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Augmenting Edge-Connectivity and Vertex-Connectivity Simultaneously

ISHII Toshirhasa, NAGAMOCHI Hiroshi and IBARAKI Toshihide

Kyoto )University, Kyoto, Japan 606-01

~ Abstract Given an undirected multigraph G = (V, E) and requirement functions {ra(z,y) € Z7|
z,y €V} and {r(z,y) € Z¥|z,y € V} (where Z* is the set of nonnegative integers), the edge .

and vertex-connectivities augmentation problem asks to augment G by adding the smallest num- -

ber of new edges to G so that for every z,y € V,

the edge-connectivity and vertex-connectivity

‘between z and y are at least 7\(z,y) and r.(z,y), respectively in the resulting graph G’. In this
paper, we show that if 7.(z,y) = 2 holds for every z,y € V, then the problem can be solved in

polynomial time.

1 Introduction

Let G = (V, E) stand for an undirected multigraph
with a set V of vertices and a set E of edges, where an
edge with end vertices u and v is denoted by (u,v). A
singleton set {z} may be simply denoted by z. For
two disjoint subsets of vertices X, Y C V, we de-
note by Eg(X,Y) the set of edges; one of whose end
vertices is in X and the other is in Y, and also de-
note cg(X,Y) = |Eg(X,Y)|. In particular, Eg(u,v)
implies the set of edges with end vertices u and v.
We denote n = |V| and e = |E|. For a subset
V' CVin G, G — V' denotes the subgraph induced
by V —V'. A cutis defined as a subset X of V with
@ # X #£ V, and the size of a cut X is denoted by
¢e(X,V — X), which may also be written as cg(X).
A cut with the minimum size is called a (global) min-
imum cut, and its size, denoted by A(G); is called the
edge-connectivity of G. The local edge-connectivity
Ac(z,y) for two vertices z,y € V is defined to be
the minimum size of a cut in G that separates z
and y (i.e., z and y belong to different sides of X
and V — X), or equivalently the maximum number

of edge-disjoint path between z and y by Menger’s -

theorem [4]. ‘

For a subset X of V, {v € V- X | (u,v) € E
for some u € X} is called the neighbor set of X,
denoted by I'¢(X). Let p(G) denote the number of
components in G. A separator of G is defined as a
cut S of V such that p(G — S) > p(G) holds and no
S’ C S has this property. A separator always exists,
unless G contains the complete graph K,,. If G does
not contain K, then a separator of the minimum size
is called a (global) minimum separator, and its size,
denoted by (@), is called the vertez-connectivity of
G. If G contains the complete graph K,,, we define
k(G) = n—1. The local vertex-connectivity kg(z,y)
for two vertices z,y € V is defined to be the number
of internally-disjoint paths between z and y in G.

For any separator S, there is the component X of
G such that X D S, and we call the'components in
G[X] — S the S-components. Let

B(G) = max{p(G - 5)|S is '_ 1)
a minimum separator in G}. ‘"

A cut T CV is called tight if T'g(T) is a minimum
separator in G and no 7' C T has this property
(hence, G[T] induces a connected graph). Let t(G)
denotes the maximum number of pairwise disjoint
tight sets in G. :

In this paper, for a given function.a: (‘2/) - Rt
(resp., b : () — RT), where Rt denotes the
set of nonnegative real numbers, we call G a-edge-
connected (resp., b-vertez-connected) if Xg(z,y) >
a(z,y) (resp., ka(z,y) > b(z,y)) holds for every
z,y € V. Given a multigraph G = (V, E) and a re-
quirement function 7} : (‘2/) — Z%t -(resp., a require-
ment function 7, : () — Z%), where Z+ denotes
the set of nonnegative integers, the edge-connectivity
augmentation problem, (resp., the vertez-connectivity
augmentation problem) asks to augment G by adding
the smallest number of new edges so that the re-
sulting graph G’ becomes r)-edge-connected (resp.,
r-vertex-connected). 'When the requirement func-
tion 7y (resp., r.) satisfies r)(z,y) = k € Z* for
all z,y € V (resp., rs(z,y) = £ € Z* for all

- 2,y € V), this problem is called the global k-edge-

connectivity problem (resp., the global /-vertex-
connectivity problem).

