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Lower bounds of the negation-limited circuit
complexity

Shao-Chin Sung! Keisuke Tanakal

1 Introduction

1.1 Background and motivation

We do not know much about the complexities of combinational circuits (i.e., circuits with
AND, OR, and NEGATION gates) for explicitly defined functions. Even a superlinear
lower bound for the size of combinational circuits is not known. The complexities of
monotone circuits (i.e., combinational circuits without NEGATION gates) for many ex-
plicitly defined functions are well understood. For example, exponential lower bounds for
the size of monotone circuits are known [8, 2, 7]. Exponential gaps between monotone and
combinational circuit complexity are also shown [11, 7]. So, we cannot generally derive
strong lower bounds for the combinational circuit complexity using those bounds for the
monotone circuit complexity.

In this situation, there is no doubt that it is necessary to understand the effect of
NEGATION gates in order to obtain strong lower bounds for combinational circuit com-
plexity. This is a motivation for the study of negation-limited circuit complezity, the
complexity for circuits in which the number of NEGATION gates are restricted.

Markov [6] gave the number of NEGATION gates which is necessary and sufficient to
compute a system of boolean functions. Especially, he showed that [log(n + 1)] NEGA-
TION gates are sufficient to compute any system of boolean functions (all logarithms and
exponents in this paper are base two). In [5], Fischer constructed a polynomial size circuit
that contains only [log(n + 1)] NEGATION gates, and inverts n input variables. Owing
to this result, for any n-input boolean function f, if there exists a polynomial size com-
binational circuit for f, there also exists a polynomial size circuit with only [log(n + 1)]

- NEGATION gates. Tanaka and Nishino [9], and Beals, Nishino, and Tanaka [3] improved
the result of Fischer, and also gave lower bounds for the negation-limited circuit complex-
ity of several functlons

1.2 Definitions and preliminaries

Let Z = {z1,...,z,} be the inputs. Let f = (f7,..., f™) be an n-input m-output boolean
function {0,1}* — {0,1}™. We denote by C(f) the circuit complezity of f, i.e., the size
(number of gates) of the smallest circuit of AND, OR, and NEGATION gates w1th inputs
ri,...,Z, and outputs f1(Z),..., f™(%).

We call a circuit including at most » NEGATION gates an r-circuit. We denote by
C"(f) the size of the smallest r-circuit computing f. If a function f cannot be computed

1School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi,
Ishikawa 923-12, Japan. (son,tanaka)@jaist.ac.jp



176

with only » NEGATION gates, then C"(f) is undefined. When 7 is bounded, an r-circuit
is said to be negation-limited. Especially, when r = 0, an 7-circuit is said to be monotone.

A theorem of Markov [6] precisely determines the number r of NEGATION gates
necessary and sufﬁc1ent to compute f- A chain C in the boolean lattice {0,1}" is an
increasing sequence a' < ... < af € {0,1}". The decrease of f on C is the number
of i < k such that fj(ai‘l) > fi(a') for some 1 < j < m. We define d(f) to be
the maximum decrease of f on any chain C. Markov has shown that [log(d(f) + 1)]
NEGATION gates are necessary and sufficient to compute any f. Thus, C"(f) is always
defined for r > [log(d(f) +1)].

Let |Z| denote the number of ones in Z. We define the n-input parity function as a
function which returns one iff |Z| is odd, the n-input k-th threshold function as a function
which returns one iff || > k for 1 < k < n, and the majority function as the [n/2] -th
threshold function.

1.3 Main results

We first consider the complexity of negation-limited 1nverters We show an upper bound
d+3[log(n+1)] on depth for negation-limited inverters, by constructing an inverter with
size O(ns+n?), where d and s is, respectively, the depth and the size of a sorting network
with optimal depth. This upper bound matches the lower bound shown by Tanaka and
Nishino [9] Under a natural assumption assumption, we show a superlinear lower bound
Q(nlogn) on size of depth-optimal negatlon -limited inverters when we ignore the depth
of NEGATION gates.

