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1 Introduction

In the literature, there have been intensive studies on typing (sorting) systems for the polyadic 7-
calculus, originated by Milner’s sorting discipline [7] based on name matching. The proposed systems, so
- far, are categorized into the two groups — systems by name matching and ones by structure matching
(possibly with subtyping) — and obtain similar results. A natural question arises “Is there any relationship
between the two paradigms ?”. With this motivation, the present paper gives deeper investigations on
typing systems between the two approaches. For this purpose, a sorting system by name matching, a quite
similar to the system in [4], and a typing system by structure matching with subtyping, a slight extension
of the system in [9], are presented, along with several basic properties. Then, correspondence between the
sorting system and the typing system is investigated via transformations both form sortings to typings
and from typings to sortings. It is shown that if a process is well-sorted w.r.t. a safe sorting in the sorting
system, then it is well-typed w.r.t. the transformed typing in the typing system, but not vice versa. This
result can be straightforwardly extended to Liu and Walker’s consistent sortings. Under a certain condition,
we can show the reverse implication. Furtheremore, on the other direction from typings to sortings, it is
shown that the derived typing from the sorting which is the result of applying transformation to a typing
coincides with the original typing. However, the derived sorting from the typing which is the result of
applying transformation to a sorting is proved to be a proper specialization of the original sorting.

The outline of the paper is as follows: Section 2 presents the polyadic n-calculus to a certain extent
needed for the study. Section 3 and 4 introduce a sorting system and a typing system, respectively. Section
5, the main part of this paper, relates the sorting system and the typing system via both-directional
transformations. This paper is concluded in Section 6 with some concluding remarks.

2 The Polyadic n-Calculus

Let N be a possibly infinite set of names. The basic syntax of processes we consider in this paper is
defined by the following grammar:

P == 0| a(zy,...,%,).P | @(by,...,0,).P | P|Q | (vz)P |!P

where 0 is the nil process; a(zy,...,z,).P and a(b,...,b,).P are input-prefizes and output-prefizes, re-
spectively; P | Q are parallel compositions; (vz)P are restrictions; P are replications. A structural
congruence relation = is defined to be the smallest congruence relation over processes which satisfies the
axiom schemes.

1. If P =, Q then P = Q: Processes are identified if they differ only by a change of bound names.
2.P|(QIR)=(P|Q)|R; P|Q=Q|P; P|O=P.
3. IP=IP|P.

4. wz)P=P ifz ¢ fn(P); (vz)(vy)P = (vy)(ve)P;
(vz)P | Q= (vz)(P|Q) ifz¢ fn(Q)'.

*This induces the usual axiom schemes: ( z)0=0; ( z)( z)P=( z)P.
TNote that the side condition can be viewed as a consequence of our convention of regarding bound names.




127

Now, we define a reduction relation — over processes to be the smallest relation satisfying the following

rules:
= 7 PP
- — =15 =P
Com e Plame P g o M PAR BTQ=P @
REsT P P STRUC Q=P PP P=¢
T ND .7 D UCT 7
(9P = (2)P Q-Q

3 A Sorting System by Name Matching

Let X be a finite set of (subject) sorts. £* denotes the set of all finite sequencés of elements in X. An
element in ¥* is called an object sort, denoted by (s1,...,$,), or simplely (3) if the number of the sequence
is not important. We use u and v to range over £*. A subject sorting I' on ¥ is a finite set of subject sort
assignments a : s, where a € N and s € X, such that a : s, a: ¢ € I" implies s = . An object sorting 2 on
Y is a finite set of object sort assignments either of the form s* : u or s~ : u, where s € ¥ and u € *, such
that s* : u, s* : v € 2 implies u = v, for x € {+,—}. A sorting on ¥ is a pair I'; 12 of a subject sorting
I' and an object sorting 2. 2 is safein s if s* : u, s~ : v € 2 implies u = v. If 2 is safe in all s in &
then {2 is called safe. A sorting I'; £2 is safe if its object sorting {2 is safe. A sorting Jjudgment (by name
matching) on X is an expression of the form: I'; 2 - P : (), where I'; 2 is a sorting, P is a process, and ()
is the special symbol standing for well-behavedness of a process.

