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Primitive idempotents of the Grothendieck ring of

Mackey functors

JNE A= FumiHiTo ODA *

Abstract

We study the Grothendieck ring of the category of Mackey functors for a finite group and
determine the primitive idempotents of the ring.

1 PRELIMINARIES

Let G be a finite group and an R a commutative ring. We denote by S(G) the set of all
subgroups of G and let C(G) be the set of representatives of conjugacy classes of S(G). For
H € 5(G)and g € Glet H = gHg™, HY = ¢"'Hg. If H ¢ S(G) and L,K € S(G) let
[L\ H/K] be a set of representatives of cosets LhK with h € H. If L, <H<LGlet H/L be a
set of representatives of cosets hL with A € H.

A Mackey functor for G over R is a mapping

M : §(G) — R-mod
with morphisms

Iff © M(K)— M(H) (induction)
RE . M(H) — M(K) (restriction)
cf : M(H) — M(*H) (conjugation)

whenever K < H are subgroups of G and g € G, such that

(MO) Iff,RE,cll : M(H) — M(H) are the identity morphisms for all subgroups H and h € H,
M1) RFERE =RE, IHIK = I for all subgroups L < K < H,

(M2) c;HchH = cf,; for all subgroups H < G and g¢,h € G,

(M3) Rzgcf = X RE, Igg}gcf = chH for all subgroups K < H and ¢ € G,

M4) RETE = e myry Tone e ™ RIS e for all subgroups L, K < H.
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This definition was given by Green [Gr71]. Moreover, this definition is equivalent to the
categorical definition given by Dress [Dr73]. The most important axiom is (M4), which is
the Mackey decomposition formula. Note that the axioms (M0) and (M2) imply that
WH = Wg(H) := Ng(H)/H acts on a left R-module M(H), so that M(H) is a left R[W H]-
module for each subgroup H of G.

A morphism of Mackey functors f : M — N is a family of R-homomorphisms f(H) :
M(H) - N(H), for H € S(G), which commute with restriction, induction, and conjugation. In
particular, since f commutes with conjugation, f(H) is an R[W H]-homomorphism. We denote
by Mackg(G) the category of Mackey functors for G over R. It is easy to see that Mackg(G) is
an abelian category.

We summarise some of the basic constructions of Mackey functors. We denote by

1%+ Mackg(H) — Mackg(G), 1§ : Mackg(G) — Mackg(H), of' : Mackg(H) — Mackg(°H),

the induction, restriction, and conjugation of Mackey functors [Sa82]. Whenever we have
a normal subgroup N of G’ and a Mackey functor L for ¢ = G/N we can form the infration
InfgL which is a Mackye functor for G defined by

L(K/N) ifKCN
InfGL = : =
e { 0 otherwise

with zero restriction and induction morphisms R,’%,I f unless N < K < H, in which case they
are the mappings Rg;x, III\{//% for L, and similarly with conjugations. If M is a Mackey functor
for G over Rwe will write
M(H)=M(H)/ Y. IFM(J).
J<H
Note that M(H) is an R[W H]-module. We recall the simple Mackey functor which con-
structed by Thévenaz and Webb [TW89]. For an R[G]-module we describe a Mackey functor
va for G as follows;
SEv(H)=(Y_ RV, HeS(@G).
heH
Mreover, if H is any subgroup of G' and V is a simple R[W H]-module we define Sg,v =
(Inf{,VV%SIVYVH) 1$ 5, and this is in fact a simple Mackey functor. The Sg’v so constructed
constitute a complete set of representatives for the isomorphism classes of simple Mackey functors
[TW89] 8.3.

Lemma 1.1 ([TW95] 6.4) Let Sg,v be a simple Mackey functor. Then

T(L) _ |4 if H and K are conjugate
0 otherwise.

A Mackey functor for G' over R is identified as a certain finite dimensional algebra pg(G)
which called a Mackey algebra [TW95].

Lemma 1.2 ([TW95] 3.6) Let K be a field. Then K is a splitting field for ux (G) if and only
if K is a splitting field for the representations of WH for every subgroup H € S(G).
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The set of G-isomorphism classes of finite G-sets becomes a commutative ring Q(G) whose
name is Buernside ring, with addition defined by disjoint union and multiplication defined by
cartesian product with diagonal action. The Burnside ring over R of G is the free R-module with
basis the G-sets G/H where H is taken up to conjugacy. By means of induction, restriction,
and conjugation of G-sets this gives rise to a Mackey functor denoted Q€ which is call the
Burnside functor for G.

