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abelian group to a finite group
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1 Generating functions

Let A be a finitely generated group, and let F4 be the set of all subgroups B such
that the factor groups A/B are finite groups. Let G be a finite group, and let S, be
the symmetric group on n letters. For the wreath product G S,., put '

|Hom(A,GS,)| ifn>1,
a4 &) = 1 if n = 0.
For each subgroup B of A, let h(B,G) = [Hom(B, G)|.
Theorem 1.1 Let A be a finitely generated group, and let G be a finite group. Then,

> hn(A, G) n__ h(B7G) |A:B|
1+ > Gt © —exp(Bg;A'G’_!A:B'-x .

n=1

This theorem is a consequence of the following fact that is proved in [6] when G = {e}
where ¢ is the identity element.

Let A be a finitely generated group, and let G be a finite group. Then,

hn(A; G) _ Z h’(Ba G) . hn—{A:B|(A; G)
|Glr(n — 1) |G| |G|"14Bl(n — A : B))V’

|A:B|<n

where the summation is over all subgroups B of A such that |A . B | are less than n.

Sketch of proof. Let G™ denote the direct product of n copies of G. Then S,
naturally acts on G, and the wreath product G .S, is the semidirect product of S,
and G. Define the action of G 5, on the set G x [n] where [n] = {1,2,...,n} by

(glyg2a ce ugn)a'(g’ 7’) = (ga('i)ga U(Z)) €G x [n],
(917927 e :gn) € G(n)’ o€ Sm (977') € G x [n}



172

This action is semiregular, and hence, G 1S, is embedded in the symmetric group
Sigin on |G|n letters. Let ¢ € Hom(A,G1.S,). Let us define the following:

r is a positive integer such that r < n;

B is a subgroup of A such that |[A: B| = r;

k € Hom(B, G); »

7 is a mapping from the set of all cosets of B in A to [n] such that 7(B) = 1;

(1,12, - - -, yr) is an element of G where y; = ¢;
1 € Hom(A, G1Sp_y).

Let p, be the homomorphism from G S, to S, defined by
ot GUSp 2 (gl,gz,...,gn)0—>q € Sy.

Let B be the subset of A consisting of all elements a of A such that pnop(a)(l) =1,
and let r = |A : B|. Define the homomorphism & from B to G by

p(b)-(¢,1) = (k(b),1)
where b € B. Let a1B,a3B, ..., a.B, where a; = €, be all cosets of B in A, i.e’.,
A‘: a1B UazB u--- UCL,-B.

Define an element (y1,%2,...,%,) of G and a mapping 7 from the set of all cosets
{a1B,a:B,...,a,B} to [n] by

©(aj).(e,1) = (y5,7(a;B))

~for each j. In particular, y; = €. Let {k1,k2,...,knr} Where ky < ko < -+ < kp_y
be the subset of [n] such that

[n] = {m(a1B),m(a2B),...,m(a;B)} U{ki, ks, ..., kn_r}.
We define a homomorphism v from ¢(A4) to G Sp—r by
v:p(A) (91,92, ,90)0 — (Gky> Ghgs - -+ Gk )0 € G U Sps
Put ) = vop. Thus, we get r, B, &, 7, (Y1, Y2, - - -, ¥») and 9. Then, the correspondence
o —A{r Bk (Y1, Y2, ), ¥}

is a bijection. Therefore, we have that

ha(4;G) = ¥ R(B,G)

|A:B|<n

n—1)! Rl
m_(—DT%aWG'IAB' i a:5(4; G).



The result follows from this. O

Suppose that A is a finitely generated abelian group. We denote by ®,(A) the
intersection of all maximal subgroups of index 2 in A. The wreath product G 4,, is
a subgroup of G1.S,,. For each subgroup C of A containing ®,(4), let

Ri(A: C;G) =" {p € Hom(A4,G1S,)|p(C) C G A}
In particular, A} (A : @2(A); G) = ha(4;G), and b (A : A;G) = h(A;G 1 A).
Define the subgroup Al,(G) of G1.S, by
Aln(G) = {(917927 o agn)o' € G Sn|ord2(l.9192 e gn') < 0rd2(1G|)}7

where ordy(z) is the largest integer such that 2°792@® divides z for each nonzero
integer z. If 2 divides |G| and if a Sylow 2-subgroup of G is not a cyclic group, then
Al (G) = G 1Sy If 2 does not divide |G|, let Al,(G) = G A,. As was mentioned
earlier, G1 S, is embedded in Sigjn- Then, AL, (G) is 1dent1ﬁed with Aigin NG 1 Sy
Thus, Al,(Cy) = W(D,) where W(D,) is the Weyl group. For each subgroup C of
A containing ®5(A), let ,

h(A:C;G) = {¢ € Hom(4,G1S,)|0(C) C AL, (G)}.
In particular, hf (A : ®3(A); G) = ha(A;G), and hf (A : A;Cy) = h(A; W(Dy)).
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We shall present the generating functions for A} (A : C;G) and h, (A : C;G). For

each subgroup D of A containing ®3(A) and for each B € F,, define

—h(B,G) if a Sylow 2-subgroup of A/B is a cyclic group
- f2(B,G) = that is not {e} and that A = DB,
h(B,G) otherwise,

hL (B, G) =* {x € Hom(B, G)|ordy(|x(al*B)|) = ordy(|G|) for some a € D},

a cyclic group that is not {¢} or B € 77,

h(B,G) — 2k (B,G) if either a Sylow 2-subgroup of |G| is
(B,G)
h(B,G) otherwise.