Definition 3.1 is a sorting system (by name matching) consisting of the following inference rules:

iRkP:() Iik-Q:() .

SN Tar o0 SOMP TR PlQ: 0
FNa:s,z:t 2,87 : (f)FP:() ’ F,a:s,l;:f;ﬂ,s“:(f)l-P:()
S-In = - S-Out = = I 7
Fa:s; 2,57 : @) Fa(@).P:() LNa:sb:t; 2,57 : () Fa(d).P: ()
SR IiFP:) SR Nz:s;2FP:()
“REPL T FP: () BT TR (9P ()

|

The interesting cases are the rules for input and output. In order to be sure that the input prefix
a(Z).P is well-behaved in a given sorting, we must check that first the object sort for the subject sort of a
with the positive polarity matches the sort of the sequence of names read from a; secondly the continuation
P is well-behaved in the augmented sorting by the sort assignments 7 : £. The case for the output prefix
is analogous. The notation I'; 2 P : () indicates that a sorting judgment I'; 22 - P : () is provable in

the system .
Proposition 3.1 If I';2F P:()and P=Q then ;2 F @ : (). (]
Proposition 3.2 If I'; 2+ P :() for a safe sorting I'; 2 and P — Q then I'; 2F  Q: (). a

In the inference rule COMM of the reduction relation, it is required that the arities of the input-prefix
and the output prefix must be equal. If a process P contains unguarded prefixes a(%).Q and a(b).R with
|| # |B], then P is said to contain a communication mismatch [4] or a run-time type error [9,13]. P is free

. - . . * . . . -
from communication mismatch if whenever P — P’ then P’ does not contain a communication mismatch.
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4° Typing Systems by Subtyping

Let I < J be the least preorder on the tags {r,w, b} containing b < r and b < w. A type, ranged over
by T or S, is defined by the grammar:

T == al T|1]| @,....,T)" | paS
I == r|w]|b,
where a is a type-variables; T and L are constant types top and bottom, respectively; (11, ... T is a

tagged tuple; pa.S is a recursive type. Let T and T° denote the set of all (open) types and the set of all
closed types, respectively, where a-convergent types are identified. Let A be a sequence of pairs of types
S < T. A subtyping judgment is an expression of the form A+ S < T, pronounced as S is a subtype of T
under the a’Ssumption A

Definition 4.1 is a subtyping system consisting of the following rules*:

ASMP e T S<T ReF T <T

Tor Jvro<T B™ 2T

foreachi, AFS;<T; AFT;<S;

BB 5 S < (T, To)

BR I<r foreachi, AFS;<T; WB-W I<w foreachi, AFT;<S;
RB- AF(S1,...,8) < (Th,...,Tx) AR (S1,..,8) < (Th, .. TR)Y
: Apa.S <TF S{pa.Sfa} <T AS< paTkSL<T{paT
oy AipaS ST S{uaSja} < reo MSSpaTh S <T{paT/a)

A pa.SLT A+ S < paT

a

A typing judgment (by subsorting) is an expression of the form A F P : o, where A is a set of type
assignments a : T, P is a process, and o is the special symbol standing for well-behavedness of the process.

Definition 4.2 is a fyping system (by subtyping) consisting of the following rules:

AFP:o AFQ:o
T-Ni, — T-Comp -

AFO:o0 AFP|Q:o
FA() < (T) AE:THP:o F Aa) < (AG)Y AFP:o
T-IN - T-OuTt —
Al a(&).P:o AFa{p).P:o
AbP:o Rpsy 22 TFPio
T-Rept P o T-REST T )P0

O

In the subtyping system regarding closed types only as in [9], the rule REF is derivable by well-founded induction on
subtyping judgments. See [11]. However, it is no more derivable when open types are concerned.
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Pierce and Sangiorgi [9] have formulated their typing system in the Church style (d la Church), where
typing information for the input parameters and restricted names are given explicitly. As there is often
a simple relationship between the two styles in the typed A-calculi there is a simple relationship between
the type system in this paper and the one by Pierce and Sangiorgi [9]. This will be explained below: Let
| | be the function mapping process terms with type ornamentations into the ordinary processes in this
paper by erasing the all type information.