Next, we consider the relationship between the number of NEGATION gates and the
size of circuits. We show that there is a polynomial size circuit with log(n+1) NEGATION
gates, from which the removal of one NEGATION gate must cause an exponential growth
on the size of circuit. This partially answers an open problem presented by Fischer [5].

2 Negation-limited inverters

Let.n + 1 be a power of two, and let b(n) = log(n + 1). The inverter is an n-input
n-output boolean function I, = (I3,...,I7), where I}(Z) = ~z; forall 1 < i < n. A
theorem of Markov implies that b(n) NEGATION gates are necessary and sufficient to
compute I,,. Tanaka and Nishino [9] showed the followmg properties of NEGATION gates
in any b(n)-circuit for I,.

1. There exists a path that goes through all b(n ) NEGATION gates.

For1 < a < b(n), we denote the a-th NEGATION gate by N on such a path. Let z, and
Yas respectlvely, be the functions computed at the input and output of N, i.e., zo = —Y,.

" 2. z123... 2 is the binary representatlon of le

‘3. On any path between any two NEGATION ga.tes or any NEGATION gate and any
output, there are at least one AND gate and at least one OR gate.

Observe that, |Z| + y1(2)2%™~1 + y(2)2%™~2 4+ ... 4 y)(2) = n. From the above
propertles the lower bound on depth for negation- hm1ted inverters. ‘

Lemma 1 (Tanaka and Nishino 9]) Letn+1is a power of 2. Any negation-limited
inverter must have depth at least dpqas + 3b(n), where dpay is the optimal depth of
monotone circuit for the majority function.
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2.1 Upper bound on depth

In the previous results 5,9, 3], they first sort the n inputs z, ..., z, by a sorting network,
and the outputs are fed to a subcircuit M, shown in [5]. M, uses b(n) NEGATION gates,
and has size O(n) and depth 4b(n). As Fischer’s inverter, our inverter using n + 1 sorting
networks in parallel. Instead of the subcircuit M,, we use a subcircuit M! which obtained
by eliminating all gates above the last NEGATION gate in M,. M, has n inputs and
b(n) outputs (of NEGATION gates).

M consists of one NEGATION gate, and outputs the negation of its input. M’
uses b( ) NEGATION gates, and has size O(n) and depth 3b(n) —2. Forl1 < a<

b(n), NEGATION gate N, is in depth 3 — 2 in M. That is, for 1 < a < b(n), as

the previous results y,(%) are computed in depth d + 3a — 2 in our inverter. Since
we are constructing an inverter in depth d + 3b(n) and yy,)(Z) are computed in depth
d+3b(n)—2, I:(%) must be computed by depth two with Yi(n)(Z) and monotone functions
over & U {ys(2),- ., yutmy-1(2)}.

Let T*(t) = 1if ¢t > k, otherwise 0 for some integer k and ¢, and let t} = |F| — a;,
=t 4+ yy ()21 4. 4oy, (2)2°™~= for 1 < a < b(n). Then, T*(t!) is the k-th
threshold function over Z — {m,} and I'(Z) = T™(ty(s))-

Theorem 2 Let s be the size of sorting network with the optimal depth d. There exists a
negation-limited inverter with the depth d + 3b(n) can be constructed in size O(ns + n?).

Proof. In parallel, we construct n + 1 sorting network, Sp, Sy, ..., S,. Sp sort the inputs
in Z, and S; sort the inputs in Z — {z;} for 1 < 7 < n. The outputs of S, are fed to the
subcircuit M .- As outputs of S;, T*(t{)’s are computed in depth d for 1 < k < n. As
outputs of M, yo(%)’s are computed in depth d+3a—2for 1 < a < b(n). Since T’“(tz )=
T*(t: l)Vya(:v)/\Tk —2™M7(¢ ), Ii(F) can be computed from y,(Z), ... , Yn(n)(Z) and a.ll
T*(t:,_,)’s for n — Pm—atl < | <, By using 2%(™~"1 gates all T*(t) for n — 25—«
k < n can be obtained in depth d+3q, from y,(Z) and T* (¢ _,) for n—2bm -+l  f < n.
Thus, I;(Z) = T"(t}(,)) for all 1 < i < n are computed in depth d + 3b(n).

