(vr) €
p(Yi X - X Y) Therefore since F and F(Y; x --- x Y,) are simple, we
obtain .F FYyx---xY, ) from lemma 6.2. O

We denote the set of all faces of Prn,q) by AFH(ng) and the set {1,---,q} C

N by K,. We define the mapping 9 : AFgng,y — K ¢ s the following;

EFEYx - x V) = (i, [Yal) € K] for F(Y, x -+ x ) € AFiiag)
Then from theorem 7.1 it is not hard to show that the mapping v is well
defined and surjectlve For non negative integers sy,---,s,, we define the
subset L[s1, - - -, 54] of K7 as the following;

| L[sla”'asq] Z{(klv”'akn)l u{kjl kj:l}zsh ISZS(]}.

‘Then it is not hard to show that

q
Zsl =n if and only if L{sy,---,s,] #0---(7,9),

=1

and |J Llsg, -, 8 =K.

81,+,3¢20

We call a face F of Pyng) & [51, -, 5q]-type face if Y(F) € L[s,, -, ).
Now we want to caluculate the three of numbers. The first is the number of
all i-face of Pi(n,q), denoted by N F(z). We denote all [sy, - - -, 8q]-type faces



121

of PH(n,q) by F[s1,-++,84]. From (7.9) we may assume Y%, s; = n. It is not
hard to show that | ‘

| Flst, -+, sq] | =7 (Lls1, -+, sq])| - -+ (7.10),

n!

sl -84l

Let (ki,-++,kn) € Llsy, -+, 8,]. Since $(F(Y, X -+ X ¥,)) = (ku,- -, k) if
and only if |Y]| = k; (1 <1 < n), we obtain |

| |¢_1(k1,-..,kn)|=(lgl)'“(.lgn ) =f[<3qj>sj---(7.12).

Jj=1

and | L{sy,---,8,] | = -+« (7.11),

From (7.10) (7.11) and (7.12) we obtain

q\”
- <J>
| Flst,- -y sq] [ =nl [T 2= (7.13).
7=1 2

Let F be a [s1,- -+, s]-type face of Py(n,q). From theorem 7.1 it is not hard
to show that F is i-face if and only if 3°F (I - s;) = n + i. We define the
subset D(%,n, q) of Z7 as the following;

q q
D(i,n,q) ={(s1,"-*,80) €Z7| 520, > sy=m, and > (I-s;)=n+i}.
=1 =1

Then it is not hard to show that

NF(Z): Z IF[31)73Q]|(7714)
. (81,+,8¢)€D(4,n,q)

From (7.13) and (7.14) we obtain the following proposition.

Proposition 7.1 The number of all i-faces of Prnq) is equal to

n P
(31»"'asq)€D(i:n,Q) =1 J*

NF@ =n Y ﬁ@-m
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‘The second is the number of all (i — 1)-faces of Pgn,q) contained in a fixed i-
face of Prn,q). Let F = F(Yy x---xY,) be [sy,: -, 85]-type i-face of Py(n,q)-
Then we see that 37, s =nand 3} ,(l- 8) =i +n. Let F(Z, x --- X Z,)
be a (i — 1)-face of Py(n,q) contained in F. Then it is not hard to show that

ZicY(1<li<n), and > (IY|-1|Z])=1---(7.15).
=1
From (7.15) there exists § € {1,---,n} such that |Zs| = |Ys| — 1, |Ys| > 2,
and 7y =Y forle {1,.---,6 — 1,6 +1,---,n}. Conversely, if |Y}| > 2, then
foranyy eV, F(Yox - Yo, x (Y1—{y} ) x Yiq, x--- X Yy) is (i — 1)-face
of PH(n,g), contained in F. Then the number of all (z — 1)-faces of Pr(n,q)
contamed in F is equal to
> ml

| | VilL
It is not hard to show that

T =g(z-s,).

[Vil#1

Therefore we obtain the following proposition.

