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1 Introduction

A chordal ring, denoted by CR(N,d), is a graph G = (V, E), where V = {0,1,---,N — 1}, E =
{(w,v)][v —u]y = lord}, 2 < d < N/2, and [r]y denotes r modulo N. If 2 < d < N/2 then
CR(N,d) is 4-regular, and if 4 < 2d = N then CR(N,d) is 3-regular. Examples of chordal rings
are shown in Figure 1. Chordal rings have a number of advantages as interconnection networks. For
any pair of N and d satisfying 2 < d < N/2, chordal ring CR(N,d) exists. They are regular and
with fixed degrees (3 or 4). ‘It can be easily extended or reduced. For example, in order to extend
CR(N,d) to CR(N + 1,d), we need only O(d) connection changes.

Figure 1: Chordal rings

- A set of paths connecting a pair of vertices in a graph are said to be internally disjoint if and
only if any pair of the set have no common vertices and no common edges except for their extreme
vertices. Two spanning trees of a graph G = (V, E) are said to be independent if they are rooted
at the same vertex, say r, and for each vertex v in V, the two paths from » to v, one path in each
tree are internally disjoint. A set of spanning trees of a graph are said to be independent if they are
pairwise independent. A graph G is called an n-channel graph at vertex r if there are n independent
spanning trees rooted at r of G. If G is an n-channel graph at every vertex, G is called an n-channel
graph. For example, the n-dimensional hypercube (n-cube for short) is an n-channel graph. Three
independent spanning trees rooted at the same vertex of the 3-cube are shown in Figure 2, where
bold lines denote edges of independent spanning trees. '

Itai and Rodeh [9] gave a linear time algorithm for finding two independent spanning trees in a
biconnected graph. Cheriyan and Maheshwari [6] showed how to find three independent spanning
trees of any 3-connected graph G = (V, E) in O(|V||E|) time. Zehavi and Itai [12] showed also that
for any 3-connected graph G and for any vertex r of G there are three independent spanning trees
‘rooted at 7. They conjectured [10][12] that any k-connected graph has k independent spanning trees



83
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Figure 2: Independent spanning trees rooted at 0 of the 3-cube

rooted at an arbitrary vertex r. Recently Huck has proved that for any k-connected planar graph with
k=4 ork =5 (ie., for any planar graph since any k-connected graph with & > 6 is nonplanar) there
are k independent spanning trees rooted at any vertex [7][8][5]. For arbitrary k-connected graphs
with & > 4, the conjecture is still open. It has been also shown that if G is an nj-channel graph
and G is an no-channel graph, then the product graph of G; and G, denoted by Gy x G», is an
(n1 + ny)-channel graph [1 1]. From this fact it is immediate that the n-cube, an n-dimensional mesh
and an n-dimensional torus are an n—channel glaph an n-channel graph, and a 2n-channel graph,
respectively. »

Broadcasting in a distributed system is the message dlssennn_ation from a source processor to
every other processor in the system. It has been shown that broadcasting along independent spanning
trees are efficient and reliable [2][3][4][9]. In fact, if G is an n-channel graph and the source vertex is
faultless, then there exists a broadcasting scheme that can tolerate up to 1 — 1 faults of the crash type
and up to [(n —1)/2] faults of the Byzantine type. All transmissions by such a broadcasting scheme
contribute to the majority voting to obtain the correct message, and its communication complexity
is optimal to tolerate up to |[(n — 1)/2] faults of the Byzantine type [2][3][4].

In general it is hard to construct n independent spanning trees rooted at the same vertex of a
given n-connected graph. If N is even and d = 2 then CR(N,d) is planar. If d = 2 and N is an
odd integer greater than 4, or if 3 < d < N/2, then CR(N,d) is nonplanar. In this paper we show
how to construct 4 independent spanning trees of CR(N,d) for 2 < d < N/2 and how to construct
3 independent spanning trees of CR(N,d) for 2 < d = N/2. From the construction we can say that
CR(N,d) is-a 4-channel graph for 2 < d < N/2,and a 3-channel graph for 2 < d = N/2.