Watanabe and Nakamura [16] first proved that
the global k-edge-connectivity augmentation prob-
lem can be solved in polynomial time for any

‘given integer k. Their algorithm increases edge-

connectivity one by one, each time augmenting edges
on the basis of structural information of the cur-
rent G. Currently, O(e + k®nlogn) time algorithm
due to Gabow [6] and O(n?®) time randomized algo-



rithm due to Benczir [1], whose deterministic run-
ning time is O(n*), are the fastest among existing al-
gorithms. Different from the approach by Watanabe
and Nakamura, Cai and Sun [2] first pointed out that
the augmentation problem for a given k can be di-
rectly solved by applying the Mader’s edge-splitting
theorem. Based on this, Frank [5] gave an O(n®)
time augmentation algorithm. Afterwards, Gabow
[7] and Nagamochi and Ibaraki [14] improved it to
O(mn?log(n?/m)) and O(n?(m + nlogn)), respec-
tively. Recently, Nagamochi and Ibaraki [15] gave an
O(n(m + nlogn)logn) time algorithm. -For a gen-
eral requirement function ry, Frank [5] showed that
the edge-connectivity augmentation problem can be
solved in polynomial time by using Mader’s edge-
splitting theorem, and recently the time complexity
was improved by Gabow [7] to O(n®*mlog(n?/m)).
As to the vertex-connectivity augmentation prob-
lem, the problem of adding the minimum number of
new edges to a k-vertex-connected graph to make it
(k + 1)-vertex-connected has been studied by sev-
eral researchers. It is easy to see that M(G) =
max{B(G) — 1, [t(G)/2]} provides a lower bound on
the optimal value to this problem. Eswaran and Tar-
jan [3] proved that the vertex-connectivity augmen-
tation problem can be solved by adding M(G) edges
to G for k = 1. Watanabe and Nakamura [17] stated
the same result for £ = 2. However, M(G) can be
smaller than the optimal value for general k > 3. Re-
cently Jorddn presented an O(n®) time approxima-
tion algorithm for this problem [11, 12]. The differ-
ence between the number of new edges added by his
algorithm and the optimal value is at most (k—2)/2.
It is known that if the requirement function 7,
satisfies- r(z,y) = k for all z,y € V, where k €
{2, 3, 4}, then the global k-vertex-connectivity aug-
mentation problem can be solved in polynomial time
due to [3, 9], [17, 8], [10], where an input graph

G may not be (k — 1)-vertex-connected. However,

whether there is an polynomial time algorithm for
the global vertex-connectivity augmentation problem
for an arbitrary k is an open question (even if G is
(k — 1)-vertex-connected).

In this paper, we consider the problem of augment-
ing the edge-connectivity and the vertex-connectivity
of a given graph G simultaneously by adding the
smallest number of new edges. For two given func-
tions a : (‘2/) — Rt and b: (g) — R*, we say that
G is (a,b)-connected if G is a-edge-connected and b-
vertex-connected. :

Given a multigraph G = (V, E), and two require-
ment functions ry: (‘2/) — Z%t and 7,: (‘2/) — 7T,
the edge-and-vertez-connectivity augmentation prob-
lem, denoted by EVAP(r,,r,), asks to augment G by
adding the smallest number of new edges to G so that
the resulting graph G’ becomes (r,,r.)-connected.
Without loss of generality, r\(z,y) > r.(z,y) is as-
sumed for all z,y € V, since if a graph is r.-vertex-
connected then it is r.-edge-connected. Clearly,
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EVAP(ry,7.). contains the edge-connectivity aug-
mentation problem and the vertex-connectivity aug-
mentation problem as its special cases. =

When the requirement function 7. satisfies
To(z,y) =€ € Z* for all z,y € V, this problem is de-
noted by EVAP(r,,£), if no confusion arises. In this
paper, we consider this problem in case r.(z,y) = 2
holds for every x,y € V (but r)(z,y) are arbitrary).
We first present a lower bound on the number of
edges that is necessary to make a given graph G
(rx,2)-connected. We then show that this problem
can be solved in polynomial time, by actually pre-
senting a polynomial time algorithm that adds a new
edge set whose size is equal to this lower bound.

In Section 2, after introducing basic definitions
and the concept of edge-splitting, we derive a lower
bound on the number of edges that are necessary to
make a given graph G (r,,7,)-connected. In Section
3, we outline our algorithm for making a given graph
G (73, 2)-connected by adding a new edge set whose
size is equal to the above lower bound. In Sections
4 — 7, we prove the correctness of each step in our
algorithm. - :

2 Preliminaries
2.1 Definitions

For a multigraph G = (V, E), its vertex set.V
and edge set E may be denoted by V[G] and E[G],
respectively. For a subset V' C V (resp., E' C E) in
G, G[V'] (resp., G[E']) denotes the subgraph induced
by V' (resp., E'). For V' C V (resp., E' C E) in G,
we denote G[V — V'] (resp., G[E — E']) simply by
G — V' (resp., G — E'). For an edge set F with
FNE =0, wedenote G=(VEUF)by G+ F. A
partition Xy, --, X, of vertex set V means a family
of nonempty disjoint subsets of V' whose union is V,
and a subpartition of V means a partition of a subset
of V. :
We say that a cut X separates two disjoint subsets
Yand YV of VIfY C Xand Y/ CV - X (or
YCV —-X and Y’ C X) hold. In particular, a cut
X separates z and y if z € X and y € V — X (or
z€V—-Xandy € X) hold. A cut X crosses another
cut Y if none of subsets X NY, X -~Y,Y — X and
V—(XUY) is empty. We say that a separator S C V
separates two disjoint subsets Y and Y’ of V — § if
no two vertices z € Y and y € Y’ are connected in
G —S. In particular, a separator S separates vertices
zandyin V—Sif z and y are contained in different
components of G — S.

