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1 Introduction
1.1 Background and motivation
We do not know much about the complexities of combinational circuits (i.e., circuits with
AND, OR, and NEGATION gates) for explicitly defined functions. Even a superlinear
lower bound for the size of combinational circuits is not known. The complexities of
monotone circuits (i.e., combinational circuits without NEGATION gates) for many ex-
plicitly defined functions are well understood. For example, exponential lower bounds for
the size of monotone circuits are known [8, 2, 7]. Exponential gaps between monotone and
combinational circuit complexity are also shown $[11, 7]$ . So, we cannot generally derive
strong lower bounds for the combinational circuit complexity using those bounds for the
monotone circuit complexity.

In this situation, there is no doubt that it is necessary to understand the effect of
NEGATION gates in order to obtain strong lower bounds for combinational circuit com-
plexity. This is a motivation for the study of negation-limited circuit complexity, the
complexity for circuits in which the number of NEGATION gates are restricted.

Markov [6] gave the number of NEGATION gates which is necessary and sufficient to
compute a system of boolean functions. Especially, he showed that $\lceil\log(n+1)\rceil$ NEGA-
TION gates are sufficient to compute any system of boolean functions (all logarithms and
exponents in this paper are base two). In [5], Fischer constructed a polynomial size circuit
that contains only $\lceil\log(n+1)\rceil$ NEGATION gates, and inverts $n$ input variables. Owing
to this result, for any $n$-input boolean function $f$ , if there exists a polynomial size com-
binational circuit for $f$ , there also exists a polynomial size circuit with only $\lceil\log(n+1)\rceil$

NEGATION gates. Tanaka and Nishino [9], and Beals, Nishino, and Tanaka [3] improved
the result of Fischer, and also gave lower bounds for the negation-limited circuit complex-
ity of several functions.

1.2 Definitions and preliminaries
Let $\tilde{x}=\{x_{1}, \ldots , x_{n}\}$ be the inputs. Let $f=(f^{1}, \ldots, f^{m})$ be an $n$-input $m$-output boolean
function $\{0,1\}^{n}arrow\{0,1\}^{m}$ . We denote by $C(f)$ the circuit complexity of $f$ , i.e., the size
(number of gates) of the smallest circuit of AND, OR, and NEGATION gates with inputs
$x_{1},$ $\ldots,$ $x_{n}$ and outputs $f^{1}(\tilde{x}),$

$\ldots,$
$fm(\tilde{X})$ .

We call a circuit including at most $r$ NEGATION gates an $r$ -circuit. We denote by
$C^{r}(f)$ the size of the smallest r-CirC.uit comp.uting. $f.\mathrm{I}\mathrm{f}\mathrm{a}\mathrm{f}\mathrm{u}\backslash \mathrm{n}\backslash \mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}f\backslash$ cannot be computed$-\sim$.1School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi,
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with only $r$ NEGATION gates, then $C^{r}(f)$ is undefined. When $r$ is bounded, an r-circuit
is said to be negation-limited. Especially, when $r=0$ , an $r$-circuit is said to be monotone.

A theorem of Markov [6] precisely determines the number $r$ of NEGATION gates
necessary and sufficient to $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\backslash f$. A chain $C$ in the boolean lattice $\{0,1\}^{n}$ is an
increasing sequence $a^{1}<\ldots<a^{k}\in\{0,1\}^{n}$ . The decrease of $f$ on $C$ is the number
of $i\leq k$ such that $f^{j}(a^{-1}\dot)>f^{j}(a^{i})$ for some 1 $\leq j\leq m$ . We define $d(f)$ to be
the maximum decrease of $f$ on any chain $C$ . Markov has shown that $\lceil\log(d(f)+1)\rceil$

NEGATION gates are necessary and sufficient to compute any $f$ . Thus, $C^{r}(f)$ is always
defined for $r\geq\lceil\log(d(f)+l)\rceil$ .

Let $|\overline{x}|$ denote the number of ones in $\overline{x}$ . We define the $n$-input parity function as a
function which returns one $\mathrm{i}\mathrm{f}\mathrm{f}|\tilde{x}|$ is odd, the $n$-input k-th threshold function as a function
which returns one iff $|\overline{x}|\geq k$ for $1\leq k\leq n$ , and the majority function as the $\lceil n/2\rceil$ -th
threshold function.

1.3 Main results
We first consider the complexity of negation-limited inverters. We show an upper bound
$d+3\lceil\log(n+1)\rceil$ on depth for negation-limited inverters, by constructing an inverter with
size $O(ns+n^{2})$ , where $d$ and $s$ is, respectively, the depth and the size of a sorting network
with optimal depth. This upper bound matches the lower bound shown by Tanaka and
Nishino [9] Under a natural assumption assumption, we show a superlinear lower bound
$\Omega(n\log n)$ on size of depth-optimal negation-limited inverters when we ignore the depth
of NEGATION gates. $\}$.