Proposition 4.1

1. Let Q be a process with type annotations. If A+ Q : o is provable in the Pierce and Sangiorgi’s Church
style typing system [9], then At |Q] : o.

2. Let P be a process. If A P :o then there is a piocess Q with type annotations such that A+ Q : o
is provable in the Pierce and Sangiorgi’s system and |Q| = P. O

5 Relating Sortings and Typings

With each sorting judgment I'; 2 - P : () we will associate a typing judgment [I']o P : o such that
hopefully we expect I'; 2+ P : () iff [[]o F P :o. For this purpose, given an object sorting {2 and an
environment p : ¥ — T, mapping (free) sorts to closed types, for each sort s in ¥ the corresponding type
[s]G, of s with respect to {2 and p is defined as follows:

[sI5 2 %(s,0);

o N s v ifseX
n(s7 X) = P P — .
ps.(g(s*, X U{s}) AG(s7, X U{s})) - otherwise;
AEX))  ifx=+4andst: (e
As*,X) = LEX)Y ifx=-ands :(f) e
p(s) otherwise.
In the definition we use the notational convention 4 (¢, X) to denote the sequence % (t1, X), . . ., % (tn, X),

for {= tl,...,tn.
Let I'; £2 be a sorting then the corresponding typing [I']%, is defined by
I ?)é{a:[[s]’}) la:s€erl}.

Usually, the environment o1, p1(8) 2 T for each s € X, is used to assign types to sorts. However, almost
results stated in this section hold for any environment p. So that [s]e and [[], are the abbreviations of
[s]% and [I']f, for any environment p, respectively, when p is not very important. Note that [s]le =L if
§2 possesses object assignments to s having mismatch in number with the I/O parameters.

Lemma 5.1 Let {2 be a safe object sorting and p be an environment. If st : (£) € 2 (s~ : (f) € 2) then

F sl =sub (M}/}))I’
for some I such that I <r (I <w). Thus, [s]5 = ([{]5)!.
Proof: Suppose s* : (f) € 2 (s~ : ({) € 22). By the definition of #(s,X), the safety property of £2
implies that [s]{, can be expressed as [s]f, = ps.(%(Z, {s}))?, for some I, where I < r (I < w). Since
unfolding of the recursive definition preserves the identity, see Corollary 2.4.6 in [9],

F[816 =sus (G {sP{ls15/sD)-



130

Let t; be the i-th element in the sequence . If ¢; = s then §(t;, {s}){[s]%/s} = |[s]]§2> = [ti]5- Hti#s
then 5 (t:, {sH{[s15/s} = [t:]- o
Theorem 5.1 IfI';2+ P:() for a safe sorting I'; 2 then [Iqa - P:o.

Proof: By induction on the proof of I';§2 + P : () in . Interesting case is the one when the last
inference is by S-IN or S-OUT.

Case S-IN: Suppose ) ~

La:s,z:t;2,st:(t)FP:()

Ia:s;02,st:(f)Fa(Z).P:()
is the last inference by applying S-IN. Let 2 = 22U {s* : ({)}. By the induction hypothesis, [I]a,a :
[sle,% : [flar F P : o. It remains to show that b [s]or < ([£]o)" to deduce the typing judgment
["o,a:[slo + a(Z).P:o. This can be obtained by Lemma 5.1. The case by S-OUT is similar. o

The theorem insists that if a process is well-sorted with respect to a safe sorting in the system
employing name matching, then it is well-typed as well in the system employing structure matching with
subtyping. Theorem 5.1 can be extended to a consistent sorting in a straightforward way.