2.2 Edge—Splitting

In this section, we introduce an operation of trans-
forming a graph, called edge-splitting, which is help-
ful to solve the edge-connectivity augmentation prob-
lem. ‘



Given a multigraph G = (V, E), a designated ver-
tex.s € V, vertices u,v € I'g(s) (possibly u = v) and
a nonnegative integer § < min{cg(s,u),cg(s,v)}, we
construct graph G’ = (V, E’) from G by deleting 6
edges from Eg(s,u) and Eg(s,v), respectlvely, and
adding new & edges to Eg(u v): ‘

ca'(s,u) == cg(s,u) =

e (s,v) 1= ca(s,v) — 6,

ca (u,v) :=cglu,v) + 6,

ca'(z,y) :==cg(z,y) for all other pairs z,y € V.
In case of w = v, we interpret that cg/(s,u) :=
ca(s,u) — 26,cq(u,u) = cg(u,u) + 26, and
ce'(z,y) = cg(z,y) for all other pairs z,y € V,
where an integer é is chosen so as to satisfy 0 <
6 < %cg(s,u). We say that G’ is obtained from
G by splzttmg 6 pair of edges (s u) and (s,v) (or
by splitting (s,u) and (s, v) by size §), and denote
the resulting graph G’ by G/(u,v;8). A sequence of
splittings is complete if the resulting graph G’ does
not have -any neighbor of s.

The following theorem is proven by Mader [13].

Theorem 2.1 [13] Let G = (V, E) be a multigraph
with a designated vertezr s € V with cg(s) # 1,3 and
Aelz,y) > 2 for all pairs z,y € V. Then for any
edge (s,u) € E there is an edge (s,v) € E such that
A6 /(u,wi1) (%, ¥) = Aa(z,y) holds for all pairs T,y €
V —s. O

This says that if cg(s) is even, there always exists a
complete splitting at s such that the resulting graph
G’ satisfies Ag'_(z,¥) = Ag(z,y) for every pair of
z,y€V —s..

2.3 Lower Bound

In this section, we consider problem EVAP(ry, 7, ),
and give a lower bound on the number of edges that
is necessary to make a graph G (7, 7,)-connected,
where 7, and r, are given requirement functions.
Define

rA(X) = max{rx(u,v) |ue X,v eV - X}
for each cut X,
re(X) = max{r.(u,v) |u€ X,v e V-X-T¢(X)}

for each cut X with V — X —T'¢(X) # 0, where see
Section 1 for the definition of I'¢(X). To make a
graph G rx-edge-connected, it is necessary to add

(1) at least r)(X) — ca(X) edges between
X and V — X for each cut X.

Also, to make a graph G r.-vertex-connected, it is
necessary to add

(2) at least 7,.(X) —|T'g(X)]| edges between
X and V—X —T'¢(X) for each cut X with
V-X-Te(X)#0.

For a separator S of G, let T1,---,T, denote all
components of G — S. Now we consider  a graph
Hs = ({T1,---,T4},€) in which we regard each T;
as one vertex of Hg and the edge set £ is defined as
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follows:

‘ There is a pair of vertices

(T3,T;) € £ «— z € T; and y € T; with
re(,9) > |S|+ 1.

In a r.-vertex-connected graph, any pair of vertices
z,y € V with r.(z,y) > |S| + 1 cannot be separated
by such separator S. Hence if there is a pair of ver-
tices z € T; and y € T; with r.(z,y) > |S| + 1, then
we must add at least one edge between T} and T} (i.e.,
the number of S-components must become at most
p(Hs)), in order to make G . -vertex-connected.
Therefore in this case, it is necessary to add

(3) at least p(G —S)—p(Hg) edges to con-
nect components of G — S for a separator
S.

(See Section 1 for the definition of p(G — S).)
Now define §(G) = max{p(G — S) — p(Hs) |
S is a separator in G}. :

Given a subpartition {X1, -+, Xp, Xpt1,--+, Xq}
of Vsuchthat g > p>0and V - X; —Te(X;) #
0(i=p+1,---,q), we need to add max{r (X;) —
cz(X;),0} edges foreach X;, ¢ =1,---,p, and to add
max{r.(X;) — |T'e(X;)|,0} edges for each X;, i =
p+1,:--,¢q; based on observations (1) and (2). Now
note that adding one edge to G can contribute to the
requirements of at most two X;. Therefore, we need
to add [a(G)/2] new edges to make G (75,7 )-edge-
connected, where

a(G) = max {Z(TA(Xi) = cg(Xi))
=1 (2.1)
+ Z (re(Xi) = Ta(Xi)l) ¢
i=p-+1

and the max is taken .over all subpartitions
{X1, -, Xp, Xpt1,-+ -, Xg}of Vsuch that g > p > 0
and V - X; —Tg(X;) # 0, i = p+1,---,q
On the other hand, from observation (3), to make
G r.-vertex-connected, at least max{p(G — S) —
p(Hs) | S is a separator in G} new edges are nec-
essarily added to G. Consequently, we have the next
lemma.