Next, we consider the relationship between the number of NEGATION gates and the
size of circuits. We show that there is a polynomial size circuit with $\log(n+1)$ NEGATION
gates, from which the removal of one NEGATION gate must cause an exponential growth
on the size of circuit. This partially answers an open problem presented by Fischer [5].

2 Negation-limited inverters
Let $n+1$ be a power of two, and let $b(n)=\log(n+1)$ . The inverter is an n-input
$n$-output boolean function $I_{n}=(I_{n}^{1}, \ldots, I_{n}^{n})$ , where $I_{n}^{i}(\overline{x})=\neg x_{i}$ for all $1\leq i\leq n$ . A
theorem of Markov implies that $b(n)$ NEGATION gates are necessary and sufficient to
compute $I_{n}$ . Tanaka and Nishino [9] showed the following properties of NEGATION gates
in any $b(n)$-circuit for $I_{n}$ .

1. There exists a path that goes through all $b(n)$ NEGATION gates.

For $1\leq\alpha\leq b(n)$ , we denote the $\alpha$-th NEGATION gate by $N_{\alpha}$ on such a path. Let $z_{\alpha}$ and
$y_{\alpha}$ , respectively, be the functions computed at the input and output of $N_{\alpha}$ , i.e., $z_{\alpha}=\neg y_{\alpha}$ .

2. $z_{1}z_{2\cdots r}Z$ is the binary representation of $|\tilde{x}|$ .

3. On any path between any two NEGATION gates or any NEGATION gate and any
output, there are at least one AND gate and at least one OR gate.

Observe that, $|\tilde{x}|+y_{1}(\tilde{x})2^{b}(n)-1+y_{2}(\overline{x})2^{b}(n)-2+\cdots+y_{b(n})(\overline{x})=n$ . From the above
properties, the lower bound on depth for negation-limited inverters.

Lemma 1 (Tanaka and Nishino [9]) Let $n+1$ is a power of 2. Any negation-limited
inverter must have depth at least $d_{\mathrm{A}\{AJ}+3b(n)$ , where $d_{MAJ}$ is the optimal depth of
monotone circuit for the majority function.
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2.1 Upper bound on depth
In the previous $\mathrm{r}\mathrm{e}\dot{\mathrm{s}}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}[5,9,3],$

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{y}$

’

first sort the $n$ inputs $X1,$ $...,$ $X_{n}$ by a sorting $\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\backslash$ ,
and the outputs are fed to a subcircuit $M_{n}$ shown in [5]. $M_{n}$ uses $b(n)$ NEGATION gates,
and has size $O(n)$ and depth $4b(n)$ . As Fischer’s inverter, our inverter using $n+1$ sorting
networks in parallel. Instead of the subcircuit $M_{n}$ , we use a subcircuit $M_{n}’$ which obtained
by eliminating all gates above the last NEGATION gate in $M_{n}$ . $M_{n}’$ has $n$ inputs and
$b(n)$ outputs (of NEGATION gates).

$M_{1}$
’ consists of one NEGATION gate, and outputs the negation of its input. $M_{n}’$

uses $b(n)$ NEGATION gates, and has size $O(n)$ and depth $3b(n)-2$ . For 1 $\leq\alpha\leq$

$b(n)$ , NEGATION gate $N_{\alpha}$ is in depth $3\alpha-2$ in $M_{n}’$ . That is, for $1\leq\alpha\leq b(n)$ , as
the previous results $y_{\alpha}(\overline{x})$ are computed in depth $d+3\alpha-2$ in our inverter. Since
we are constructing an inverter in depth $d+3b(n)$ and $y_{b\{n)}(\tilde{X})$ are computed in depth
$d+3b(n)-2,$ $I_{n}i(\overline{X})$ must be computed by depth two with $y_{b(n}$) $(\tilde{x})$ and monotone functions
over $\tilde{x}\cup\{y_{1}(\tilde{x}), \ldots, yb(n)-1(\overline{x})\}$ .
$t_{\alpha}^{i}=t_{0}^{i}+y1(\mathrm{L}\mathrm{e}\mathrm{t}T^{k}(t)=1\mathrm{i}\mathrm{f}t\geq k,.\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{W}\mathrm{i}\mathrm{S}\mathrm{e}_{b(}\mathrm{o}\mathrm{f}_{0}\mathrm{r}_{\mathrm{f}\mathrm{o}}\mathrm{S}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}k\mathrm{a}\mathrm{n}\mathrm{d}t,\mathrm{a}\mathrm{n}\mathrm{d}1\mathrm{e}\tilde{X})2^{b(}n)-1(+\cdot\cdot+y\alpha\overline{x})2n)-\alpha 1\leq\alpha\leq b\mathrm{r}(n).\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n},T^{k}(t_{0}i^{0}t^{i}\mathrm{t})\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}k-\mathrm{t}\mathrm{h}=|_{\tilde{X}1x}-i$

,

threshold function over $\tilde{x}-\{x_{i}\}$ , and $I_{n}^{i}(\tilde{x})=T^{n}(t_{b(n)}i)$ .