Corollary 5.1 Let I'; {2 be a consistent sorting. Let Io; (29 be the unique most general safe sorting, its
ezistence is guaranteed by the discussions in section 2. Then for a process P, I';2 F P : () implies
[Io]a, B P:o. m]

Example 5.1 The converse of Theorem 5.1 is not true in general. The following simple counter example
illustrates the fact: Let us consider the process P; = a(b).0 under the safe sorting I1 = {a : s,b : r};
o ={s":(@t),t*: 0),r* : 0,7~ : 0} on 1 = {s,t,r}. By the transformation, [s]e, = ()%, [t]a, =
r, [rle, =b, and [I1]e, = {a: ()",b: b}. Then, trivially we have [I1]o, b P :o. But, ;02 i/ P
because t # r. a

If the transformation defined by a safe object sorting {2 from sorts into types satisfies a certain
condition, then the converse of Theorem 5.1 holds.

Theorem 5.2 Let I'; 2 be a safe sorting on ¥ such that [s]y <sus [t]y implies s = t, for any sorts
s,t € B3, Then, [ + P:oimplies I';2F P :(), for any process P.

Proof: By induction on the proof [I']f; F P : o and by case analysis of the applied rules. For detailed
proof, refer to [11]. a

We will define a sorting A®; A* in terms of a typing A. To this end, we need some preliminaries.
Given an open type T, let Sub(T') be the set obtained from the set of all the subterms of T' by replacing
each bound type variable appearing in a subterm by its definition, formally Sub(T) is defined inductively

as follows:
Suble) = {a};
Sub(T) £ {Th
Sub(l) = {1}
Sub(Th,...,To))) & {(T1,...,Tn)'} USub(Ty) U --- U Sub(Ty);
Sub(pe.T) 2 {pa.T}u{S{pa.T/a}|S € Sub(T)}.

$This condition means that {2 represents the unique object sorting up to renaming of sorts such that no distinct sorts
represent the same type where the type equality by forgetting the tags is used as the identity of types. Under this condition,

PT |- P :o means P is well-typed with respect to [I']%,, where only structure matching without subtyping is used.

2 (o]
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From definition it is easy to see that Sub(T) is finite for any type 7. In fact, Sub(T) can have no more
elements than the number of distinct subterms of T.

With an open type in canonical form T € T we associate a tuple (S(T), T*) consisting of the set
X(T) of sorts and the object sorting T#. The sorts are defined by

S(T) £ {[S] | 5 € Sub(T)}

for a type T, where [T] = {S | T =; S} is the congruence class of T' with respect to the identity relation
=; on T'. The object sorting 7# is defined by structural induction on 7'.

] fT=a,0or T
T#é‘ .QJ_ lfT‘:l
") 2UTFuU---uTH if T = (Ty,...,T,)*
2:U(TFU---UTH{[T)/ [} T = po.(Ty,...,Tn),
where
21 2 {170, [ (L)
N {[T+*: ([T,-.., [Tu])} ifI=r
2 =2 { {1 : (1], .., [T])} fI=w
{T* (1], .., [T]), [T)- (1], .., [TW])} HI=b.
{IT]*: ([ {T/e}],- -, [Ta{T/a}])} HT=r
a 2 {[T]: ([T{T/e]],- -, [T{T/a}])} fI=w

{11+ : (I {T/a}) .., [Ta{T/a}]), iI=b.
[T~ : ([T {T/}],..., [TafT/a}])}

Let A be a typing. The corresponding set of subject sorts is defined by
z(4) 2u {E(T) |z :T € A, for some z}.
The associated sorting A®; A* on £(A) with A is defined as follows:

A@
A#

{z:[T)|z:Te€ A};
U{T*|z:T € A, for some z}.

n e

We hope that for instance A+ P : o implies A®; A#* - P :(). But, unfortunately there is a simple
counter example. Let us consider the context A = {a : (T)¥,b: (T)'} and the process P = a(b).0. P is
well-typed under the context A.