Lemma 2.1 (Lower Bound) To make a given
graph G (ry,r.)-connected, at least

(@) = max{[a(G)/2],6(G)}

new edges must be added. O

Now we specialize this lower bound to problem
EVAP(r»,2) based on which we give a polynomial
time algorithm for solving EVAP(ry,2) in the next
section.

In problem EVAP(7),2), we can assume 7 (z,y) >
re(z,y) = 2 for all 2,y € V. Now the a(G) in (2.1)
can be simplified to



a(G) = ma;)c {Z(T;\(Xi) - cg(Xy))

. | (2.2)
+ ) (2- |ra(xi)l)} ,

i=p+1

where the maximization is taken over all subparti-
tions {X1,--+, Xp, Xpi1,---,Xq} of V such that ¢ >
p>20andV - X, - Tg(X;)#0fori=p+1,---,q
Also we specialize the second lower bound é§(G).
Now, to derive §(@), the maximization is taken over
all separators S that satisfy |S| < 1, since each pair
of vertices z,y € V satisfy r.(z,y) = 2. Note that
p(Hs) = 1 holds for any separator S with |S| < 1,
since any pair of S-components T; and 7 has a pair
of vertices x' € T; and y € T; where 7,(z,y) = 2 >
|S|. Hence this lower bound can be rewritten by

max{p (G- S) — 1| S is a separator (2.3)
with |S} <1}. )
A vertex v is called a cut vertez in G = (V, E) if
S = {v} is a minimum separator in G. If G has a cut
vertex v € V, then p(G — v) > p(G) holds from the
definition of a separator; otherwise p(G — v) = p(G)
holds for all v € V. Hence the lower bound in (2.3)
can be 31mp11ﬁed to

max{p(G —v) — 1}.
Also note that if k(@) <1 holds, then (1.1) in Sec-
tion 1 satisfies B(G) = ma,xvev{p —v)} and the

lower bound in (2.3) can be simplified to 8(G) — 1.
In case of k(G) > 2, the lower bound in (2.3) is
not defined but max,cv{p(G — v) — 1} = 0 holds.
Therefore, in Problem EVAP(r),2), we can define
the lower bound in (2.3) by max,ev {p(G — v) — 1}
without confusion. This means that we can define

—~ )}, (2.4)

/3(6‘)

max{p

and the lower bound in (2.3) becomes
B(G) ~1. .

Now define v(G) = max{[a(G)/2],B(G) — 1}.
From the above discussion, a set of new edges gives
an optimal solution to EVAP(r,,2) if its size is equal
to ¥(G) and the graph obtained by adding ~(G)
edges to G is (T, 2)-connected. We now show that
this is always possible, by presenting a polynomial
time algorithm in the next section for making G
(Tx,2)-connected by adding v(G) new edges.

Lemma 2.2 If k(G) = 1 (i.e., G is connected and
has a cut vertez), then any two tight sets X and Y
in G are disjoint. 0O
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3 A Polynomial Time Algo-
rithm for EVAP(r),2)

We now present a polynomial time algorithm,
based on the argument in the previous section. Call
an edge e = (u,u’) admissible with respect to a ver-
tex v, if v is a cut vertex such that v # u,u’ and .
P(G —v) = p((G —e€) —v). For a subset F of edges in
a graph G, we say that two edge e; = (u;,w;) and
ez = (ug,ws) are switched in F if we delete e; and
ez from F', and add edges (uq,u3) and (w;,ws) to F.
Our algorithm for solving the EVAP(r,,2), denoted
by Algorithm EVA(ry,2), consists of the following
four major steps.

Algorithm EVA(r),2)

Input: An undirected multigraph G = (V, E), and
a requirement function {ry(z,y) € Z* | z,y €
V}.

Output: An undirected multigraph G* = G + F
with Ag«(z,y) > ra(z,y) for every z,y € V and

k(G*) > 2 where the size of new edge set F is
the minimum.

Step I. (Addition of vertex s and associated
edges):
After adding a new vertex s, add a set F’ of
a sufficiently large number of edges between s

and V so that the resulting graph G’ = (V U
{s}, E U F’) satisfies

car(X) 2 ra(X) (3.1)
forall X with @ # X C V,

Fa(XUs)|>2 (3.2)

forall X with@ # X C Vand V-X-Tg(X) #
@. (This can be done for example by adding
max{rx(z,y) | z,y € V} edges between s and
each vertex v € V.)