Theorem 2 Let $s$ be the size of sorting network with the optimal depth $d$ . There exists a
negation-limited inverter with the depth $d+3b(n)$ can be constructed in size $O(ns+n^{2})$ .

Proof. In parallel, we construct $n+1$ sorting network, $S_{0},$ $S_{1},$
$\ldots,$

$Sn\cdot S_{0}$ sort the inputs
in $\tilde{x}$ , and $S_{i}$ sort the inputs in $\tilde{x}-\{x_{i}\}$ for $1\leq i\leq n$ . The outputs of $S_{0}$ are fed to the
subcircuit $M_{n}’$ . As outputs of $S_{i},$ $T^{k}(t_{0}^{i})’ \mathrm{S}$ are computed in depth $d$ for $1\leq k\leq n$ . As
outputs of $M_{n}’,$ $y_{\alpha}(\tilde{x})’ \mathrm{s}$ are computed in depth $d+3\alpha-2$ for $1\leq\alpha\leq b(n)$ . Since $T^{k}(t_{\alpha}^{i})=$

$T^{k}(t_{\alpha-1}^{i})\vee y\alpha(\overline{x})$ A $\tau^{k-2^{b(n}}-\infty()i)t-1’ n(\alpha\overline{x}I^{i})$ can be computed from $y_{\alpha}(\overline{x}),$
$\ldots$ , $y_{b(n}$) $(\tilde{x})$ and all

$T^{k}(t_{\alpha}^{i}-1).’ \mathrm{s}$ for $n-2^{b(n)\alpha}-+1<k\leq n$. By using $2^{b(n)\alpha}--1$ gates all $T^{k}(t_{\alpha}^{i})$ for $n-2^{b(n}$ ) $-\alpha<$

$k\leq n$ can be obtained in depth $d+3\alpha$ , from $y_{\alpha}(\overline{x})$ and $T^{k’}\{t^{i}-1$ )
$\alpha$

for $n-2^{b(n)\alpha}-+1<k’\leq n$ .
Thus, $I_{n}^{i}(\tilde{x})=T^{n}(t_{b(}^{i})n)$ for all $1\leq\dot{i}\leq n$ are computed in depth $d+3b(n)$ .

Finally, there are $n+1$ sorting networks that each has size $s$ , a subcircuit $M_{n}’$ with
size $O(n)$ , and $2n-2$ gates for computing $I_{n}^{i}(\tilde{x})$ from all $T^{k}(t_{0}i)$ and $y_{1}(\tilde{x}),$

$\ldots,$
$yb(n)(\tilde{X})$ for

each $1\leq.\dot{i}.\leq n$ . Hence, the, circu.it has size $O(ns+n^{2})$ and depth $d+3b(n)$ . I
Using the $A\mathcal{K}S$ sorting networks (see [1]) in our construction, we have the following

corollary.

Corollary 3 Let $d_{A\mathcal{K}S}$ be the depth of the $A\mathcal{K}S$ sorting network. A
$negati_{\mathit{0}}n- limited\bullet$

inverter with depth $d_{A\mathcal{K}S}+3b(n)$ can be constructed with size $O(n^{2}\log n)$ .

2.2 Superlinear Lower bound on size
Here, we consider the negation-limited inverters under the following natural assumption.
Assumption $A$ : The optimal depth of monotone circuit for the majority function is not
less than that for any other threshold function. Under such an assumption, the following
corollary is obtained from Lemma 1 and Theorem 2.

Corollary 4 Let $n+1$ is a power $of\mathit{2}$ . The optimal depth of any negation-limited inverter
is $d_{\mathrm{A}4AJ}+3b(n)$ , under Assumption A. 1

177



Next, we consider the size of depth-optimal negation-limited inverters for $n+1$ is a
power of 2, under Assumption A. We change, in this section, our circuit model from the
previous works. Namely, in the new model we ignore the size and depth of the NEGATION
gates. This is a natural formulation, since the new model can be considered as the model
of circuits with basis {AND, OR, NAND, NOR}, where we can interpret circuits with
a limited number of NAND and NOR gates as standard negation-limited circuits. An
$\Omega(n\log n)$ lower bound is shown for any depth-optimal negat.ion-limited inve.rters in this
model.