2 Construction of Independent Spanning Trees

Chordal rings are symmetric with respect to vertices. Hence, without loss of generality we may
only consider independent spanning trees rooted at Vertex 0 of each chordal ring. We first assume

2<d< NJ2.

procedure constructl(N,d);
(*2<d< N/2%)
begin
(1) for: :—Otod 2 do
connect vertex i with vertex i + 1;
(2) fori:=1tod—1do
‘connect vertex ¢ with vertex [i — d]n;
(3) fori:=1tod—-1do begin
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T =1
while z < N — 2d do begin
connect vertex ¢ with vertex z'+ d;
¢ :=z+d
~end
end;
4) z:=d-1,
while £ < N —d - 1 do begin
connect vertex x with vertex = + 1;
z:=z+d
end
end

Let T1(N,d) be a graph with the vertex set {0,1,-:-,N — 1} and the edge set specified by
procedure constructl(N,d). We show T(14, 4) in Figure 3, where the edges of T (N, d) are indicated
by the bold lines.

Figure 3: A graph constructed by procedure constructl, T1(14,4)

We use notation z — y to denote the path of length 1 from vertex = to vertex y such that
[y — z]ny = 1. Notation z = y denotes the path of length 1 from vertex x to vertex y such that
[y — ]y = —i. The reflexive and transitive closures of iy and of —5 are denoted by b and %
respectively. ' '

Lemma 1 T1(N,d) is a spanning tree of CR(N,d).

Proof: The vertex set of Ty (N,d) is {0,1,---,N — 1}, and any edge (z,y) of T1(N,d) satisfies
[z —y]ny =1, =1, d, or —d. Hence, T1(N,d) is a spanning subgraph of CR(N,d). The sets of edges
constructed by (1), (2), (3) and (4) of procedure constructl(N,d) consist of d —1 edges, d — 1 edges,
N —2d— (| N/d] —2) edges and | N/d]| — 1 edges, respectively. These sets of edges are disjoint. Hence,
the number of edges of T1(N,d) is 2(d — 1) + (N —2d — |[N/d] +2)+ (|[N/d| —1) =N - 1.

Let z be a vertex of CR(N,d). If 1 < ¢ < d — 1 then there is a path 0 2L 2 in Ti(N,d). If
d<z < N-dand [:v]d=Othel1thereisa.path0—-'|-—-1>d—1gw—l%m. Ifd<z<N-dand
[z]q = y for some 0 < y < d then there is a path 0 = y 2 EN-d <z< N —1 then there
is a path 0 2N [z + d]n =4 . Hence, for any vertex z of CR(N,d), there is a path from 0 to x in
T (N,d). Therefore, T1(N.d) is a spanning tree of CR(N,d). o O
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procedure construct2(N, d);
(*2<d< N/2¥)
begin
(1) x:=0; ‘ :
while z < N — 2d do begin
connect vertex x with vertex z + d;
z:=xz+d
end ,
(2) fori:=dtoN-d-1do
if [{ + 1]4 # 0 then
connect vertex ¢+ with vertex 7 + 1;
(3) fori:=d downto 2 do '
connect vertex 7 with vertex 1 -1
(4) fori:=N-2d+1toN-d-1do
connect vertex ¢ with vertex ¢ + d;
end - ' ‘

Let T3(N,d) be a graph with the vertex set {0,1,---,N — 1} and the edge set specified by
procedure construct2(N, d). We show T5(14, 4) in Figure 4, where the edges of T5(14,4) are indicated
by the bold lines. '

Figure 4: A graph constructed by procedure construct2, T>(14, 4)

Lemma 2 T5(N,d) is a épanning tree of CR(N,d).