Lemma 1.3 ( [TW95] 8.9) Suppose that K is a field which is a splitting field for ux(G). If
char(K) = 0 then

06 ~ @ SHK-
HeC(G)

For three Mackey functors M, N, L a pairing M x N — L of Mackey functors is a family

of R-bilinear maps :
MH)x N(H)— L(H): (myn)—m-n

such that the following axioms hold: for subgroups H, K of G with H < K
(P1) Rf(ab) = RE(a)RE(b), a€ M(H),be N(H),

(P2) cf(ab):cf(a)ch(b), a € M(H),be N(H),

(P3) Iff (a)¥' = I (aRE(V)), a€ M(K),b € N(H),

(P4) o'TH(b) = IF(RE(a)D), o € M(H), be N(K).

A Green functor A is a Mackey functor with a pairing A Xx A — A such that for each
H € S(G) the R-linear map A(H) X A(H) — A(H) makes A(H) into associative R-algebra with
unity 14z such that:

(G) RE(am) = lak), K<HLG.

Let M be a Mackey functor and let A a Green functor. If there exists a pairing l4 :
A x M — M such that M(H) becomes a unitary left A(H)-module via the R-homomorphism
la(H) : A(H) X M(H) — M(H) then we said that M is a left A-module [Is89], [Lu96]. One
can define similarly the notion of right A-module with a pairing r4.

Let A be a Green functor for G. Let My, 4N be A-modules and L a Mackey functor for G
over R. A A-pairing p : M X N — L [Is89], [Lu96] is a pairing p : M x N — L such that the
following axiom hold:

(P5) For H € S(G) diagram

M(H) x AGH) x N(H) 2220 )« v

TA(H)XlN(H)l - lP(H)
M(H) x N(H) AN L(H)

is commutative.
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2 TENSOR PRODUCT OF MACKEY FUNCTORS

In this section, we recall the tensor product of Mackey functors. We refer to [Is89], [Le80],

[Lu96] for detail.
Let M and N be Mackey functors for a finite group G over a commutative ring R. For

H < G, we put
T(H)=<15®p®v|pe M(D),v € N(D), D€ S(H) >= (P M(D)®rN(D),
’ DeS(H)
where 12® is a symbol. Let I(H) be the R-submodule of T'(H) generated by the following

elements;
R1) 1H® (u1+ p2) @ vo =15 @ p1 @ vo + 15 @ 2 ® vo,

R2) 1B@ue@@+wn)=180u 0 +15 & u v,
R

(R3) 1H ® poa ® vo = 1 ® po ® awy,

15 @ ®tp (v) =15 @ rp (W) ® v,

)

)

Re) W oBWer=1"euerd )

(R5) |
)

(R6 1£ID®hM®hI/=lg®H®Va

whenever Moy K1, P2 € M(H)’ IS M(D)7 H‘, € M(D,)) Vo, V1,V2 € N(H)’ v e N(D), Ve
N(D"), a € A(H), h € H D < D' < H. Moreover, for subgroups K < H of G and an element
g of G, the linear maps restriction, induction, and conjugation defined as follows.

(T1) Pﬁ' : T(H) = T(K); 1g UV ZgE[K\H/D] 1§nsp ® R;%gD(gN) ® R?«%QD(gV)a

(T2) # :TK)->TH); 1 Eoperv = 1Buev

(T3) o : T(H) > T(H); 15@peov —» L @cfuaciv

For H < G, we set
M®N(H)=T(H)/I(H).
A tensor product of Mackey functors M and N consist of M ® N with induction, restriction,

and conjugation above. Also the Mackey functor M ® N satisfy the universality of tensor
product.

Lemma 2.1 ([Is89], [Le8'0], [Lu96], Yoshida) There ezists a unique pairing (resp.
A-pairing) 0 : M x N - M ® N, such that for every pairng (resp. A-pairing )n: M x N — T,
there exist a unique family of maps ¢ : M ® N — T the diagram

Mx N 0 M®N

N

n
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1s commutative.

Let
MxN -2 M@sN

denote the universal A-pairing.
Lemma 2.2 Let M be a Mackey functor for G over R. Then there exists a QC -pairing

6: 0% x M — M.

Proof. See [Is89], [Le80], [Lu96], [TW95]. 1
Hence for Mackey functors Mge and oo N we have Q%-pairing M x N — M ®qc N.

3 GROTHENDIECK RING OF MACKEY FUNCTORS _

In this section, we describe the Grothendieck ring of the category of Mackey functors for G

over R.

