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Abstract

Let G = (V, E) be a simple gra.ph with n vertices, m edges and p connected com-
ponents. The problem of constructing a spanning forest is to find a spanning tree for
each connected component of G. For a simple graph, Chin et al.[1] demonstrated that

a spanning forest can be found in O(log? n) time using O(n?/log? n) processors. In

this paper, we propose an O(log n) time parallel algorithm with O(n) processors on
the EREW PRAM for constructing a spanning forest on trapezoid graphs. '

1 Introduction

Given a simple graph G = (V, E) with n vertices, m edges and p connected components, the
spanning forest prbblem is to find a spahning tree for each connected component of G. If
p=1for G,ie., Gis connected, the spanning forest problem is equivalent to the épanning
tree problem of finding a connected subgraph which is a tree and contaiﬁs all the vertices
of G. These problems have applications to electrical power demand problem or computer
network design problem etc. A spanning tree and a spanning forest can be found in linear
time using, for éxample, the depth-first search. In recent years a large number of studies have
been made to parallelize known sequential algorithms. The spanning tree problem can be
solved in O(log n) time with O(log n + M) Processors on CRCW PRAM (Concurrent-Read
Concurrent-Write Parallel Random Access Machine) by Klein[5] et al.’s algorithm. Moreover,
Chin[1] et al. demonstrated that a spanning forest can be f01-1nd‘i11 O(l(')g2 n) time using
O(n?/log? n) processors for simple graphs. In general, it is known that more efficient or
optimzﬂ parallel algorithms can be developéd by restric__:tihg classes of graphs. For instance,

Wang[7] et al. proposed an optimal parallel algorithm for cohstructing a spanning tree on
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permutation graphs[2] which runs in O(log n) time using O(n/log n) processors on the
EREW PRAM (Exclusive-Read Exclusive-Write Paralle] Random Access Machine). In this
paper, we propose an efficient parallel algorithm which runs in O(log n) time with O(n)
processors for constructing a spanning forest by restricting the class of graphs to trapezoid
graphs[6].

We next illustrate the trapezmd graph. There are two horlzonta.l lines, called the top
channel and the bottom channel, respectively. Each channel is labeled with consecutive
integer values 1,2,...,2n (where n is the number of trapezoids). A trapezozd T; is defined
by four corner points [a;, b;, c;, d;] where a;, b;-(ai < b;) lie on the top channel and ¢;, d;
(¢; < d;) lie on the boftom channel, respectively. Without loss of generality, we assume that
each trapezoid has four corner points and all corner points are distinct[6]. The geometric

representation described above is called a trapezoid diagram T.

a2 a5 al bl b2 a3 b3 a4 b4 b5 a6 b6 a7 b7 a8 all a9 b8 b9 all0 bl0 bll al2 bil2 al3 bl3 ald bl4 al5 al6 b15 bl6 al7 bl7

c2 c5 d2 cl dl d5 c7 a7 c3 d3 c4 d4 c5 d5 c8 d8 «cll cl0 410 dll c13 c¢12 d12 c9 d9 di3 c15 cl4 dld c17 cl6 d15 di6 d17

Figure 1: Trapezoid diagram T.

Figure 1 shows a trapezoid diagram T consisting of seventeen trapezoids. We assume that
trapezoids are labeled in increasing order of their corner points b;’s, i.e., i < j if b; < b;. An
undirected graph G = (V, E) is called a trapezoid graph if there exists a trapezoid diagram
T satisfying ’ 7 '

V = {i | vertex i corresponds to trapezoid T},

E ={(i,j) | trapezoids T; and Tj intersect in tfépezoid diagram T }.[6]

Input of trapezoid diagram consists of array Tr(1 : 2n] of corner points, array Pr[l : 2n]
of corner point numbers each of which is assigned to each corner point on the top channel
and array Tg[1 : 2n] of corner points, array Pg[1 : 2n] of corner point numbers each of which
is assigned to each corner point on the bottom channel. Table 1 shows Tr[1 : 2n}, Pr[1 : 2n],
Tg[1 : 2n], Pg[1 : 2n] for trapezoid diagram T shown in Flgure 1. The trapezmd graph G

corresponding to the trapezoid diagram T illustrated in Figure 1 is shown in Figure 2. The
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class of trapezoid graphs includes two well-known classes of intersection graphs[2], the class
of permutation graphs[2] and the class of interval graphs[2].. The former is obtained by
setting a; = b; and ¢; = d; for all ¢, and the latter is obtained by setting a; = ¢; and b; = d;

for all 7, respectively.

