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Abstract

We prove that there is a 1-1 correspondence be-
tween the set of intersecting antichains in the lower-

half of the n-cube and the set of intersecting an-

tichains in the (n — 1)-cube. This reduces the enu-
meration of intersecting antichains contained in the
former set to that in the latter.

1. Introduction

Enumeration of intersecting antichains in the lower-
half of the n-cube plays a central role in determining
the number of so-called n-ary clique Boolean func-
tions[7?]. It is time consuming and is barely feasible
already for n = 7. In this note we present a bijec-
tion between the lower-half of the n-cube and the
(n—1)-cube which preserves intersecting antichains
and therefore reduces the enumeration of intersect-
ing antichains in the former set to the latter set
whereby the dimension of the space is reduced by
1. However, under current computer power the enu-
meration for n = 8 seems still to be beyond the
reach.

2. Definitions and Prehmlnar-
ies

Let E = {0,1} and n a positive integer. The
cartesian power E™ is the n-dimensional cube. Let
a = (a, ,a,) € E" and b = (by,---,b,) € E™.
We write a X bifa; < b; foralli, 1 <i < n.
We call A C E™ an antichain if @ < a' holds for
no a,a’ € A, i.e., no two elements from A are
comparable; e.g., every A with |A] < 1 is an an-

tichain. Two vectors @ = (a1,---,a,) € E® and
b = (by,---,b,) € E™ are intersecting (at the i-
th coordinate) provided a; = b; = 1 for some

1 <i < n A subset A of E™ is intersecting if
all pairs a,b € A are intersecting. Note that a sin-
gleton set {a} is intersecting unless a is the zero
vector o0 = (0,...,0). Also note that the empty set.
{ is an intersecting antichain.

For a = (ai1,...,a,) € E™ set w(a) := a; +
..+ a, (ie., w(a) is the number of 1s in a). For
t =0,...,n denote by B; the t-th layer w=1(t) of
the hypercube E™.

Set n' := |_2n_| and notice that n' = in if n is
even and n' = £(n — 1) if n is odd. For even n the
layer B, is called the midlayer. For even n and
i € E set C; := {(a1,...,8,) € By : a; =i} and
call C; and C; the upper and lower halves of the
midlayer. For even n define the upper and lower



halves of E™ as
Ln = B()U. - .UB,,,I_]UC(),
while for odd »

L, = BUU...UB"I, U, = w1 U...UB,.

3. A map between Ln and E"!

As usual set 0 := 1 and 1 := 0. Deﬁne a map ¢
from L., into E"‘1 by setting

if a1 =0,
if a; = 1.

(1)

Theorem 1. The map ¢ is 1-1 and onto, and pre-
serves intersecting antichains.

(a2a ey an)
(@g,.-.,an)

wwyg%»={

Claim. The map ¢ is injective.

Proof of the claim. Let a = (ay,...,a,) € L, and
b = (by,...,b,) € L, satisfy p(a) = ¢(b). We
show that a; = b;. Suppose to the contrary that
ay # b;. We can choose the notation so that a; = 0
and b; = 1. Then b, = @, and from p(a) = p(b)
and from (1) we obtain b; = a; for all: =2,...,n
As a,b € L, clearly w(a),w(b) < n' and

' >wb) = by+...4+b,=a;+...
l—a;+...41-—a,
= n—w(a)>n-n'

+ dﬂ.
(2)

Thus n’ > n — n' and hence n is even, n = 2n’ and
we have equality in (2) proving w(a) = w(b) = n’.
However, now b € C; in contradiction to b € Cy.
Thus a; = b; and from ¢(a) = p(b) and (1) we
obtain'a = b proving the claim. O

Proof. We show that ¢ induces a bijection from the
set of intersecting antichains in L,, onto the set of
intersecting antichains in E"~1.

Let W be an intersecting antichain in L,,. For: =
0,1 set W; = {(a1,...,a,) € W: a; =i}. From
the definition of ¢ clearly ¢ is an order preserving
map on W, and so (W) is an antichain. It is
immediate that (W) is intersecting. Similarly ¢
is an order reversing map on W; and so p(W;) is
also an antichain in E"~1. To show that @(W;) is
intersecting let (1,az,...,a,), (1,by,...,b,) € Wi.
We prove that a; = b; = 0 for some 1 < 7 < m.
Indeed, if not then a; +b; > 1forall j =2,...,n
and n +1 < w(a) + w(b). Asa,be W, C L,
we get w(a), w(b) < n' leading to the contradiction
n+1<wla)+wb)<2n' <n. Thusa; =b;, =0

for some 1 < i < n, hence both p(a) and (b)
have the i-th coordinate @; = b, = 1 and w(W;) is

Un := C1UBp11U. . .UBintersecting.

We show that the images of every a =
(0,a3,...,a,) € Wy and of each b =
(1,by,...,b,) € W, are incomparable. As a and b
belong to the intersecting set W we have a; = b; = 1
for some 1 < 7 < n and therefore a; =1 > 0 =
b;. Suppose to the contrary that a; > by for all
k = 2,...,n. Then ay +b, > 1 for all ¥ and
w(a)+wd) >14+n—-1=n. From a,b € L, we
see that n’ > w(a) and n’ > w(b). Consequently

3)
Thus n is even, we have equality in (3) and so
w(a) = w(b) = n/. However, this leads to the con-
tradiction b € Co N Wy = @. Thus p(a) and ¢(b)
are incomparable. Finally we show that the images
of a and b are intersecting. As a and b belong to
the antichain W, clearly a; = 1 > 0 = b; for some
1< j < n. Now p(a)Ap(b) # o duetoa; =1=b;.
We have proved that ¢ maps intersecting antichains
in L,, into intersecting antichains in E"~1.