Proposition 7.2 The number of all (i — 1)-faces of Pg(n,q) contained in a
fized [s1,- -+, 84]-type i-face of Prn,q) s equal to

Eq:(l . 31).D
=2

The third is the number of (i + 1)-faces of ’PH(n,q) which contain a fixed i-
face of ’PH(n g)- Let us fix an i-face F = F(Y; X -+ x Y},) of Prng) and let
F(Zy x +++ x Zy) be (i + 1)-face of Pp(n,q) which contains F. Then it is not
hard to show that

YiCZ(1<i<n), and Y(|Z|~[%|)=1---(7.16).
' =1 ’ .

~ From (7.16) there exists v € {1,---,n} such that | Zs| = |Ys|+1, and Z; = Y]
for i € {1,---;,7v—1,y+1,---,n}. Conversely, if |Y;] < g, then for any
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2€(Q=Yi), F(Ys x -+ Yiy X (Yi{z} ) X Yigs X -+ X Yp) is (i — 1)-face
of Ph(n,q), Which contains f’ Then the number of all (i 4 1)-faces of Pr(n,q)
which contains F is equal to

n

D (g—Yi)) =n(g—-1)—i

=1

since Y1, |V = n + 1.
Therefore we obtain the following proposition.

PrOpOSltlon 7.3 The number of all (i + 1)-faces of ’PH(n q) which contain
a ﬁmed i-face of ’PH(n,q) is equal to

n(q—1) — .0

8 The 1-skeston of face

In this section we describe about the 1-skelton of face of P. We denote the
1-skelton of a face F (Y, x -+ - X Y,) of Prn,q by G(Y1 X --XxY,). Then we see
that G(Y1x---xY},) is induced subgraph of I'g(y, ). We identify Y1 x---xY, C
XH(n,g) With induced subgraph of H(n,q). Then from lemma 6.1 it is not
hard to show that Y] x --- x Y, is 1somorphlc to G(Y) X --- xY,) as a graph
and we can identify G(Y1 -XYy) with Y X - - XY, Let .7-" (Yyx---xY,) be
[31)_ sq] type of PH(n,q)a let Yl = {plly Tt 1plm¢} (1 << n, 1< my < Q)v
and let u € Y} X -+ x Y,. Then we may assume v = (py1,P21,***,Pn1)
without loss of genarality. We see that for any ! € {1,---,n} the M, vertices
u, (plla 5y P- l)l)plj)p(l+1)17 7pn1) (2 < .7 < ml) are adjacent to'each other
inY; X --- XY, ie. they form complete subgraph of Y7 x .- x ¥, with m;
' vertices denoted by Cpm,. From definition of [sy, - - sq] type face of 'PH(n,q)
we obtain following proposition.

Proposition 8.1 Let F(Y, x---xY,) be a [sy,-- sq] -type face of Pr(n,q)
and let u be a vertez of F(Y, X --- x Yy,), i.e. G(Y1 X +-- X Y) Then there
exist ezact s; (1 < j < q) complete subgraph C; of G’(Y1 - X Y,), which
contain a fized vertex of Prn,g).0 '
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9 Conclution

We have ‘determined the faces of the 6;-eigenpolytopes of the Hamming
graphs H(n,q) as the subsets of the vertex set of H(n,g). Since we know
the cosine sequence of H(n,q) corresponding to #;, we can determine the
6;-eigenpolytopes of H(n,q) geometrically for small n and g. For example
there appear regular triangles, squares, and cubes as 2-faces and 3-faces in
the 6;-eigenpolytope of H(3,3). Some unsolved problems are (1) Can we
express the number in proposition 7.1 and proposition 7.2 more simply? (2)
Are faces of some type equal to equvalent other as polytopes? (3) Can we
' determme the 6; -elgenpolytopes of H(n,q) for 1 > 2‘?

Acknowledgement The notatlon of chapter 2 and chapter 3 is based on
C.D.Godsil [2]
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