Finally, there are n + 1 sorting networks that each has size s, a subcircuit M, with
size O(n), and 2n — 2 gates for computing I:(Z) from all T*(¢) a.nd 1(%),.. ,yb(n)( ) for
each 1 < ¢ < n. Hence, the circuit has size O(ns + n?) and depth d + 3b(n ) |

Using the AKS sorting networks (see [1]) in our construction, we have the following
corollary.

C‘or_ollary 3 Let dacs be the depth of the AKS sorting network. A negation-limited
inverter with depth daxs + 3b(n) can be constructed with size O(n?logn). : [

2.2 Superlinear Lower bound on size

Here, we consider the negation-limited inverters under the following natural assumption.
Assumption A: The optimal depth of monotone circuit for the majority function is not
less than that for any other threshold function. Under such an assumption, the following
corollary is obtained from Lemma 1 and Theorem 2.

Corollary 4 Letn+1 1s a power of 2. The optimal depth of any negatzon limited inverter
is dpag + 3b(n), under Assumption A. n
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Next, we consider the size of depth-optimal negation-limited inverters-for n + 1 is a
power of 2, under Assumption A. We change, in this section, our circuit model from the
previous works: Namely, in the new model we ignore the size and depth of the NEGATION
gates. This is a natural formulation, since the new model can be considered as the model
of ‘circuits with basis {AND, OR,NAND, NOR}, where we can interpret circuits with
a limited number of NAND and NOR gates as standard negation-limited circuits. An
Q(nlogn) lower bound is shown for any depth-optimal negatlon hmlted 1nverters in this
model.

In any depth-optimal negation-limited inverter of this model, N1 is in depth dpazg,
that is, N, in depth dpmas + 2a — 2 for all 1 < a < b(n) and the circuit has depth
dpmag +2b(n). We find n disjoint paths with no NEGATION gate from n gates in depth
dymag +1 or dpag + 2 to the n output gates. Each of these paths has 2b(n) — 1 gates on
it. ’

We say for two assignments 7 and 7’ that 7 > 7' iff ;|, > z;|» for all 1 < i < n. For
any functions ¢g(Z) and ¢'(Z) and a set of assignments A, we say that g(Z) = ¢'(Z) over
A iff g(7) = ¢/(x) for all m € A. Let A,p C {0,1}"™ be a set of assignment that for all
T € Aagp, |7 mod 222 =3 for all 1 < a < b(n) and 0 < B < 2Xm)-=,

Lemma 5 Suppose there exists a gate G which computes a function g(Z), that 9(%) =
I:(Z) over Aaﬂ For2 < a<b(n) and 0 < B < 2bm)-o

1. There are at least one path from N, to G with no NEGATION gate ezxcept No.
2. On each of such paths, there are at lea‘st éne AND gate and at least one OR gate.

3. If G is in depth dpag + 20, then there are exactly one such a path.

Proof. 1. Suppose there are no such a path from N, to G with no NEGATION gates except
N,. Then, g is a monotone function on zy,...,2, and y,(Z) for all ¥ # a. There exists
an assignment 7 € A, g that |7| = B < n and ;| = 0. Then, we have yo(7) = 1 and
g(w) = Ii(m) = 1. For such an assignment 7, another assignment ©’ € A, g that 7' > ,
|7'| = || +2%™)~= > 0 and z;|» = 1. We have yo(7’) = 0 and y,(7) = y,,(7r’) for all v ;é a.
By the monotonicity of g, we have g(7') > g(7) = 1. However, 1 = g(') # Ii(x') =

2. Suppose on one of such paths, all gates (including G) except N, are AND gates.
There exists an assignment 7" € A,g, that |7"| = 8 + 2%™~ and z;|,« = 0, since
B+ 2bm)-e < 95n) _ 1 = n. Then, we have y,(7") = 0. However, since all gates including
except N, are AND gates on such path, y.(7") = 0 implies that g(7”) = 0. Again,

= g(n") # Ii(7") = 1. For case that on such path all gates except N, are OR gates can
be prove similarly.