1 3 9 11 14 17 -
8 \
5 7
2 ' 10 15 16

Figure 2: Trapezoid graph G and Spanning Forest of G

Table 1: Arrays Tr, Pr,Tg, Pg.

Tr|la; as a by b, az by a4 b4 bs ag be ar b ag ann ag
Pril1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Tg | ¢ Cs d2 o d ds ¢ dr C3 d3s ¢y dy cs - ds Cg ds ¢
Pg| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tr | bg bg ayp b by 'a12 512 a13 513 ayy by d15 aje  bys b16 ayr b17
Pr|i18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Tp |cio dio din cs c2 diz co dog diz c5 ¢a dis cr ce dis dig dir
Pg |18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2 Parallel Algorithm

In this section we propose a parallel algorithm for constructing a spanning forest of trape-
zoid graphs. The algorithm can be parallelized by applying pointer jumping technique[3][4]
and parallel prefix computation[3][4]. Algorithm CSF (Construction of Spanning Forest) for

constructing a spanning forest of a trapezoid graph is presented as follows:

Algorithm CSF
Input: Arrays Tr[l : 2n], Pr[l : 2n], Tg[1 : 2n], Pg[l : 2n].
Output: A spanning forest F* of G. Initially F* be a graph with n vertices and no edge.
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[Construction of arrays P,[1 : n],P[1 : n],P.[1 : n],Py[1 : n].]

(1) 1f TT[i] is corner point ‘a;’, Prli] is stored to P,[j], otherwise (i.e., T'r[7] is

‘b;’) Prlt] is stored to Pb[j] in parallel for 7,1 <7z < 2n.

(2) If Tg[¢] is corner point ¢ ¢’ Pgli] is stored to P 2[7], otherwise (i.e., Tg[t] is
d;’) Pglt] is stored to P4[j] in parallel for 7,1 < i < 2n.

Table 2 shows the result obtamed by applying Step 1 to Table 1. Each of P,[1: n],P[1 :

n],P[1 ]Pd[ : n| is an array having corner point numbers assigned to corner points

‘a’,'b,‘c’,'d’ for each trapezoid T;, 1 < i < n on trapezoid diagram T, respectively.

Table 2: Arrays P,, P;, P,, P;.
6 7 8 9 10 11 12 ‘13 14 15 16 17
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[Construction of arrays L,|[1 : n] L1 :n],R4[1 : n].]

(1) Let L,[z] be min(P,[n ] P,[n —1],...,P,[7]) in parallel for i, 1 < i < n.

(2) Let L.[¢] be min(P,[n],P [ ] ,F[t]) in parallel for ¢, 1 <i < n.

(3) Let Ryfi] be max(P.[1],Fe[2],... []) in parallel for ¢, 1 < : < n.
[Construction of arrays S,[1 : n] and C[1 [ n).]

Initially C[¢] := 0 for all 3.

(1) If P,[é] = L,[i], let S,[s i] be a pointer to ¢ (self-loop), otherwise, let S,[¢] be
a pointer to z 4+ 1 in parallel for 7, 1 <¢ <n.

Then, we apply pointer jumping techmque to Sy[¢] in parallel for 7, 1 < i < n.

(2) If Bl > L [z—i— 1], then C[i] := S,[i + 1] and F* := F*U{(¢,S,[: +1])} in
parallel for 7,1 <7 <n —1. :

[Constructlon of arrays S,[1: n].]

(1) If P.[{] = L.[7], let S,[é w be a pointer to ¢ (self-loop), otherwise, let S [7] be
a pointer to ¢ + 1 in parallel for 3,1 <: < n.

Then, we apply pointer jumping techmque to S.[¢] in parallel for 7, 1 <7 < n.
(2) If P,[¢] > L [t + 1] and C[i] = 0, then C[i] := [z +1] and F* := F*U
{(, Sc[s + 1])} in parallel for i, 1 <¢ <n —1.

[Construction of arrays S4[1 : n].]

(1) If Pyfe] = Ral], let Sd[i] be a pointer to ¢ (self-loop), otherwise, let S[z] be
a pointer ¢ — 1 in parallel ori, 1 <i<n.

Then, we apply pointer j Jumpmg technique to S;[i] in parallel for 7, 1 < i < n.
(2) If Rylt] > L[t + 1] and C[i] = 0, then C[S.[i + 1]] := Sy[i] and F* =
F* U {(Sc[t + 1], 54[¢])} in parallel forz, 1 <i<n-—1.