Next, to make F’ minimal we discard new edges
in F', one by one, as long as (3.1) and (3.2)
remain valid. Denote the resulting set of new
edges by F; and the resulting graph by G; =
(VU{s},EUFy), where F} = Eg,(s,V).

Clearly, these operations can be performed in
polynomial time. We claim the next.

Remark: Note that if the original graph G is
not connected, then k¢, (z,y) > 2 cannot be at-
tained for some z,y € V, since a subset X C V'
which induces a component G[X] of G satisfies
g, (X) = 0 or {s}, and hence kg, (z,y) < 1 for
z€XandyeV - X.

Property 3.1 In the above step, it is possible
to choose a subset Fy for which |F1| = a(G)
holds. O



Step II. (Edge-splitting): If cg,(s) is odd, then
we add one edge (s, w) to G by choosing vertex
an arbitrary w € V which is not a cut vertex in

G.

Next we find -a complete edge-splitting at s in
G, = (V U {s}, E U F}) which preserves condi-
_ tion (3.1) (i.e., the r)-edge-connectivity). By
Mader’s theorem, there always exists such a
complete edge-splitting at s, and it can be com-
puted in polynomial time. Let G, = (V, EUF)
denote the graph obtained by such a complete
edge-splitting, ignoring the isolated vertex s.
The next is immediate from Mader’s theorem.

Property 3.2 There is a complete edge-
splitting at s of Gy, so that the resulting graph
G 15 T)-edge-connected. ‘ .0

If G, is also 2-vertex-connected, then we are
done because |Fz| = |F1|/2 = [a(G)/2] implies
that G5 is optimally augmented by lower bound
[a(G)/2]. Otherwise, go to Step IIIL.

Step III. (Switching edges): Now G, has cut
vertices. Then, by property (3.2) for Gy, G2
satisfies ' '

G[X U {v}] contains at least one 7

edge in F, for any cut vertex v
and its v-component X.

(3.3)

Property 3.3 Assume that Gy has an admis-
sible edge e; € F, with respect to a cut ver-
ter v. Let X be a v-component with e; ¢
E[G2[X U {v}]], and ey be chosen arbitrarily
from Fy N E[G2[X U {v}]]. Then switching e;
and es decreases the number of v-components in
G4 at least by one while preserving the r)-edge-
connectivity. Moreover, the resulting graph G
from switching e; and ey still satisfies (3.3), and
kGl (z,y) > 2 holds for any pair of vertices

and y with kg, (z,y) > 2. 0

Property 3.4 If Gy has two cut vertices vy

- and vy, then there are vi -component X1 and va-
component Xy such that Xy N Xy = 0. Let edge
e1 be arbitrarily chosen from Fy N E[G4[X; U
{v}]]. Then ey is admissible with respect to v3.
O

Based on Property 3.3, Step III repeats switch-
ing pairs of edges in F3 until the resulting graph
has no admissible edge in F;.

Let G5 = (V, EU F3) be the resulting graph ob-
tained by such a sequence of switching edges in
F,, where F3 denotes the final F5. Then Prop-
erty 3.4 implies that, if there are at least two
cut vertices, then G3 has an admissible edge in
F3, which is a contradiction. Hence G3 has the
following property.
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Property 3.5 G3 has at most one cut vertex.
O 8

" If G3 has no cut vertex, then we are done, since
|F3] = [a(G)/2] implies that G5 is optimally
augmented. Otherwise, go to Step IV.

Step IV. (Edge augmentation): Now G3 has ex-
actly one cut vertex v. Then G5 and v satisfy
the following property.

Property 3.6 For the graph G3 and its cut
vertez v, it holds p(Gs. — v) = p(G — v) —
[a(G)/2]. - D

Now let T3,---,T, be all v-components in Gs,
where ¢ = p(G3 —v). We can make G5 2-vertex-
connected by adding one edge between T; and
Tiy1foreachi=1,---,g—1 (i.e,, p(Gs —v)—1
edges in total). Let Fy denote a set of these
p(G3—v)—1 edges added. Note that p(G3—v) =
p(G —v) — [a(G)/2] < B(G) — [«(G)/2] holds
from Property 3.6 and 8(G) > p(G — v) (see
. (24)) A].SO note that |F4' + |F3| = p(G3 — ’U) —
1+ [a(G)/2] > B(G)~1 holds since 8(G) — 1 is
a lower bound on the number of edges that must
be added to make G (rj,2)-connected. These
imply |Fy| = B(G) — 1 — [a(G)/2]. Therefore

we have the following property.