Proof: The vertex set of T5(N,d) is {0,1,---,N — 1}, and any edge (z,y) of T>(N,d) satisfies
[ —y]y =1, =1, d, or —d. Hence, TH(N,d) is a spanning subgraph of CR(N,d). The sets of edges
constructed by (1), (2), (3) and (4) of procedure construct2(N. d) are disjoint, and these sets consist
of [N/d| — 1 edges, N —2d — | N/d| + 2 edges, d — 1 edges and d — 1 edges, respectively. Hence, the
number of edges of T5(N,d) is |[N/d] =1+ N —2d — |N/d| +2+d—-1+d-1=N-1.

Let x be a vertex of CR(N,d). If 1 <z < d — 1 then there is a path 0 —iﬁ} d é x in TH(N, d).
Ifd <z <N —dand [z]; =0 then there is a path 0 24 . 1t d <z <N —dand [z]y =y for some
0 < y < d then there is a path 0 24 5 Y 2 EN-d<az < N -1 and [z]q = y for some
0 <y < d then there is a path 0 g@ z—d—y 2 oa—d —+Ll) z. Hence, for any vertex z of CR(N, d),
there is a path from 0 to z in Ty(N, d). Therefore, To(N, d) is a spanning tree of CR(N. d). O
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Symmetrically we can define T3(N,d) and Ty(N, d) as follows: Let T3(N,d) be a spanning tree of
CR(N,d) obtained from T|(N, d) by changing the name of each vertex x to [N — z]y. Let Ty(N.d)
be a spanning tree of CR(N,d) obtained from T5(N,d) by changing the name of each vertex z to
[N — z]y. Examples of T3(N,d) and T4(N,d) are shown in Figure 5, where the bold lines are the
edges of the spanning trees. Con ’ .

Figure 5: Spanning trees T3(14,4) and T4(14,4)

Lemma 3 Tj(N,d) and Tg(N ,d) are independent spanning trees rooted at 0 of CR(N,d).

Proof: We consider the paths from 0 to = in T1(N,d) and in TQ(N, d). When 1 <z <d -1, these

b 4 4 =4 5. Any inter | 2L ¢ sati ' as
paths are 0 zand 0 — d x. Any internal vertex a of 0 z satisfies 0 < a < z, whereas
any internal vertex b of 0 24 4 =4 7z satisfies z < b < d. Hence, these two paths are internally
disjoint.

We next assume that d < 2 < N —d. If [z]y = 0 then the paths from 0 to z in T1(N,d) and
in T5(N,d) are 0 = | éi:* z-1"5 2 and 0 éd> x, respectively. Any internal vertex a of
the former path satisfies 0 < [a]q < d — 1, whereas any internal vertex b of the latter path satisfies
[b]g = 0. Hence, these two paths are internally disjoint. If [z]; = y for some 0 < y < d then the paths
from 0 to z in T7(N,d) and in Ty(N,d) are 0 ==Y Y 24z and 0 X g 24 5 — Y 2L x, respectively.
Any internal vertex a of the subpath y 24 2 satisfies [a]¢ = y, whereas any internal vertex b of the
subpath d - Yy 2L 2 satisfies 0 < [bl¢ < y. Hence, these two paths from 0 to = are internally
disjoint.

We finally assume that N —d < 2 < N — 1 and [z]q = y for some 0 < y < d. The paths from 0
to z in T1{N,d) and in TH(N, d) are 0= [z +d]n =% 2 and 0 =% d-—gga;—(ley ot R R T,
respectively. Any internal vertex of the former path is less than d, whereas any internal vertex of the

latter path is not less than d. Hence, these two paths are internally disjoint. Therefore, T} (N, d) and
T5(N, d) are independent spanning trees rooted at 0 of CR(N,d). ‘ O

Symmetrically, we have the next lemma.
Lemma 4 T3(N,d) and T4(N,d) are independent spanning trees rooted at 0 of CR(N,d).