To show that this map of antichain is surjective
let W’ be an intersecting antichain in E"~1. Set

2n’ > w(a) +w(b) > n.

Wo :={(0,a1,...,8n-1) : @a=(a1,...,an-1) € W,
w(a) < ')

Wy = {(1,81,-..,8n-1): a=(az,.--,an—1) € W,
w(a) > n'}.

Clearly W, C L,. For ¢ = (1,4a4,...,8,) € W; we

have w(c) = 1+n—1-w(a) = n—w(a) < n—n' and
so w(c) < n' if n is odd and w(c) < n’ if n is even.
This shows that ¢ € L,, and W; C L,,. As above
it can be verified that Wy and W} are intersecting

antchains. Consider a = (0,ay,...,a,-1) € Wy
cand b = (1,b,...,by1) € Wi, As (a3,...,8n-1)
and (b1,...,b,—1) belong to the intersecting an-

tichain W', clearly a; = b; =1 and a; =1,b; =0
for some 1 < 4,5 <n—1. Nowa; =b; =1 and
a; = 1, b; = 0. Thus Wy, U W, is an intersecting
antichain and (W, UW;) = W', In particular, for
every b € E"! \ {0} the antichain {b} € E" ! is
the image of some antichain {a} € L,. Moreover,
as ¢((0,...,0)) = (0,...,0) clearly ¢ is surjective.
This concludes the proof. O

Example. Let W = {01001,01010,01100, 11000}
(where “abcde” stands for (a,b,c,d,e)). It can be
checked that W is an intersecting antichain in Ls
whose image is the intersecting antichain in E*:
o(W) = {1001,1010,1100,0111}. O

To show an application first we state a result from
[PMNR97].



Theorem 2. (sz_il) is the mazimum size of an
2
intersecting antichain in L.,.

As a corollary of the above two theorems we have
the following.

Corollary 3. (L"'—:lj) is the mazimum size of an”

intersecting antichain in E™.

Proof. Replace n by n + 1 in the formula given in
Theorem 2. O

The maximum size m of an antichain in L,, seems
to be not yet considered in the literature.  We show
that m coincides with the maximum size of inter-
secting antichain in E™.

Theorem 4. ([,.’_‘1 J) 8 the mazrimum size of an
7 .
antichain in L,,.

Proof. From [Spe28] for n odd the largest antichain
in E™ is of size (:,) Thus let n be even and let 4
be an antichain in L,, of size m. Again from [Spe28]
we obtain that A C B,,_; UC,. We show that A co-
incides with the antichain M = CyU{(ay,...,a,) €
B, -1 :a; =1}. Fori=0,1 set

A, = {(a1y---,8,) EANBy_1: a3 =1t}
Also set
D := {d€Cy: d> aforsomeac€ A}
and
a = |{(a,d):a€ Ay,d € D,a <d}|
For a fixed a = (0,a,,-..,a,) € Ay we have w(a) =

n’ —1 and there are exactly n’ elements d € D with
d > a. Similarly for each fixed d = (0,dy,...,d,) €
D due to w(d) = n’ there are exactly n’' elements
b € B,_; with b < d. Together n'[4y| < a < n'|D|
and so |Ay| < |D|. Now A being an antichain , D
is disjoint from AN Gy, and DU (AN Cy} U A, is
an antichain in L,. Then DU (AN Cy) U 4; is a
subset of the antichain M and from maximality A
coincides with M. Thus

- (o2 () =)

Lastly we note that the numbers of antichains
in L, and E™! do not coincide (as the proof in-
dicates, the condition of intersecting is necessary

O

for 1-1 correspondence). This can be seen in Ta-
ble 1 and Table 2, where we list the numbers of
antichains in L, and in E®. The numbers of in-
tersecting antichains in L, (and hence in E,_,) is
given in [PMNR97] for up ton = 7.
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"l'able 1. Numbers b(r,n) of size r antichains in L,; the maximum size is m = (L PRy J).

r\nj{l 2 3 4 5 6
111 2 4 8 16 32
2 ' 3 15 85 375
3 1 11 235 2365
4 2 355 8895
5 338 21941
6 240 38065
7 125 48020
8 45 44470
9 10 30090
- 10 1 14646
11 5087
12 1275
131 . 235
14 30
15 2

‘I'able 2. Numbers a(r,n) of size r antichains in £, ; the maximum size is ([}L‘ J).
‘T'he numbers given in total correspond to the Dedekind numbers of n-ary monotone functions.

r\n|1 2 3 4 5 6
ol1 1 1 1 1 1
112 4 8 16 32 64
2 1 9 55 285 1351
3 2 64 1090 14000
4 25 2020 82115
5 6 2146 304752
6 1 1380 759457
7 490 1308270
8 115 1613250
9 20 1484230

10 2 1067771
11 635044
12 326990
13 147440
14 57675
15 19238
16 5325
17 1170
18 190
19 20
20 1
total | 3 6 20 168 7581 7828354