Property 3.7 There is a set of B(G) — 1 —
[a(G)/2] new edges Fy obtained for Gz such
that the resulting graph G4 = (V,EU F3 U Fy)
is 2-vertez-connected. '

Finally, we are done since |F5| 4 |Fy| = 8(G) =
1 implies that G4 is optimally augmented by
lower bound 3(G) — 1.

We shall explain in the subsequent sections that
the required properties (summarized as Proper-
ties 3.1 — 3.7) always hold. Together with these
proofs, this algorithm establishes the next theorem,
which is the main goal of this thesis.

Theorem 3.1 Given a requirement function {r(z,
y) € Zt | z,y € V}, a multigraph G can be made
(rx,2)-connected by adding v(G) = max {[a(G)/2],
B(G) — 1} new edges in O(n3mlog‘7:n—2) time. a

4 Correctness of Step I

We give a proof of Property 3.1 in order to prove
the correctness of Step I. ' )

Proof of Property 3.1: It is clear that Ag, (z,y) >
rx(z,y) > 2 holds for all z,y € V by (3.1). :
First, we show |Fi| > a(G). Let F* =

{Xi,, X5, X5045-++,X; } be a subpartition of V



with V - X} - T, (X)) #0fori =p+1,---,q
that -attains the maximum of (2:2); ie., a(G) =
P

S (ra(X7) = ca(XD)) + Z (2~ [Te(X))). I
i=1 i=p+1

|F1| < a(G) holds, then there must be at least one
cut X} € F* that violates (3.1) or (3.2), contradict-
ing construction of G;.

Now we prove the converse, |Fi| < a(G), through
five claims.

A cut X C V is called critical in G if s € T, (X)
holds and the removal of any edge e € Eg,(s,X)
violates (3.1) or (3.2). Clearly, a subset X C V with
s € I'g,(X) is critical if and only if X satisfies at
least one of the following conditions:

(1) cq,(X) =rr(X).

(2) ce, (s, X) =1, |FG1(X) — s/ =1, and
V-X-Tg(X)#

(3) I‘Gl(X) = {s}, }I‘G1 s) N X| =2, and
there is a vertex v € T'g,(s) N X with
cg,(s,v) =1.

We call a critical cut X v-minimalif v € Tg, (s)r']
X and there is no critical cut X’ with {v} C X’
X. A subset X is called critical of type (1) (resp,
(2), (3)) if it satisfies (1) (resp., (2), (3)).
We will prove that G; has a set of critical cuts
Xi,--+, X4 only of type (1) and (2) such that

XinX;=0,1<i<j<qand

Tg,(s) C X1 U---UX,, (4.1)
This implies that
P
|Fy| =) (ra(Xi) — ca(X. )+Z - [Ta (X))
=1 i=p+1

where X;,2 = 1,---,pis of type (1) and X;,s =p+
1,---,q is of type (2), from which |F}| < a(G) by
definition of a(G).

Claim 4.1 Any critical cut X of type (3) is also
critical of type (1 ) O

By this claim, we can regard critical cuts of type
(3) as those of type (1). The next property is known
in [5].

Claim 4.2 Let X and Y be critical cuts of type (1)
i G1. Then at least one of the following statements
holds.

(i) Both XNY and X UY are critical.

(i) Both X —Y andY — X are critical, and cg, (X N
Y,(Vu{s}) - (XuY))=o. D

An analogous property holds for type (2) critical
cuts.

Claim 4.3 Let X andY be critical cuts of type (2).
IfY is v-minimal for some v € V — X, then they do
not cross each other. g
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Claim 4.4 Let X be a critical cut of type (1), and
Y be a critical cut of type (2) such that T'g,(s) N

(Y —X) #0. If X and Y cross each other, then
cg, (X NY,s) =0 holds and cut Y — X is critical of

type (1). O

Now we are ready to prove that G; has a set of
critical cuts Xy, ---, X, that satisfies (4.1). Let N; C
I'g, (s) be the set of neighbors u of s such that there
is a critical cut X of type (1) with u € X. Let us
choose a critical cut X, of type (1) with u € X, for
each u € N so that ZXG{X,JueNl} | X| is minimized.
Denote such a set {X, | u € N;} by F;. For N, =
I'g,(s) — N1, we choose a u-minimal critical cut X,
for each u € Vs, and let 7, = {X, | u € No}. Then
we claim the next. '

Claim 4.5 F = F; UF, consists of disjoint critical
cuts whose union contains T'g, (s).

Proof. Let F; = {Xl, <+, Xp} and Fp = {Xp41,
-, X,} with each § # X; C V. Clearly, T'g,(s) C
Ux,e ]-‘X holds from construction of F.

We show that X; and X, are pairwise disjoint for
each X;, X; € ;. Assume that F, contains X; and
X; which are not pairwise disjoint. Note that X; C
X; does not hold from construction of F;. If X; and
X cross each other, then Claim 4.2 implies that at
least one of the following statements holds:

(i) Both X; N X; and X; U X are critical.