(3) Change F* to be an undirected graph by neglecting the direction of each
edge in F™.

Table 3 shows the result obtained by applying Steps 2,3,4,5 for Table 2. Figure 2 shows

the spanning forest F* = (V, E’) constructed by Algorithm CSF for trapezoid graph G, where
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v={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17},
E'={(1,2),(2,5),(3,5),(4,5),(6,7),(7,4),(8,11),(9,11),(10,11),(12,13),(13,9),(14,15),(15,16),(16,17) }.

-Table 3: Arrays Lo, L., R4, Sa, S¢, Sq,C.

;|1 2 3.4 5 6 7 8 9 10 11 12 13 14 15 16 17
P13 1 6 8 2 11 13 15 17 20 16 23 25 27 29 30 33
L,|1 1 2 2 2 11 13 15 16 16 16 23 25 27 29 30 33
S.12 2 5 5 5 6 7 8 11 11 11 12 13 14 15 16 17
P4 5 7 9 10 12 14 18 19 21 22 24 26 28 31 32 34
Pl4 1 9 11 2 13 7 15 24 18 17 22 21 28 27 31 30
L,|1r 1 2 2 2 7 7 15 17 17 17 21 21 27 27 30 30
S.12 2 5 5 5 7 7 8 11 11 11 13 13 15 15 17 17
P15 3 10 12 6 14 8 16 25 19 20 23 26 29 32 33 34
R;|5 5 10 12 12 14 14 16 25 25 25 25 26 29 32 33 34
S;lr1 3 4 4 6 6 8 9 9 9 9 13 14 15 16 17
cCl125 5 5 0 7 4 11 11 11 0 13 9 15 16 17 O

3 The correctness and complexity of Algorithm CSF

Before proving the correctness of Algorithm CSF, note that notation (v,w) where v,w are
vertices, is used for both directed and undirected edges. Note also that we sometimes use
abbreviated expressions like “(z, S,[7]) is an edge of trapezoid graph G” which means “directed
edge (4, 5,[t]) corresponds to an undirected edge of trapezoid graph G”, and “a connected
graph is constructed” which means “a graph which is connected by neglecting the direction
of edges”, whenever no confusion may arise. Furthermore recall that F™ is directed until
Step 5-(3) is executed, but F* is regarded as an undirected graph by neglecting the direction
of edges when we refer to connected components of F*. Finally, note that T is a rooted tree

(in-tree) when we refer to the root of T

Lemma 1 ,
Fori,j,1<i<j<n,if Bi] > L.jl, (z,S.[7]) is an edge of trapezoid graph G after the
execution of Step 3. |
"Fori,j,1<i<j<n,if Pifi] > L.[j], (2, Sc[s]) is an edge of trapezoid graph G after the
execution of Step 4. ‘
Fori,j,1<i<j<n,if Ryi] > L[j], (Sclj], Sali]) is an edge of trapezoid graph G after
executing Step 5 - ‘ ’

Proof. We first give a condition for (2, j) to exist between two distinct vertex ¢ and j (i < j)

in trapezoid graph G. By the definition of trapezoid graph, there exists (¢,7) between two



119

distinct vertex ¢ and j in G if and only if trapezoid T; and T intersect in trapezoid diagram
T. If trapezoid T; and T; intersect, it satisfies either Py[i] > P,[j] on the top channel or
Py[7] > P.[i] on the bottom channel. Therefore, edge (z, ;) exists between ¢ and j in G if and
only if (1) is satisfied:

(i = )P = Pali]) < 0 or (i = )(Pali] = Pelj]) < 0. e

By the assumption that ¢ < j and Py[z] > L,[j] we obtain

(= )AL - L) <0. @

After executing Step 4-(1) S,[j] has value k; (k; > j) which satisfies L,[j] = P.[ki] .
Besides, by the definition that L,[j] =min(P,[j], P.[j + 1], ..., Pi[n]) we obtain

Sal7] 2 7,

Lolj] = Lo[Sulil] = RS0

By applying the above to (2), we obtain

(¢ = Su[D)(Bole] — Fu[Sa[s]]) < 0. (3)

(3) means that there exists an edge between vertex 7 and S,[j] in G. Therefore (2, S, [j])
is an edge in a trapezoid graph G. A similar discussion proves that (z,S.[j]) is an edge and
(Sclj], Salz]) is an edge in G O