In any depth-optimal negation-limited inverter of this model, $N_{1}$ is in depth $d_{\mathcal{M}AJ}$ ,
that is, $N_{\alpha}$ in depth $d_{\lambda 4AJ}+2\alpha-2$ for all $1\leq\alpha\leq b(n)$ and the circuit has depth
$d_{\lambda 4A\mathcal{J}}+2b(n)$ . We find $n$ disjoint paths with no NEGATION gate from $n$ gates in depth
$d_{\mathcal{M}AJ}+1$ or $d_{\Lambda 4AJ}+2$ to the $n$ output gates. Each of these paths has $2b(n)-1$ gates on
it.

We say for two assignments $\pi$ and $\pi’$ that $\pi\geq\pi’\mathrm{i}\mathrm{f}\mathrm{f}_{X}:|_{\pi}\geq x_{i}|_{\pi’}$ for all $1\leq\dot{i}\leq n$ . For
any functions $g(\tilde{x})$ and $g’(\tilde{x})$ and a set of assignments $A$ , we say that $g(\tilde{x})=g’(\tilde{x})$ over
$A$ iff $g(\pi)=g’(\pi)$ for all $\pi\in A$ . Let $A_{\alpha,\beta}\subseteq\{0,1\}^{n}$ be a set of assignment that for all
$\pi\in A_{\alpha,\beta},$ $|\pi|$ mod $2^{b(n)-\alpha}\equiv\beta$ , for all $1\leq\alpha\leq b(n)$ and $0\leq\beta<2^{b(n)-\alpha}$ .

Lemma 5 Suppose there exists a gate $G$ which computes a function $g(\tilde{x})$ , that
,

$g(\tilde{x})=$

$I_{n}^{i}(\tilde{x})$ over $A_{\alpha,\beta}$ . For $2\leq\alpha\leq b(n)$ and $0\leq\beta\leq 2^{b(n)-\alpha}$ ,

1. There are at least one path from $N_{\alpha}$ to $G$ with no NEGATION gate except $N_{\alpha}$ .

2. On each of such paths, there are at least one AND gate and at least one OR gate.

3. If $G$ is in depth $d_{\lambda 4AJ}+2\alpha$ , then there are exactly one such a path.

Proof. 1. Suppose there are no such a path from $N_{\alpha}$ to $G$ with no NEGATION gates except
$N_{\alpha}$ . Then, $g$ is a monotone function on $x_{1},$ $\ldots,$

$x_{n}$ and $y_{\gamma}(\tilde{x})$ for all $\gamma\neq\alpha$ . There exists
an assignment $\pi\in A_{\alpha,\beta}$ that $|\pi|=\beta<n$ and $x_{i}|_{\pi}=0$ . Then, we have $y_{\alpha}(\pi)=1$ and
$g(\pi)=I_{n}^{i}(\pi)=1$ . For such an assignment $\pi$ , another assignment $\pi’\in A_{\alpha,\beta}$ that $\pi’\geq\pi$ ,
$|\pi’|=|\pi|+2^{b(n})-\alpha>0$ and $x_{i}|_{\pi’}=1$ . We have $y_{\alpha}(\pi’)=0$ and $y_{\gamma}(\pi)=y_{\gamma}(\pi’)$ for all $\gamma\neq\alpha$ .
By the monotonicity of $g$ , we have $g(\pi’)\geq g(\pi)=1$ . However, $1=g(\pi’)\neq I_{n}^{i}(\pi’)=0$ .
2. Suppose on one of such paths, all gates (including $G$) except $N_{\alpha}$ are AND gates.
There exists an assignment $\pi’’\in A_{\alpha,\beta}$ , that $|\pi’’|=\beta+2^{b(n)-\alpha}$ and $x_{i}|_{\pi^{\iota\prime}}=0$ , since
$\beta+2^{b(n})-\alpha<2^{b(n)}-1=n$ . Then, we have $y_{\alpha}(\pi’’)=0$ . However, since all gates including
except $N_{\alpha}$ are AND gates on such path, $y_{\alpha}(\pi’’)=0$ implies that $g(\pi’’)=0$ . Again,
$0=g(\pi’’)\neq I_{n}^{i}(\pi^{n})=1$ . For case that on such path all gates except $N_{\alpha}$ are OR gates can
be prove similarly.