(ii) Both X; — X and X; — X; are crltlcal and
ce, (X NY,(Vu {s}) (X U Y)) =

If the statement (i) holds, then ]-" (FL - X; -

) U {X; U X,;} would satisfy N1 C F| and
ZXE.’F{ |X] < Y xer, |X|, contradicting the mini-
mality of )"y |X|. If the statement (ii) holds,
then .7:{ = (fl - X; - ‘Yj) U {X., — Xj,Xj — Xl}
satisfies ZXG}‘{ |X| < X xer, [X| and Ny C F (by
cg,(XNY,(VUu{s}) — (X UY)) = 0). This again
contradicts the minimality of ) y .~ |X|. Therefore
X; and X are pairwise disjoint for each X, X; € F1.

Claim 4 3 implies that X; and X; are pairwise
disjoint for each X;, X; € F5.

Finally, we show that X; and X, are pairwise dis-
joint for each X; € F; and X; € F,. Note that
g, (s) N (X; — X;) # 0 holds from definition of
N;. Then X; C X, does not hold. Also note that
X; C X; does not hold, otherwise I'g,(s) N X; # 0
and [g, (s) N (X; — X;) # 0 imply cg, (X;,s) >
cG,(Xi,s) + 1 > 2, contradicting that X; is of
type (2). Assume that X; and X; cross each other.
Now T'g,(s) N (X; — X;) # 0 holds. Therefore
Claim 4.4 implies that cg, (s, X; N X;) = 0 holds and
X; =X, is a critical cut of type (1). This implies that
any vertex in X; cannot belong to N,, contradicting
X]‘ € Fs. 0O

Clearly F is a subpartition of V by Claim 4.5:
Since T'g, (s) € X; U---U X, with X; € F holds, it



holds »

IR = 3 (ra(X:) = ea(X3)) + Z (2 - [Ta(X:)D),
=1 i=p+1

for .7:1 = {Xl,"',Xp} and fz = {Xp+1,"',Xq}.

From definition of a(G), we have |F;| < a(G). O

5 Correctness of Step II

Let G; = (V.U {s}, EU F}) be the graph obtained
from a given graph G = (V, E) after Step I. In this

section, we describe about the correctness of Prop-

erty 3.2 and the purpose of operations in case where
ca, () is odd.

In Step I, a graph G, = (V, EUF}) is constructed
from G; by a complete edge-splitting at s. Then
the correctness of Property 3.2 is immediate from
Mader’s theorem (see Theorem 2.1). '

In this step, a non cut vertex w is chosen when we
add an extra edge (s,w) to G1 if ¢g, (s) is odd. Such
choice of w will be used for the correctness of Step IV
in Section 7 (i.e., by this choice of w, we will be able
to make G (7, 2)-connected by adding 8(G) —1 new
edges in case of B(G) — 1 > [a(G)/2]).

6 Corfectness of Step I1I

Let G; = (V,E U F,) be the graph obtained in
Step II. Now G5, is 2-edge-connected but has cut ver-
tices.

In order to justify Step III, we now prove Prop-
erty 3.3 in Step III. :

Proof of Property 3.3: We prove Property 3.3 via
two claims.

Claim 6.1 Let v € V denote a cut vertex in Gs.
Assume that a v-component T contains an admissible
edge e = (u,u') with respect to v. Then Gq[T]|—e
contains a path P between u and u’. O

Claim 6.2 Let e; = (u;,w;) and ez = (ug,ws) be
the edges in the statement of Property 3.3. Then the
graph G4 = (V, E U F}) obtained by switching e; and
ez, where Fy = Fy U { (u1,us),(w1,w2)} —{e1,es},
satisfies followings:

(5) Aoy (2,9) > 2(2,y) for every z,y € V.

(1) p(G3 —v) <p(G2 —v).

(i) kg (2,y) > 2 holds for every pair of

vertices T and y that satisfies kg, (z,y) > 2.

( The statements (11) and (i) and Lemma 2.2 imply.

that switching e, and ey decreases the number t(Gg)
of tight sets in G2 by at least one if e; or ey is con-
tained in a tight set in Gs.)

Proof. (i) We assume that there is a cut X such
that cg; (X) < 72(X)—1 holds. Note that cg, (X) <
cay, (X) holds if cut X does not separate {ui,us}
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and {w;,ws} in G4. Since cg,(X) > ri(X) origi-
nally holds, cut X separates {u;,u2} and {w;, w2}
and hence cg, (X) = cg,(X) — 2 holds. Since the
cut X crosses both v-components Ty and T in Gs,
either G5[X] or G3[V — X] consists of at least two
components. Without loss of generality, assume that
G,[X] consists of at least two components. There
are vertices z* € X and y* € V — X such that
ra(z*,y*) = ra(X) > cq (X) + 1. Without loss
of generality, assume that z* € X NT;. Note that
cg, (X NTy) >r(XNTp) >2and cg, (X NTy) >
(X NTy) > ra(z*,y*) 2 g (X) + 1 hold. This
implies cg,;(X) = ¢, (X NTh) + cg,(X N T3) >
(ce, (X)+1)+2, contradicting cg; (X) = cg,(X)—2.