3. Since N, is in depth dpa7 +2a — 2 and G in depth dyqa7 + 2¢, on such path from N,
to G, there are one NEGATION gate, N,, and including G exactly one AND gate and
one OR gate. Thus, there are at most 2 such paths from N, to G. Suppose there are 2
such paths from N, to G. That is, both predecessors of G have a common predecessor,
N,. If G is an AND gate (OR gate), then both predecessors of G are OR gates (AND
gates). There exist an assignment m € A, that |7| = +2%")~= > 0 and z;|, = 1. Since
Yo(m) = 1, we have 1 = g(7) # I:(7) = 0. ' |
Let G be a gate in depth daas + 2a which computes function g with g(Z) = I’(Z)
over Aap (2 < a < b(n)and 0 < B < 2Y™-%). From Lemma 5, there exists exactly
one path from N, to G that consists of N,, and including G exactly one AND gate and
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one OR gate. Let G’ be the gate between N, and G on such path. Thus, G’ is in depth
dmag +2a — 1, since N, is in depth daias + 2a — 2 and G is in depth daas + 20 Let
H; be the predecessor of G other than G’, and H, be the predecessor of G' other than
N,. We denote the function that H; computes by h;(Z) for 1 € {1,2}. Note that h;(%)
and hy(Z) are monotone functions over Z U {y,(z)|for v < a}, since there no path from
N, to H; for i € {1,2}.

Lemma 6 Suppose G is an OR gate and G' is an AND gate. That is, g(:i) = hy(Z) v
(ha(Z) A ya(Z)). Then, hi(Z) A ya(Z) = 0 over A, p.

Proof.  Suppose there exist an assignment m € Agg such that hy(7) = ya(7r)' = 1.
It implies that g(7) = I.(m) = 1 and ;| = 0. Note that y,(7) = 1 implies that
|7| < n — 2™~= There exists an assignment 7' € A, g that 7’ > 7, |7/| = |x| + 2b(m)—=

and z;|» = 1. Then, we have yo(7') = 0 and y,(7') = y,(x) for v # . By the
monotonicity of h;, we have hy(7') = 1. Thus, we have 1 = g(7') # I:(7') = 0. [
» By the duality of AND and OR, the following lemma is obtained.

Lemma 7 Suppose G is an AND gate and G' is an OR gate. That z's,'g(:'i:) = hy(Z) A
(h2(Z) V Ya(Z)). Then, hi(Z) V ya(Z) = 1 over A p. : |

From Lemma 6 and Lemma 7, we obtain the following lemma immediately.
Lemma 8 hy(2) = I:(Z) over A_yp, where ' € {B, 8 + 2%m=2},

Proof. Note that A,_15 = {7|7 € Aa,ﬁ A Yo(m) = 1}, and A,_; g opm-o = {7|7 €
Aap N Ya(m) = 0}. Thus, if G is an OR gate, from Lemma 6 hy(Z) = I:(Z) on Aq—1.
Otherwise, if G is an AND gate, from Lemma 7, hy(Z) = I(%) on A,_; gioin)-a- n

Lemma 9 Theré exists a path from a gate in depth d AT +1 or dpmag + 2 to the i-th
output gate with 2b(n) — 1 gates, for all 1 <1 < n.

Proof. For each 1 < i < n, start with a path with one gate in depth daqas + 2b(n) that
computes I, over Ayn)o = {0,1}", i.e., the i-th output gate. Such path can be extended
by using Lemma 5 and Lemma 8 as follow. _

For 2 < a < b(n) and 0 < B < 2¥™—2 let G be a gate in depth daias + 2a that at
the bottom of such path and computes a function g with g(Z) = I:(Z) on Aap. From
Lemma 5, there exists a gate G’ that is a predecessor of G and a successor of N,. From
Lemma 8, there exists a gate H that is a predecessor of G’ other than N,, such that H
computes a function h with h(Z) = I.(Z) over Aq—14, where 8’ € {83, 3+ 2%™~2}, Then,
we extend the path by including 2 gates, G’ and H, to it. Again, from Lemma 5, H is in
depth dypas + 2a — 2 for a > 3. Otherwise, if a = 2, i.e., in the last extension, depth of
His dpag + 1 or dpgag + 2. That is, H has a successor in depth dagas + 3 and there
exists a path from N; to H (since h(Z) is not a monotone function over z,...;z,).