3. Since $N_{\alpha}$ is in depth $d_{\mathcal{M}AJ}+2\alpha-2$ and $G$ in depth $d_{\mathcal{M}AJ}+2\alpha$ , on such path from $N_{\alpha}$

to $G$ , there are one NEGATION gate, $N_{\alpha}$ , and including $G$ exactly one AND gate and
one OR gate. Thus, there are at most 2 such paths from $N_{\alpha}$ to $G$ . Suppose there are 2
such paths from $N_{\alpha}$ to $G$ . That is, both predecessors of $G$ have a common predecessor,
$N_{\alpha}$ . If $G$ is an AND gate (OR gate), then both predecessors of $G$ are OR gates (AND
gates). There exist an assignment $\pi\in A_{\alpha,\beta}$ that $|\pi|=\beta+2^{b(n}$) $-\alpha>0$ and $x_{i}|_{\pi}=1$ . Since
$y_{\alpha}(\pi)=1$ , we have $1=g(\pi)\neq I_{n}^{i}(\pi)=0$ . I

Let $G$ be a gate in depth $d_{\mathcal{M}A\mathcal{J}}+2\alpha$ which computes function $g$ with $g(\tilde{x})=I_{n}^{i}(\tilde{x})$

over $A_{\alpha,\beta}$ ( $2\leq\alpha\leq b(n)$ and $0\leq\beta<2^{b(n)-\alpha}$). From Lemma 5, there exists exactly
one path from $N_{\alpha}$ to $G$ that consists of $N_{\alpha}$ , and including $G$ exactly one AND gate and
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one OR gate. Let $G’$ be the gate between $N_{\alpha}$ and $G$ on such path. Thus, $G’$ is in depth
$d_{\mathrm{A}4A\mathcal{J}}+2\alpha-1$ , since $N_{\alpha}$ is in depth $d_{\mathrm{A}4AJ}+2\alpha-2$ and $G$ is in depth $d_{\mathcal{M}AJ}+2\alpha$ . Let
$H_{1}$ be the predecessor of $G$ other than $G’$ , and $H_{2}$ be the predecess-.or of $G’$ other than
$N_{\alpha}$ . We denote the function that $H_{i}$ computes by $h_{i}(\tilde{x})$ for $1\in\{1,2\}$ . Note that $h_{1}(\tilde{x})$

and $h_{2}(\tilde{x})$ are monotone functions over $\tilde{x}\cup\{y_{\gamma}(\tilde{x})|\mathrm{f}\mathrm{o}\mathrm{r}\gamma<\alpha\}$ , since there no path from
$N_{\alpha}$ to $H_{i}$ for $i\in\{1,2\}$ .

Lemma 6 Suppose $G$ is an OR gate and $G’$ is an AND gate. That is, $g(\tilde{x})=h_{1}(\tilde{x})$

( $h_{2}(\tilde{x})$ A $y_{\alpha}(\tilde{x})$ ). Then, $h_{1}(\tilde{x})$ A $y_{\alpha}(\tilde{x}).=0$ over $A_{\alpha,\beta}$ .

Proof. Suppose there exist an assignment $\pi\in A_{\alpha,\beta}$ such that $h_{1}(\pi)=y_{\alpha}(\pi)=1$ .
It implies that $g(\pi)=I_{n}^{i}(\pi)$ – 1 and $x_{i}|_{\pi}=0$ . Note that $y_{\alpha}(\pi)=1$ implies that
$|\pi|\leq n-2^{b(n})-\alpha$ . There exists an assignment $\pi’\in A_{\alpha\beta}$ that $\pi’\geq\pi,$ $|\pi’|=|\pi|+2^{b(n)-\alpha}$

and $x_{i}|_{\pi^{t}}=1$ . Then, we have $y_{\alpha}(\pi’)=0$ and $y_{\gamma}(\pi’)=y_{\gamma}(\pi)$ for $\gamma\neq\alpha$ . By the
monotonicity of $h_{1}$ , we have $h_{1}(\pi’)=1$ . Thus, we have $1=g(\pi’)\neq I_{n}^{i}(\pi’)=0$ . I

By the duality of AND and OR, the following lemma is obtained.

Lemma 7 Suppose $G$ is an AND gate and $G’$ is an OR gate. That is, $g(\tilde{x})=h_{1}(\tilde{x})$ A
$(h_{2}(\tilde{x})y_{\alpha}(\tilde{x}))$ . Then, $h_{1}(\tilde{x})y_{\alpha}(\tilde{x})=1$ over $A_{\alpha,\beta}$ . I

From Lemma 6 and Lemma 7, we obtain the following lemma immediately.

Lemma 8 $h_{2}(\tilde{x})=I_{n}^{i}(\tilde{x})$ over $A_{\alpha-1,\beta^{t}}$ , where $\beta’\in\{\beta,\beta+2^{b(n\rangle\alpha}-\}$ .

Proof. Note that $A_{\alpha-1,\beta}=$ { $\pi|\pi\in A_{\alpha,\beta}$ A $y_{\alpha}(\pi)=1$ }, and $A_{\alpha-1,\beta+2^{b}}(n)-\alpha=\{\pi|\pi\in$

$A_{\alpha,\beta}$ A $y_{\alpha}(\pi)=0\}$ . Thus, if $G$ is an OR gate, from Lemma 6 $h_{2}(\tilde{x})=I_{n}^{i}(\tilde{x})$ on $A_{\alpha-1,\beta}$ .
Otherwise, if $G$ is an AND gate, from Lemma 7, $h_{2}(\tilde{x})=I_{n}^{i}(\tilde{x})$ on $A_{\alpha-1,\beta+2^{b}}(n)-\alpha$ . I

Lemma 9 There exists a path from a gate in depth $d_{\lambda 4AJ}+1$ or $d_{\lambda 4AJ}+2$ to the i-th
output gate with $2b(n)-1$ gates, for all $1\leq i\leq n$ .