(i) It is sufficient to show that G4[Ty UTy] is con-
nected. Since the removal of the adm1ss1ble edge
e; does not increase the number of v-components,
T, remains a v-component in Gs — e;. If Ty re-
mains a v-component in G — ez, then G[T;] and
G|T:] are joined by the edges (u1,uz) and (wy,ws)
obtained by switching e; and ey in G5. If T> con-
sists of two components T3 and T2 in Go — ez, then
ug # v # w, holds and uy; and ws are separated
by T}. Assume uy; € T3 and w, € T} without loss
of generality. Now 73 (resp., T2) and T} are joined
by the edges (u;,us) (resp., (wy,ws)). This implies
that G4[T; U T5] is a component since T) remains
a v-component in Gy — e;. Therefore if v remains
a cut vertex in G%, then T; U T3 is a v-component
(otherwise, clearly, p(Gs — v) = 1).

(i) Assume that there are vertices z,y € V
such that kg,(z,y) = 2 but kg (z,y) = 1. Let
v" € V denote a cut vertex in G, that separates z
and y. Clearly; v’ # v (because v = v’ would imply
kG,(z,y) = 1). Let Wy, Wa,---, W, (¢ > 2) be the
v'-components of G5, where z € W; and y € Ws.
Since a cut vertex v’ does not separate z and y in
Gq, €, € EGZ(Wl,Wg) or eg € EGZ(W1,'W2) holds.
Also note that no edge other than e; and e; can-
not belong to Eg,(W;,W,). We can easily see that
G [W1UW,U{v'}] contains u;, wq, ug, and we. Then
note that u;,w; € W, cannot hold for any 2,5 with
1 <4 < j < 2. Otherwise (assume uy,w; € Wi
without loss of generality) then ey € Eg,(Wy, W3)
holds (assume uy € W) and ws € Wy without loss of
generality). Now (w;,ws) € Eg; (W1, W3) holds and
G,[W1] and G4[W>] are both connected from defini-
tion of W, and W, contradicting that cut vertex v’
separates z and y in G}. Therefore, for each i = 1,2,
we have now e; = (u;,w;) € Eg,(Wy,Ws) or u; = '
or w; =v'. )

We first consider the case of e; € Eg, (W1, Ws).
Then v' € T; holds since G2[T] — e; is connected
by Claim 6.1. Hence es € Eg, (W1, W2) holds since
v' € T, implies uy # v’ # wy. Let v ¢ W5 and
uy,up € W, without loss of generality. Now FG'z (Ton
W2) N (T2 — W,) = 0 holds since v’ is a cut vertex of
G5 and v' ¢ T, hold. Note that Eg, (To N W2,V —



(Tp nWy)) = {(w1,w2)} since Ty is a v-component

of G2 and uy € Wj holds. This implies I'g, (T2 N
= {uy} holds and hence e is a bridge of G, from

EG2 (W1, Ws) = {e1, ez}, which contradicts A(G2) >

We then con51der the ca.se of er ¢ Eg,(W,Ws)
holds, i.e., v = u; € T} or v’ = w; € T holds. This
implies that es € Eg,(Wy,W,) holds and v' ¢ Tb.
Therefore, this clearly leads to a contradiction, in a
similar way to above case of e; € Eg,(W;,W2). - O

From the above claim, Property 3.3 is proved.

7 Correctness of Step IV

Let G3 = (V, E U F3) be obtained from G after

Step III. Now clearly |F3| = [a(G)/2] This Gs has

exactly one cut vertex v.

The correctness of Step IV clearly follows if we
prove Property 3.6. The proof is now given below
via two claims.

Claim 7.1 Gj has no edge in F3 incident to the cut
verter v. O

Claim 7.2 p(G —v) = p(Gs —’u)+[F3| holds. That
is, deleting any edge e € F3 zncreases the number of
v-components in Gs.

Proof. If p(G—v) < p(G3—v)+|F3| holds, then there
is at least one edge e € F3 with p((Gz —¢€) —v) =
P(Gs —v). Then e is admissible with respect to-v
since Claim 7.1 implies that any edge in F3 is not
incident to v, contradicting construction of G3. O

This claim implies that since G3 has no edge in F3
incident to the cut vertex v, a graph H = (W, F3)
is a forest, where a vertex set W of H is obtained
by removing the cut vertex v and contracting each

" component of G—v to one vertex. Now Claim 7.2 im-
plies Property 3.6 since |F3| = [a(G)/2] holds from
construction.
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