In each extension, 2 gates are included in the bottom of the path. After b(n) — 1
extension, a path from a gate in depth dyaz + 1 or dyay + 2 to the i-th output gate
with 2b(n) — 1 gates are found. The gate at the bottom of such path computes a function
g that g(Z) = I$(Z) over A;p, where 0 < 8 < 2b(m)-1, ' : |

From this lemma, for each 1 <7 < n. we find a path from a gate in depth dajq7 + 1
or dpag + 2 to the i-output gate. Let P, be the path to the i-th output gate, and
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Gi,GY, .., Gyny-1 be gates on P;, such that G is at the bottom of P; whose depth is

daas +1 or dyas +2, and for 2 < k < 2b(n) — 1, Gi whose depth is dpay +k+2isa

successor of Gi_,. Thus, for 1 < a < b(n), Gb,_; is a gate that computes I;(Z) over A, g

for some 0 < B < 2%®~2 and for 1 < a < b(n) — 1, G, is a gate that is a successor of
41 and N,. C

Lemma 10 P,,..., P, are disjoint.

Proof. Suppose P; and P; are sharing a gate G. Note that P; and P; must share G at
the same position. That is, if G = G} = G7 , then | = m. Otherwise there exists a path
from N; to the i-th or j-th output gate with length longer then 2b(n) — 1.

Suppose G = G, _; = G}, for some 1 < o < b(n). Let g(#) be the function that
computed by G. Then, there exist an 1 < a < b(n) and 0 < 8,5’ < 26~ ¢(3) = I}(%)
over A g, and g(Z) = Ii(Z) over Aqp. It is obvious that B # (', since there exists an
assignment 7 € A, g that @;|, # z;|». Thus, assume without loss of generality that 3 < §'. -
For an assignment 7 € A, p that z;|, = 0 and ;| = 1. Then, we have g(7) = I’(7) = 1.
There exist an assignment 7' € A, g that 7' > 7, i.e., zj|» > z;|r = 1. Note that g is a
monotone function on x4, ... ;z, and y,(Z) for all ¥ < a. Thus, we have g(7') > g(7) = L.
However, 1 = g(7') # Ii(x') = 0. _

Suppose G = G, = G}, for some 1 < a < b(n) — 1. Since N, is a predecessor of G,
the predecessor of G other than N, is also shared by P; and P;, thatis Gb,_, = G5,_;. R

Thus, we have the following theorem and corollary..

Theorem 11 Letn+1 is a power of 2. Any depth-optimal negation-limited inverter has
size at least 2nlog(n + 1) + 3n — 4, under Assumption A.

Proof From Lemma 9 and Lemma 10, n(2b(n) — 1) = 2nlog(n + 1) — n gates are found
above the bottom NEGATION gate, N;. Below Ny, the majority function is computed by
monotone subcircuit as input of N;. There are at least 4(n — 1) gates in such a subcircuit
(see [4]). |

3 An exponential gap with the removal of one NEGA-
TION gate

In this section, we show the relationships between the number of NEGATION gates and
the size of circuits. The result of Fischer show that there is only a-small gap between
the size of a combinational circuit and that of a circuit which includes only [log(n + 1)]
NEGATION gates for any boolean function. On the other hand, Tardos [11] showed that
there is a monotone function F, whose monotone and combinational circuit complexities
have an exponential gap. Namely, the following proposition is shown.

Proposition 12 Let n + 1 be a power of two, then there exists an integer t (0 < t <
log(n + 1) — 1) such that C*(F,)/C**(F,) = exp(Q(nt/6—°W)).