For each subgroup D of A containing ®,(A), let

fA (B,G) .
ER2(+,G;z) = exp - ghABl]
Al (Z}: Gl-[A: Bl

BcFa

d8(B,G .
E2(—,G;z) =exp ( > IGT A gl :c'A‘BI).
It follows from definition that
fa24(B,6) = g5 (B,G) = n(B,G)
where B € Fa. Put E4(G;z) = ER?W(+,G;z) = ER?W(—,G; 7).
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Theorem 1.2 ([4]) Let A be a finitely generated abelian group and C' a subgroup of
A containing ®3(A). We denote by KG the set of all subgroups D of C that contain
®,(A) as a subgroup of index 2. Let G be a finite group. Then,

< hi(A:C;G) 1 .
1+ 0 et Rl A S S ) 5 G z) + EP(+.G: .
nz::l R |C’:<I>2(A)|{ a(Gi7) D;};g 4 x)}

Suppose that a Sylow 2-subgroup of G 1is a cyclic group that is not {e}. Then

S h (A:C;6) 1 | .
nz::l |Gmn! z |C: @,(A)] { 4(G; 1) Dgg A x)}

Remark. In the paper [2], N. Chigira proved this theorem in the case where A is a
cyclic group. :

Ezample. Let A= Cg(t). For each subgroup B of A, h(B,(C;) = |B], and hence
|B| AB
EA(Cy;z) = exp . glABl]
%;4 2|A: B|

For each cyclic subgroup D of order 2 in A and for each subgroup B of A,

—|B| if |[B] =21 and if A= DB,
D(B.C,) =
J2(B,C) { |B|  otherwise,
2t-1 ifB=A
hR(B,C,) = ’
a(B, ) { 0 otherwise.

Therefore, for any cyclic subgroup D of order 2 in A,

E.fl) (+7 C2a 117) = EA(CQ, SC) exp (_2%—33:2) ,
ER(—,Cyz) = Ea(Co;z)exp (—*2“11;) )

Since the number of cyclic subgroups of order 2 in A is 2* — 1, it follows that

> WCH Co14,) . 1

I+ Z o T = gEcét) (Co; ) {1 + (28 = 1) exp (—22t—3m2>} ,
n=1 :
x h(C, W(D, 1 ,

1+ Z ( 2 2nn|( )) Lt = ?EC?) (02;3;) {1 + (2t _ 1) exp (_Qt—lx)} )
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2 The number of homomorphisms from a cyclic p-group to a symmetric
group

Let A be a finite abelian group. It follows from [7] that
|[Hom(A, G)| = 0 mod ged(|A], |G))
for any finite group G. This result is a generalization of the theorem of Frobenius:
H{z € G|z = 1} = 0 mod ged(d, |G]).

Let hn(A) = [Hom(A, S,)|. Let us study ord,(h,(A)) where p is a prime integer. We
denote by m4(d) the number of subgroups of index d in A. Put

4,
Ei(z) =exp (Z # -a:d) .

d=1

Then, it follows from Theorem 1.1 that

Es@)=1+3 h"(;“) 2"

n

As a special case, we obtain

, to1 X
Ee (z) = — -z ],
o, (@) exp(kz:‘épk . )

where Cyy is a cyclic p-group of order p!. The p-adic power series E,(z) is defined by

E,(z) = exp <i;1£ ) xpk) )

k=0
which is called the Artin-Hasse ezponential. It is well known that E,(z) € Z,[[z]],
where Z,, is the ring of p-adic integers. Put E,(z) = 3% ;a,z". Then, this fact yields

n=0

that ordy,(as) > 0 for any n. If n < p'*!, then ap = ha(Cp)/n! and then
ord, (hn(Cp)) > ord,(n!),

where

ord,(n!) = i [5} :

=1
Furthermore, we have the following.

Theorem 2.1 ([5]) For each positive integer n,

n

ordp(hn(cp’)) 2 Z_; [5} ! [FJ ’v

and equality holds if n = 0 mod p't1.
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To prove this theorem, we use the decomposition:

1
Ec () = exp (Iﬁ xpm) Ec, (z).

Example. For each positive integer n,

n m . _
ordz(ha(C2)) =

Z]-[2]  otharvie.