Proof. For each $1\leq\dot{i}\leq n$ , start with a path with one gate in depth $d_{MAJ}+2b(n)$ that
computes $I_{n}^{i}$ over $A_{b(n\rangle,0}=\{0,1\}^{n}$ , i.e., the i-th output gate. Such path can be extended
by using Lemma 5 and Lemma 8 as follow.

For $2\leq\alpha\leq b(n)$ and $0\leq\beta<2^{b(n)-\alpha}$ , let $G$ be a gate in depth $d_{\mathcal{M}AJ}+2\alpha$ that at
the bottom of such path and computes a function $g$ with $g(\tilde{x})=I_{n}^{i}(\tilde{x})$ on $A_{\alpha,\beta}$ . From
Lemma 5, there exists a gate $G’$ that is a predecessor of $G$ and a successor of $N_{\alpha}$ . From
Lemma 8, there exists a gate $H$ that is a predecessor of $G’$ other than $N_{\alpha}$ , such that $H$

computes a function $h$ with $h(\tilde{x})=I_{n}^{i}(\tilde{x})$ over $A_{\alpha-1,\beta^{t}}$ , where $\beta’\in\{\beta,\beta+2^{b(n)-\alpha}\}$ . Then,
we extend the path by including 2 gates, $G’$ and $H$ , to it. Again, from Lemma 5, $H$ is in
depth $d_{\mathcal{M}AJ}+2\alpha-2$ for $\alpha\geq 3$ . Otherwise, if $\alpha=2$ , i.e., in the last extension, depth of
$H$ is $d_{\mathrm{A}4AJ}+1$ or $d_{MAJ}+2$ . That is, $H$ has a successor in depth $d_{\Lambda 4AJ}.+3$ and there
exists a path from $N_{1}$ to $H$ (since $h(\tilde{x})$ is not a monotone function over $x_{1},$ $\ldots,$ $x_{n}$ ).

In each extension, 2 gates are included in the bottom of the path. After $b(n)-1$
extension, a path from a gate in depth $d_{\mathrm{A}4AJ}+1$ or $d_{\mathcal{M}AJ}+2$ to the i-th output gate
with $2b(n)-1$ gates are found. The gate at the bottom of such path computes a function
$g$ that $g(\tilde{x})=I_{n}^{i}(\tilde{x})$ over $A_{1,\beta}$ , where $0\leq\beta<2^{b(n)-1}$ . $\bullet$

From this lemma, for each $1\leq\dot{i}\leq n$ . we find a path from a gate in depth $d_{d}\iota tAj+1$

or $d_{\mathcal{M}A\mathcal{J}}+2$ to the $i$-output gate. Let $P_{i}$ be the path to the i-th output gate, and
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$G_{1}^{i},$ $G_{2}^{i},$
$\ldots$ , $G_{2b(n)-}^{i}1$ be gates on $P_{i}$ , such that $G_{1}^{i}$ is at the bottom of $P_{i}$ whose depth is

$d_{\mathcal{M}A\mathcal{J}}+1$ or $d_{\mathcal{M}AJ}+2$ , and for $2\leq k<2b(n)-1,$ $G^{i}k$ whose depth is $d_{\lambda 4AJ}+k+2$ is a
successor of $G_{k-1}^{i}$ . Thus, for $1\leq\alpha\leq b(n),$ $c_{2}^{i}\alpha-1$ is a gate that computes $I_{n}^{i}(\tilde{x})$ over $A_{\alpha,\beta}$

for some $0\leq\beta<2^{b(n)-\alpha}$ , and for $1\leq\alpha\leq b(n)-1,.G_{2\alpha}^{\dot{2}}$ is a gate that is a successor of
$G_{2\alpha-1}^{i}$ and $N_{\alpha}$ .

Lemma 10 $P_{1},$
$\ldots,$

$P_{n}$ are disjoint.

Proof. Suppose $P_{i}$ and $P_{j}$ are sharing a gate $G$ . Note that $P_{i}$ and $P_{j}$ must share $G$ at
the same position. That is, if $G=G_{l}^{i}=G_{m}^{j}$ , then $l=m$. Otherwise there exists a path
from $N_{1}$ to the i-th or j-th output gate with length longer then $2b(n)-1$ .