Lemma 5 T1 (N,d) and T3(N,d) are z'ndependeni spanning trees rooted at 0 of CR(N,d).
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Proof: We first assume that 1 < 2 < d — 1. The paths from 0'to x in T} (N, d) and in T3(N,d) are

0 2 and 0 =2 [z —d]n RN z, respectively. For any internal vertex a of the former path and
any internal vertex b of the latter path, 0 < @ < z and # < N — d < b. Hence, these two paths are
internally disjoint.

We next assume that d <z < N-d If [:r]d = 0 then the pa‘rh from 0 to = in T1(N d) is
0 d- 1 S i z, and if [r]q = y for some 0 < y < d then the path from 0 to z is
0 Y 24 2. For each case any internal vertex a of the path satisfies 0 < a < z. If [N —z]; =0
then the path from 0 to z in T3(N,d) is 0 = N-— d+1 =4 +1 =4 z, and if [N —z]q =.y for some
0 < y < d then the path from 0 to = in T3(N,d) is 0 =5 N - Y =% 2. For each case any internal
vertex b of the path satisfies < b. Hence, the paths from 0 to z in T|(N.d) and in T3(N,d) are
internally disjoint. - Co

Finally we assume that N —d < £ < N — 1. The paths from 0 to = in T} (N, d) and in T3(N,d)

are 0 == [z +d]n =4 7 and 0 => z, respectively. For any internal vertex a of the former path
0 < a < d, and for any internal vertex b of the latter path z < b. Hence, these two paths are internally
disjoint. Therefore, T1(N,d) and T3(N,d) are independent spanning trees rooted at 0 of CR(N,d).
0O

Lemma 6 T3(N,d) and T4(N,d) are independent spanning treeérrooted at 0 of C’R(N, d).

Proof: We first assume that 1 <.z < d — 1. Let [N — z]q = y for some 0 < y < d. Then the paths

from 0 to z in T5(N.d) and in Ty4(N,d) are 0 X4 g =44 and0=d> :1.+d+./£:1,+d—)m_,
respectively. These two paths are internally disjoint.

We next assume that d <z < N —d. If [z]; = 0 then the path from 0 to & in TH(N,d) is 0 4 T,
and if [z]y = y for some 0 < y < d then the path from 0 to z in TH(N.d) is 0 =(‘ xr—y 2% 2. In
each case any internal vertex a of the path satisfies 0 < a < z. If [N — 2]y = 0 then the path from
0 to z in Ty(N, d is 0 % z, and if [N — z]; = y for some 0 < y < d then the path from 0 to z in
T4(N,d) is O =4 & +y =% . In each case any internal vertex b of the path satisfies z. < b. Hence,
for any case the paths from 0 to z in T5(N,d) and in T4(N,d) are internally disjoint.

We finally assume that N —d < z < N =1. Let [z]; = y for some 0 < 2 < d. The paths from 0 to
z in T5(N,d) and in T4(N,d) are 0 24 r—d—vy s il% zand0 =% N -d 25 x, respectively.
These two paths are internally disjoint. Therefore, T5>(N,d) and T4(N,d) are independent spanning
trees rooted at 0 of CR(N.d). a

Lemma 7 T1(N,d) and Ty(N,d) are independent spanning trees rooted at 0 of CR(N,d).

Proof: We first assume that 1 <z <d —1. Let [N —z]q =y for some 0< 1/ < d. The paths from 0

toz in T1(N,d) and in T4(N,d) are 0 £ zand 0 = +d+y = +d =4 x, respectively. These
two paths are internally disjoint.
We next assume that d<z<N-d If [:r]l = 0 then the path from 0 to z in T7(N,d) is