3 The number of subgroups of a finite abelian p-group
Let P be a finite abelian p-group. The partition A = (A1, Ae,..., As,...) Where
MZ2XA2 2 A2 = Ap2=--=0
is called the type of P if P is isomorphic to the direct product of cyclic groups

Cp1 X Cprg X -+ X G

We write |A\| = sif A is the type of a finite abelian p-group of order p*. For the partition
A, let a,\(z; p) denote the number of subgroups of order p* in a finite abelian p-group
of type A, which is a polynomial in p with nonnegative coeflicients and depends only
on A and 1. It is well known that a,(?;p) = ax(s — ¢;p) if |A| = s. It follows from [3]
that for each partition A, if |A\| = s, then

ax(i;p) — aa(i — 1;p) = pas(i;p) — p" e (s —i+ Lip),
where A = (\g,...,Ar,...). Using this fact, we have the following theorem in [1]:

Let X be a partition. Let |\| = s and t = s — \1. Then ax(i;p) — ax(i — 1;p) has
nonnegative coefficients; moreover

ax(i;p) = oa(t — L;p) + p* mod p™ if0 < ¢ < min {t, [g]} ’
o (i;9) = a6 — 1;p) ift <i< [g} _

Example. Let A = (1,1,1,1,1,1) that is the type of 0156). Let ax(i;p) = im0 ai P’
Then, we get the coefficients a; ; as follows.
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‘ai,O i1 Gi2 Qi3 G4 G5 Qi Q7 Qg a;9
ax(0;p) | 1
ax(l;p) | 1 1 1 1 1 1
ax(2; P) 1 1 2 2 3 2 2 1 1
ax(3;p) 1 1 2 3 3 3 3 2 1 1
ax(4;p) | 1 1 2 2 3 2 2 1 1
aGp) 'l 11 11 1
a)(6;p) | 1

4 A decomposition of Ep(z)

Let P be a finite abelian p-group of type A= (A1, A2,.. ., Ar, . ..) where [A| = s.
Then oy (s — k;p) = mp(p*), and '

En(z) — > ax(s — k; p) pk)'
(z) = exp (;cZ:% - z

Let ax(2;p) = 3J; a;;p7. Define the integers /() and m()\) by

I(A) = max {Al, [S —; 1}} ,
m(A) =s—1I().

To simplify the notation, write I = I(A) and m = m()).
Definition 4.1 For each pair (v,u) of nonnegalive integers such that v < s, let

buy = bu—1, fO0<v<mand f 0 <u<s—u,
Cup = § Gup —Gu-1p Ym<v<sandif 0 <u<s—u,

Ay ifs—v<u
where byy = Gy — Qy1.4-1-
We have a decomposition of the series Ep(z) as follows.

Theorem 4.1 ([5]) For any u and v, ¢y, > 0, and

Ep(z)= Fp(z) - J[ I exp(p*t'—sa® ),

v=0 u=s—v+1

Fp( {H Il Ec, .xcpm_. (2" )c“”}' { ﬁ ﬁEcps_u_v (= v)c“"’}-

v=0u=0 v=m+1 u=0
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In the proof of this theorem, we use the preceding results that relate to the number
of subgroups.

Ezample. Let P = C®. Then I =m = 3, and

Fp(2) = Ec3xc,(2) B pxc, (87 Ecyxc, (%) Ec, (27" exp(a”") exp(a?").
Remark. Let [ be an integer, and let m be an integer such that [ > m. Then,

l+p+---+pf 0<i<m,
agm(p) =4 1+p+---+p™ m<i<l,
l4+p+--+p"m " I<i<Il+m.

Using this fact, we have that

Esz XCpm (.’8) = ECpl+m (:B) ECPH-m—Z (z)--- Esz_m (.’E)

5 The number of homomorphisms from a finite abelian group to a sym-
metric group

Using Theorem 4.1, we have the following.

Theorem 5.1 ([5]) Let A be a finite abelian group such that the type of a Sylow
p-subgroup of A is A = (A1, Aa,..., Ar,...) where |A\| =s. Let

109 = mae {0, 4]}

Then for each positive integer n,

1N
ord,(ha(A4)) > Y

G=1

n n
o)
and the equality holds if n = 0 mod pl()‘)“, except for the cases where p =2 and

2I(\) = s > 2. Suppose that p = 2 and that 21 ()\) = s > 2. Then for each positive
integer n,

10

ords(h,(A)) > ; l;—l + [21(:)+2] - [21(£)+3] )

and the equality holds if n = 0 mod 2!V 1 and if n # 2N+ + 9HN+2 od 9HN43,
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Corollary 5.1 ([5]) Let A be a finite abelian group such that the type of a Sylow
p-subgroup of A is X = (A1, Aq,..., A, ...) where |\| =s. Let

I(A) = max{)q, [s—;l]}

Then the p-adic power series

: X he(4)
Ea(z) =) (, ).
= n!
converges for
W 1 1
orda(z) > 1 —ZE ~ Sy + 5173 ifp=2 and if 21()) = s,

i=1

1) Yy _
ord,(z) > L —Z—l— AR — s

pP— 1. = p’i pl()‘)+1 otherwise.
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