Suppose $G=G_{2\alpha-1}^{i}=G_{2\alpha-1}^{j}$ for some $1\leq\alpha\leq b(n)$ . Let $g(\tilde{x})$ be the function that
computed by $G$ . Then, there exist an $1\leq\alpha\leq b(n)$ and $0\leq\beta,\beta’<2^{b(n)-\alpha},$ $g(\tilde{X})=I_{n}^{i}(\tilde{x})$

over $A_{\alpha,\beta}$ , and $g(\tilde{x})=I_{n}^{j}(\tilde{x})$ over $A_{\alpha,\beta^{t}}$ . It is obvious that $\beta\neq\beta’$ , since there exists an
assignment $\pi\in A_{\alpha,\beta}$ that $x_{i}|_{\pi}\neq x_{j}|_{\pi}$ . Thus, assume without loss of generality that $\beta<\beta’$ .
For an assignment $\pi\in A_{\alpha,\beta}$ that $x_{i}|_{\pi}=0$ and $x_{j}|_{\pi}=1$ . Then, we have $g(\pi)=I_{n}^{i}(\pi)=1$ .
There exist an assignment $\pi’\in A_{\alpha,\beta^{t}}$ that $\pi’\geq\pi$ , i.e., $x_{j}|_{\pi^{t}}\geq x_{j}|_{\pi}=1$ . Note that $g$ is a
monotone function on $x_{1},$ $\ldots,$

$x_{n}$ and $y_{\gamma}(\tilde{x})$ for all $\gamma<\alpha$ . Thus, we have $g(\pi’)\geq g(\pi)=1$ .
However, $1=g(\pi’)\neq I_{n}^{j}(\pi’)=0$ .

Suppose $G=G_{2\alpha}^{i}=G_{2\alpha}^{j}$ for some $1\leq\alpha\leq b(n)-1$ . Since $N_{\alpha}$ is a predecessor of $G$ ,
the predecessor of $G$ other than $N_{\alpha}$ is also shared by $P_{i}$ and $P_{j}$ , that is $G_{2\alpha-1}^{i}=G_{2\alpha-1}^{j}$ . I

Thus, we have the following theorem and corollary.

Theorem 11 Let $n+1$ is a power of 2. Any depth-optimal negation-limited inverter has
size at least $2n\log(n+1)+3n-4$ , under Assumption $A$ .

Proof. From Lemma 9 and Lemma 10, $n(2b(n)-1)=2n\log(n+1)-n$ gates are found
above the bottom NEGATION gate, $N_{1}$ . Below $N_{1}$ , the majority function is computed by
monotone subcircuit as input of $N_{1}$ . There are at least $4(n-1)$ gates in such a subcircuit
(see [4]). I

3 An exponential gap with the removal of one NEGA-
TION gate

In this section, we show the relationships $\mathrm{b}\mathrm{e}\mathrm{t}\dot{\mathrm{w}}\mathrm{e}\mathrm{e}\mathrm{n}$ the number of NEGATION gates and
the size of circuits. The result of Fischer show that there is only a small gap between
the size of a combinational circuit and that of a circuit which includes only $\lceil\log(n+1)\rceil$

NEGATION gates for any boolean function. On the other hand, Tardos [11] showed that
there is a monotone function $F_{n}$ whose monotone and combinational circuit complexities
have an exponential gap. Namely, the following proposition is shown.

Proposition 12 Let $n+1$ be a power of two, then there exists an integer $t(0\leq t\leq$

$\log(n+1)-1..)$ such that $C^{t}(F_{n})/C^{t+1}(F_{n})=\exp(\Omega(n^{1/}-\mathit{0}\langle 1))6)$ .

Notice that in Proposition 12 we cannot determine the value of the integer $t$ . Actually,
$t$ can range over $\log(n+1)$ different values. Recently, Tanaka and Nishino [10] construct a
function $H_{n}$ and show the following Proposition, where $t$ can range over only two different
values.

180



Proposition 13 Let $n+1$ be a power of two, then there exists an integert $(\log(n+1)-2\leq$

$t\leq\log(n+1)-1)$ such that $C^{t}(H_{n})/c^{t+1}(H_{n})=\exp(\Omega(n^{1}/6-o(1)))$ .

In this paper we show another function $K_{n}$ , which is $n$-input two-.output, and show
that the following Theorem, where $t$ can be determined uniquely.

Theorem 14 Let $n+1$ be a power of two, then

$\frac{C^{(1\mathrm{o}\mathrm{g}\mathrm{t}1)1)}n+-(K)n}{C^{\log(+1}n)(K_{n})}=\exp(\Omega(n^{1/}-o(1))6)$ .

From the theorem above, we show that there is an optimal circuit with $\log(n+1)$
NEGATION gates, from which the removal of one NEGATION gate must caus. $\mathrm{e}$ an ex-
ponential growth.