(T < (M)W a: (T, b:(T)FO0:o0
a:(T)",b:(T) Fa(b).0:o0

Thus, A+ P :o. By definition, Z(4) = {w(T), ¢(T), T}; A® = {a: w(T),b: r(T)}; A* = {w(T)" :
(T), r(T)*: (T)}. Because T #r(T), A%;A* i/ P: ().

Proposition 5.1 Let T' be a type and p an environment, then [[S]]74 =: [[S]]154, for any S € sub(T).
a
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Lemma 5.2 Let o be any function mapping type variables a. to closed types o(a) € T and T be any type.
Define the environment p : X(T) — T° by

o(1S]) é{ o(@) if [S] = [o] for some a

S otherwise,

for [S] € I(T). Then, we have [[T]]54 =: o(T). o

Theorem 5.3
1. I; 2 C I8 [I1%, for any safe sorting I'; 2 on %.
2. I 2 # [T [11%, for some safe sorting I'; 2 on X.
3. A=[A®] s+, for any typing A.

Proof: 1. Let §:X — X([[]n) be the function defined by 6(s) = [[sle], for s € . Suppose z: s € I
then z : [[s]o] € [I']$ by definition. It remains to show that 6 is a homomorphism from £ to [I']%.
Suppose s* : (t1,...,t,) € £2, where x = + (or * = —). By Lemma 5.1, [s]a =: ([t:i]a,-- -, [tr]2)?, where
I <r (or I <w). Thus by construction, we have [[s]e]* : ([[ti]e],---, [[tn]e]) € [I'1%, as required.

2. Consider the safe sorting Iy = {a : ¢, b: s}; 20 = {t+ : (), s* : ()} on {s,t}. The inequality is obvious
from the followings: [Io], = {a:r, b:r}; [Lo]G, ={a: [1], b: [}; [[o]E, = {[1*: 0}

3. The proof is by Lemma 5.2 since any type in A is closed. O

Corollary 5.2
1. IfI';2F  P:() for a safe sorting I'; 2 then [[]S; [I15 - P: ().
2. [[F]O = [[[[‘]]:@21'[113' O

6 Concluding Remarks

In this paper, the sorting system by name matching and the typing system by structure matching with
subtyping were related via the transformations. The introduced sorting (typing) system is quite closed
to the typing system by Liu and Walker [4] (by Pierce and Sangiorgi [9]). So the results obtained in this
paper are applicable to the investigation of the correspondence between them. If we forget the polarities
(the tags and subtyping), then the resulting sorting (typing) system turns out to coincide with a variant of
Milner’s sorting system [7] (the typing system by Vasconcelos and Honda [13]). Thus, our results interpret
the relationship between both the systems as well.

The correspondence between Milner’s sorting and the typing system [13] is informally discussed with
the illustrative example in [13] and more formally discussed in [12]. The idea is that a set of basic sorts
and sorting defines a regular system of equations; such a system has a unique solution whose components
are represented as regular trees; then derive a typing from the solution. Conversely, trees in a finite set of
regular trees are components of the unique solution of a single system of equation; from such a system the
set of sorts and sorting are obtained. ‘

The transformation from sortings to typings has a similar flavor to the one from regular system
equations in canonical form to recursive types discussed in [1,11]. From typings without subtyping to
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Milner’s sortings, as stated in [13], well-typing induces well-sorting. But, as illustrated in Section 5, in
general well-typing doesn’t always implies well-sorting along the given translation. But, we convince that
the following conjecture must hold.

Conjecture 6.1 If A P : o then there exists a typing Ag such that Ag 2 A — dom(A4Ay) D dom(A)
and Ao(z) < A(z) for all z.€ dom(A) — and AJ; A+ P : (). Note that Ao+ P:o. See[9,11]. O

Finally, the relations between incremental systems and non-incremental systems are discussed in both

sorting and typing in [11].
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