Notice that in Proposition 12 we cannot determine the value of the integer ¢. Actually,
t can range over log(n + 1) different values. Recently, Tanaka and Nishino [10] construct a
function H, and show the following Proposition, Where t can range over only two different
values:.
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Proposition 13 Letn+1 be a power of two, then there exists an integert (log(n+1)-2 <
t <log(n+ 1) — 1) such that C*(H,)/C*(H,) = exp(Q(nl/G—o(l))).

In this paper we show another function K,, which is n-input two-output, and show
that the following Theorem, where ¢ can be determined uniquely.

Theorem 14 Letn+1 be a power of two, then

C(log(n+1)— 1) (Kn)

6—ol
Cloe(n+1)(K,) = exp(Q(n'/*V)).

From the theorem above, we show that there is an optimal circuit with log(n + 1)
NEGATION gates, from which the removal of one NEGATION gate must cause an ex-
ponential growth.

Tardos pointed out that there is a polynomial time computable function F, whose
monotone circuit complexity is exponential. This function the so-called Lovasz ¥ func-
tion introduced by Lovasz to study the Shannon-capacity of graphs, and is known to be
polynomial time computable. Tardos showed the following proposition.

Proposition 15 CO(F,) = 20nt/e=2)

Proposition 15 is obtained 1mmed1ately from Proposition 12. Now, we define the
n-input two-output function K, = (K}, K2) as follows: '

1 -

Ko(wiye ooy Wi 1,81, Emg2) =W D - - @ Wine1 D Frnya(T1,- .., Tmyz), and
2 1

Kiwiy o, Wine1, 815+ ooy Tmg2) = DK (Why ooy W1, T2y -+ -, Tmg2)

where n + 1 is a power of two and m = (n — 1)/2. v

Since Fy,2 is monotone, the maximum decrease d(K,) is m = (n — 1)/2. So, log(n +
1) — 1 NEGATION gates are necessary and sufficient to compute K, by the theorem of
Markov. From [3], the following lemma is easily shown.

Lemma 16  CYs+)(K,) < 20(K,) + O(nlogn).

Since Fi, 2 is known to be polynomial time computable, C(K,) is bounded by some

polynomla.l in n, so is Cl°5("+1)(K ). This lemma can be proved by a similar argument as
in [9, 3].

Lemma 17 Let r =log(n+ 1) — 1. Consider any r-circuit A which computes K,. Label
the NEGATION gates Ny, ..., N, in such a way that the input to N, does not depend on
the outputs of any of the NEGATION gates Noy1,...,N, (such a labeling exists since the
circuit is a directed acyclic graph). Let z, be the function computed at the input of N,.
Then zy2;. .. 2, 1s the binary representation of |{w1, ..., Wn—1, Fnia}]-

Proof. Since {wy,...,Wpn-1} N {Z1,...,Zms2} = 0, the values of F, ., can be changed
independently of wy, ..., wn_;. We can regard the value of Fp2(21,...,Tni2) as a new
variable wn, which is independent of wy,...,wn_3. Fnio is a non-constant monotone
function over {zi,...,Zm 2}, and A includes only r = log(n + 1) — 1 NEGATION gates,
which are necessary and sufficient to compute the m-input parity function and its comple-
ment simultaneously. Thus, we obtain the lemma by a similar argument as in the proof
of Lemma 5.1 in [3]. . |

Now, we obtain the following lemma by applying Proposition 15 to a (10g(n +1)-1)-
circuit computing K.
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Lemma 18  CUe(r+)-1)(K ) = exp(Q(nl/6—°W)).

Proof. Consider the subcircuit computmg 2y in a (log(n 4 1) — 1)-circuit computing K,.
This subcircuit is monotone and computes the majority function over {wy, ..., Wn—1, Fmt2}-
By fixing (m — 1)/2 variables in {ws,...,Wm—1} to ones and fixing the other variables in
{wy,...,Wn_1} to zeros, we can get the function Fi,i2(z1,... , Tm+2) at the output of the
subcircuit. Combining this with Proposition 15, we have

COBMADD(K,) > COFruga(®1, - - -5 Tmaz)) = 2007 = 200 270) - g

From Lemma 16 and 18, we obtain Theorem 14.
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