0ba—1 =$ z—1— z, and if [z]g = y for some 0 < y < d then the path from 0 to = in T (N, d)
is 0 =5 Y 4, . For each case any internal vertex a of the path satisfies 0 < @ < z. As for the path
from 0 to = in T4(N,d), if [N —z]qg =0 then it is 0 =4 2, and if [N —z]q =y for some 0 <y < d

then it is 0 =% +y =% 2. For each case any internal vertex b satisfies x < b < N — 1. Hence, for
any case the paths from 0 to z in T1{N,d) and T4(N,d) are internally disjoint.
We finally assume that N —d < x < N — 1. The paths from 0 to z in T} (N, d) and in Ty4(N, d) are

0 [z + d]n = o and0 =S N -d 2 z, respectively. These two paths are internally d1330111t..
Therefore, T1(N, d) and Ty(N,d) are independent spanning trees rooted at 0 of CR(N,d). ]
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Symmetrically, we have the next lemma.

Lemma 8 T>(N,d) and T3(N,d) are independent spanning trees rooted at 0 of CR(N,d).

From Lemma 3 - Lemma 8, we have the next theorem.

Theorem 1 For any 2 < d < N/2, Ti(N,d). T>(N,d). T3(N,d) and T4(N,d) are independent
spanning trees rooted at 0 of CR(N,d). . o

We next consider the case where 2 < d = N/2. In this case CR(N.d) is 3-connected. -

procedure construct5(N,d);
(*2<d=N/2%)
begin , ‘
(1) = connect vertex 0 with vertex d;
(2) fori:=dtoN-2do
connect vertex ¢ with vertex ¢ + 1;
(3) fori:=d downto 2 do
connect vertex 7 with vertex 7 — 1
end : '

Let T5(N,d) be a graph with the vertex set {0,1,---,N — 1} and the edge set specified by
procedure construct5(N,d). We can show that T5(N, d) is a spanning tree rooted at 0 of CR(N, d).
For the case-where 2 < d = N/2, we can also apply procedure constructl(N,d). For this case we
denote the spanning trees specified by procedure constructl(N,d) by T{(N.d) . Let T3(N,d) be a
spanning tree of CR(N,d) obtained from T} (N, d) by replacing the name of each vertex by [N —z]n.
In a similar way we can show the next theorem. :

Theorem 2 For any 2 < d= N/2, T{(N,d), T3(N,d) and T5(N,d) ‘are independent spanning trees
rooted at 0 of CR(N,d). - ’

In Figure 6 we show three independent spanning trees T (14,7), T3(14, 7) and T5(14,7) of CR(14,7).

Ti(14,7)

Figure 6: Three independent spanning trees of CR(14,7)

From Theorem 1 and Theorem 2 the following theorem is immediate.

Theorem 3 If2 < d < N/2, CR(N,d) is a 4-channel graph, and if 2 < d = N/2. CR(N.d) is a
3-channel graph.
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3 Concluding Remarks

We can consider ‘a more general family of chordal rings. A chordal ring CR(N, d1,-' ,dr) is a
graph G = (V,E), where V = {0,1,- —1}and E = {(u,v) | [v—uly = lor[v —uly =
d; for some 7 (1 < i < k)}. Chordal nngs dlscmsed in this paper are the case where k = 1 in the
definition of the generalized chordal rings. In general we do not know how to construct efficiently the
maximum number of independent spanning trees rooted at the same vertex of a generalized chordal
ring. A graph G = (V, E) with N vertices is called the N-hyper-ring if V = {0,1,---,N — 1} and
E = {(u,v) | [v—u]n is a power of 2}. Hyper-rings belong to the family of generalized chordal rings,
and the network family has been much studied [1]. However, we do not know at present whether for
each N, there are as many independent spanning trees rooted at the same vertex of N- hype1 -ring as
its connectivity.

It is also interesting to study how we design efficient broadcasting protocols for CR(N,d), in
particular for one-port mode, based on message transmission through independent spanning trees
Ti(N,d), T»(N,d), T3(N, d) and T4(N,d) (or T{(N,d), T3(N,d) and T5(N, d)).

These problems would be worthy for further investigation.
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