Tardos pointed out that there is a polynomial time computable function $F_{n}$ whose
monotone circuit complexity is exponential. This function the so-called Lov\’asz $\theta$ func-
tion introduced by Lov\’asz to study the Shannon-capacity of graphs, and is known to be
polynomial time computable. Tardos showed the following proposition.

Proposition 15 $C^{0}(F_{n})=2^{\Omega(n}1/6-\circ(1))$ .

Proposition 15 is obtained immediately from Proposition 12. Now, we define the
$n$-input two-output function $K_{n}=(K_{n}^{1}, K_{n}^{2})$ as follows:

$K_{n}^{1}(w_{1}, \ldots, w-1, x1, \ldots, x+2)mm=w_{1}\oplus\cdots\oplus w_{m-1}\oplus F_{m+2}(x_{1,\ldots,+2}X_{m})$ , and
$K_{n}^{2}(w_{1}, \ldots, w_{m-1}, x1, \ldots, X+m2)=\neg Kn1(w_{1}, \ldots, wm-1, x1, \ldots, Xm+2)$

where $n+1$ is a power of two and $m=(n-1)/2$.
Since $F_{m+2}$ is monotone, the maximum decrease $d(K_{n})$ is $m=(n-1)/2$ . So, $\log(n+$

$1)-1$ NEGATION gates are necessary and sufficient to compute $K_{n}$ by the theorem of
Markov. From [3], the following lemma is easily shown.

Lemma 16 $C^{\log(+1}n$ ) $(K_{n})\leq 2C(K_{n})+O(n\log n)$ .

Since $F_{m+2}$ is known to be polynomial time computable, $C(K_{n})$ is bounded by some
polynomial in $n$ , so is $C^{\log(+1}n$) $(K_{n})$ . This lemma can be proved

$\mathrm{b}\mathrm{y}’$

.
a similar argument as

in $[9, 3]$ .
Lemma 17 Let $r=\log(n+1)-1$ . Consider any $r$ -circuit $\Delta$ which computes $K_{n}$ . Label
the NEGATION gates $N_{1},$

$\ldots,$
$N_{r}$ in such a way that the input to $N_{\alpha}$ does not depend on

the outputs of any of the NEGATION gates $N_{\alpha+1},$
$\ldots,$

$N_{r}$ (such a labeling exists since the
circuit is a directed acyclic graph). Let $z_{\alpha}$ be the function computed at the input of $N_{\alpha}$ .
The.n $z_{1}z_{2}\ldots z_{r}$ is the binary representation $of|\{w1, \ldots, w-1, Fmm+2\}|$ .

Proof. Since $\{w_{1}, \ldots, w_{m-1}\}\cap\{x_{1}, \ldots , x_{m+2}\}=\emptyset$ , the values of $F_{m+2}$ can be changed
independently of $w_{1},$ $\ldots,$ $w_{m-1}$ . We can regard the value of $F_{m+2}(x1, \ldots, X_{m+2})$ as a new
variable $w_{m}$ which is independent of $w_{1},$ $\ldots,$ $w_{m-1}$ . $F_{m+2}$ is a non-constant monotone
function over $\{x_{1}, \ldots, x_{m+}2\}$ , and $\Delta$ includes only $r=\log(n+1)-1$ NEGATION gates,
which are necessary and sufficient to compute the $m$-input parity function and its comple-
ment simultaneously. Thus, we obtain the lemma by a similar argument as in the proof
of Lemma 5.1 in [3]. . $\cdot$ 1

Now, we obtain the following lemma, by applying Proposition 15 to a $(\log(n+1)-1)-$
circuit computing $K_{n}$ .
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Lemma 18 $C^{(()}\log n+1-1$ ) $(K_{n})=\exp(\Omega(n^{1}/6-o(1)))$ .

Proof. Consider the subcircuit computing $z_{1}$ in a $(\log(n+1)-1)$-circuit computing $K_{n}$ .
This subcircuit is monotone and computes the majority function over $\{w_{1}, \ldots , w_{m-1,+2}F_{m}\}$ .
By fixing $(m-1)/2$ variables in $\{w_{1}, \ldots, w_{m-1}\}$ to ones and fixing the other variables in
$\{w_{1}, \ldots, w_{m-1}\}$ to zeros, we can get the function $F_{m+2}(x_{1}, \ldots, xm+2)$ at the output of the
subcircuit. Combining this with Proposition 15, we have

$C^{((n}\log+1)-1)(Kn)\geq c0(pm+2(x1, \ldots, x_{m+2}))=2\Omega \mathrm{t}m/\epsilon-\circ(1))1\Omega(2n^{1/\epsilon_{-\mathit{0}}}(1))=$. I

From Lemma 16 and 18, we obtain Theorem 14.
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