Lemma 3.1 Let M, N and L be Mackey functors for G over R. Then there exist isomorphisms
of Mackey functors as follows;

(i) M®qeN=N®gsM,
(i) (M ®qe N)®gs L = M ®qs(N ®ge L),

(i) (M®N)®qs L= (M@qsL)® (N ®ge L),
(i) M®qs(N® L) (Meqs N)® (M ®qs L),
(1) M®qeQ% =08 g M= M. |

Proof. (i) We shall construct a family of maps ¢ : N®qe M — L, such that the next
diagram

MxN ® N®qe M
~

L

is commutative for all 2%-pairing and a Mackey functor L. For H € S(G) it suffices to define
$(H) : N @ M(H) — L(H); ¢(n x m) = p(m,n)

where n € N(H) and m € M(H). (i1)-(iv) are similar to (3).
(v) There is a family of maps ¢ : M — L, such that the next diagram
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QF x M — M

is commutative for all Q-pairing p and a Mackey fnctor L : that is,
¢(H) : M(H) = L(H); m— p(lg,m).
I

The next result appears also in a general form in Luca’s paper [Lu96] 4.1.11, but the proof
differs from ours.

Lemma 3.2 Let K be a splitting field for px(G) and char(K) = 0.
(1) Let M and N be Mackey functors for G over K. Then

M® N(H) = M(H) @k N (H)

for every subgroup H.
(i1) Let A be a Green functor and let M (resp. N) be a right (resp. left ) A-module. Then

M ®a(my N(H) = M(H) @7y N(H)

Proof. (i) We may assume M and N be simple Mackey functors ng, Sg,w from Lemma 1.2.
Let f(H) be a map from Spy(H) X So,w(H) to Spyv ®qc Sq,w(H) defined by

F(H) = lg Rs®t if P, @, and H are conjugate
N 0 otherwise

where s € SI(J;’V(H) and ¢t € So.w(H). Then f(H) is a K-bilinear map by the definition of tensor
product. v
We construct a map ¢: N ®qe M — L, such that the next diagram

Spy (H) x Sgw(H) [(H) Spv ®ne Sow (H)

A

is commutative for a K-homomorphism p and a K-module L : that is,

, if D and H are conjugate
¢(lg®p®q):{p(pq) | jug

0 otherwise

The lemma follows by Lemma 1.1 and the universality of tensor product of K-modules. 1
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Let Go(Mackg(G)) be a Grothendieck group of the category of Mackey functors Mackg(G)
for a finite group G over a commutative ring R with addition defined by the direct sum. Then
Go(Mackr(G)) has a commutative ring structure from Lemma 3.1 with multiplication defined
by the tensor product of Mackey functors which we call the Grothendieck ring of Mackey
functors. The Grothendieck ring Go(Mackg(G)) has a basis ‘

{Suyv|H € C(G), V € Irtrg(WH)}

from Lemma 3.1 (v) and the unit element QC.

The main result of this paper is the following.

Theorem 3.3 Let K be a field which is a splitting field for the representations of WH for every
subgoup H < G' and char(K) = 0. Then there is an isomorphism of rings
Go(Mackg (G)) = EB Go(K[W H)).
HeC(G)
Proof. We shall define a map
P : Go(Mackr(G)) » € Go(K[WH])
HeC(G)

by M + (M(H))g. Here we use the symbol M to denote also the element of Go(Mackg(G))
determined by M, and likewise M (H) denote the element of Go(K[W H]) which this K[W H]-
module determines. By Lemma 1.1 the matrix of 1 is the identity matrix. It follows that 1 is an
isomorphism of abelian groups. By Lemma 1.3 % preserves the identity. Since K is a splitting
field for ux (G) and |G|~! € K, we obtain the desired result from Lemma 3.2. 1

4 PRIMITIVE IDEMPOTENTS

Let Cl(G) be the set of the representatives of canjugacy classes of G and let Cg(z) be the
centralizer of € GG in G. We denote by Irrx (G) the irreducible characters of G over a field K.
We need the next lemma.

Lemma 4.1 For an element z of G, we put

ecz =Ce(@)|™ Y x(@Hx.
x€lrr i (G)

Then {eg |z € CI(G)} is the set of primitive idempotents of the character ring of G over K.
For H < G and z € WH, we set

En. = |Cwg(z)|™? Z X(a:"l)S}}V’gx in Go(Mackg (G))
x€lrrg (W H)

where V,, is irreducible K[W H]-module corresponding .
Corollary 4.2 There sxist the set of primitive idempotents

{Enz|lz € CI(WH), H € C(G)}
of the Grothendieck ring C ® Go(Mackg (G))-

Proof. Let 9 be the isomorhism in Theorem 3.3. It is easy to see that ¥ (Em,) = ewn, from
Lemma 1.1. Thus we obtain the corollary by Lemma 4.1 and Theorem 3.3. ]
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