Lemma 2 If array C[1 : n] has q ‘0’ elements after executing Step 4, F* has n vertices,
n — q edges and q connected components such that each connected component is a tree with

root 1, where C[1] = 0. O

Proof. After executing Step 4, C[n] obviously has value ‘0’. We consider a vertex ¢ such
that C[¢] = 0,C[i + 1],C[t + 2],...,C[n — 1] # 0,C[n] = 0. If such ¢ does not exist, G is
connected (i.e., p = 1). Now we assume G has more than one connected components (i.e.,
p > 1). Then, since C[n — 1] # 0, there exists an edge (n —1,n) incident to vertex n —1 and
n. And also, since C[n — 2] # 0, there exists an edge incident to vertex n — 2 and incident to
either vertex n — 1 or n. In this way, there exists an edge between vertex j and one among
~ vertices j+1,742,...,n for each vertex j,i+1 < j<n-—1. On the other hand, since C[z] = 0,

there exists no edge between vertex ¢ and vertex j where j > ¢+ 1. Thus, a connected graph
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having n — ¢ vertices from i + 1 to n, and n —i — 1 edges is constructed. By the definition of
a tree, this subgraph of G is a tree with root n. Similarly, we can construct other trees with
root § which corresponds to C[j] = 0 for remaining vertex set {1,2,...,4} where 1 < j <.
Since C[1 : n] has ¢ ‘0’ elements, we can finally construct ¢ distinct trees in F*. By Lemma
1, edges constructed by Steps 3,4 are edges of trapezoid graph G. Therefore F* is a subgra,ph'
of G with ¢ connected components, rn vertices, n — ¢ edgeé and each connected component is

a tree with root ¢ where C[i] = 0. O
Lemma 3  After ezecuting Step 5, F* is a spanning forest of G. O

Proof. = It is easy to see that F™* is a spanning forest of G if and only if F* is a spanning
subgraph of G where each of connected components of F™* is a tree and there exists no edge in
G which connects two distinct connected components of F*. We call this condition, condition
1 and prove that F™* constructed after executing Step 5 satisfies this condition.

By Lemma 2, F* is a spanning subgraph of G after executing‘ Step 4 and has ¢(q <
p) connected components y,ts,...,t, which are arranged in increasing order of the number
assigned to the root of each tree t;, n vertices and n — ¢ edges. |

We also denote each connected component of F* constructed after executing Step 5 by
t15t2,--stp- These connected components are constructed as follows.

For t;,t;41,1 < j < q—1,if Py[i] > Lc[¢+1] where: and i+1 correspond to the root vertex
of t; and the vertex of ;,; having the minimum number, respectively, then (S.[¢ + 1], S4[z])
is added to F*. Note that S.[¢ + 1] is in t;4; and Sy[¢] is in one of #;, 1 < k < 7, and
(Sl + 1], S4fd]) is an edge incident to t;4; and one of #;, 1 < k < j, furthermore, it is also
an edge of G by Lemma 1. For each ¢;, at most one edge is connected to each ¢; where j < 1.
Hence, F* is acyclic. As otherwise, any ¢; has two edges connected to t;,tx (j,k <4, j # k),
which is a contradiction. |

Therefore F* is a spanning subgraph of G where each of connected components #3,t5,...,t;,
of F* is a tree, since the connection of two trees by one edge forms a tree by the property of a
tree. On the other hand, unless P,[i] > L ¢ + 1], it is clear that there exists no edge between
t;4+1 and one of tg, 1 < k < j from definition of Ry and L.. It means that there exists no edge
in G connecting two distinct connected components of F*. Therefore F* satisfies condition

1 and is a spanning forest of G. O

We now analyze the complexity of Algorithm CSF. Step 1 can be executed in O(log n)
time using O(n/log n) processors by applying Brent’s scheduling principle[3][4]. Step 2
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can be executed in O(log n) time using O(n/log n) processors by applying parallel prefix
computation[3][4]. Steps 3,4,5-(1) can be executed in O(log n) time using O(n) processors
by applying pointer jumping technique[3][4]. Steps 3,4,5-(2) can be executed in O(log n)
time using O(n/log n) processors by applying Brent’s scheduling principle. Above parallel
algorithm design techniques can be executed on EREW PRAM. Hence we have the following

theorem.

Theorem 1 Algorithm CSF constructs a spanning forest of trapezoid graphs in O(log n)
time with O(log n) processors on EREW PRAM.
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