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Abstract

In this paper we consider decompositions of a
positive dual-minor Boolean function $f$ into $f=$
$f_{1}f_{2}\ldots\ldots.f_{k}$ , where all $f_{j}$ are positive and self-
dual. It is shown that the minimum $k$ having such
a decomposition equals the chromatic number of
a graph associated with $f$ , and the problem of
deciding whether a decomposition of size $k$ exists
is $\mathrm{c}\mathrm{o}- \mathrm{N}\mathrm{P}_{-}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{d}$, for $k\geq 2$ . We also consider the
canonical decomposition of $f$ and show that the
complexity of finding a canonical decomposition
is equivalent to deciding whether two positive
Boolean functions are mutually dual. Finally, for
the class of path functions including the class of
positive read-once functions, we show that the
sizes of minimum decompositions and minimum
canonical decompositions are equal, and present
a polynomial total time algorithm to generate all
minimal canonical decompositions.

1 Introduction

1.1 Motivation and Results

Positive self-dual Boolean functions arise in vari-
ous contexts under different names. For example,
they can be interpreted as non-dominated coter-
ies $[6, 16]$ , as strong simple games (or social choice
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functions) [19], as symmetric tight (i.e., Nash-
solvable) games of two players [13], as self-dual
antichains in clutters [4], as maximal intersect-
ing families of sets [10], or as critical bipartite
hypergraphs [2]. In all these contexts, a pos-
itive Boolean function is interpreted as a fam-
ily of sets satisfying certain conditions that de-
pend on the domains of applications. Self-dual
functions also occur in logic, lattice theory, op-
erations research (e.g maximal independent sets
[5], minimal transversals of hypergraphs [10] $)$ , ar-
tificial $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{l}\dot{\mathrm{l}}$igence (e.g., diagnosis [10]), compu-
tational learning (e.g., identification of positive
Boolean functions [5] $)$ , database theory (e.g., the
additional key problem [10] $)$ , coherent systems
of reliability theory [22], and in various areas of
Boolean function theory, such as threshold logic
[20], regular Boolean functions $[9, 21]$ and circuit
theory.

One of the real-world applications is in coterie
theory. Coteries play an important role in dis-
tributed systems, as they are used as a means to
realize mutual exclusion $[11, 16]$ . Non-dominated
$(\mathrm{N}\mathrm{D})$ coteries are important in practice, since
those are the coteries with maximal efficiency
when implemented to realize mutual exclusion.
As noted above, ND coteries correspond to pos-
itive self-dual Boolean functions $[6, 16]$ , and it
is important to know how to compose a large
ND coterie with some specified property (e.g.,
with high availability) from small ND coteries.
In other words, one of the fundamental prob-
lems in this area is how to decompose a given
positive self-dual function into smaller positive
self-dual functions, as it explains how to repre-
sent and how to construct these functions by us-
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ing simpler elements. Such a representation of
a large ND coterie by simple smaller ND coter-
ies is important in applying it to real distributed
systems as it gives a simple and efficient means
to check whether given vectors (generated in the
distributed systems) belong to the true set or not.

It is shown in [7, 16, 19] that any positive self-
dual function can be decomposed into a set of
basic majority functions (the basic majority func-
tion is the only self-dual function containing three
variables). Other types of decompositions are
also found in $[16, 22]$ . A key step in the procedure
of decomposition into basic majority functions is
how to decompose a given positive dual-minor
function $f$ into a conjunction of positive self-dual
functions:

$f=f_{1}f_{2}\cdots f_{k}$ .

In [7] we introduced canonical decompositions,
where each $f_{j}$ has certain special structure (see
Subsection 1.3), and gave an algorithm to com-
pute all minimal canonical decompositions. Al-
though the size of a canonical decomposition is
already rather small, it may not be minimum,
and the question of how to compute minimum
decompositions was left open.

In Section 2 of this paper, we show that the size
of a minimum decomposition of a positive dual-
minor function $f$ equals the chromatic number
of a graph associated with $f$ . The complexity
of $k$-decomposability is shown to be $\mathrm{c}\mathrm{o}\mathrm{N}\mathrm{P}$ -hard
if $k\geq 2$ , under the assumption that $f$ is given
by the set of minimal true vectors $\min T(f)$ . On
the other hand, if the minimal vectors of its dual
$f^{d}$ are given as input, the problem is solvable
in polynomial time if $k\leq 2$ and $\mathrm{N}\mathrm{P}$-complete if
$k\geq 4$ . In this case, the question is open if $k=3$ .
In Subsection 3.1, it is shown that the complex-
ity of finding a minimal canonical decomposition
is equivalent to the problem whether two posi-
tive functions are mutually dual or not. The lat-
ter problem is related to many other interesting
problems as discussed in e.g., $[5, 10]$ . However,
the complexity of the mutual duality problem is
still a major open problem, although Fredman
and Khachiyan [12] showed that this problem is

quasi-polynomial, and therefore it is unlikely to
be $\mathrm{N}\mathrm{P}$-hard. It is then discussed in Subsection 3.2
when prime implicants of $f$ can induce all mini-
mal canonical decompositions. Finally, in Section
4, we discuss the decomposability problem for the
class of path functions, which includes the class
of positive read-once functions, and show that
all the above problems are solvable in polyno-
mial time over this class. The path functions are
important in such applications as coteries since
they have simple representations which can be ef-
ficiently handled algorithmically. It is also shown
that, for path functions, the sizes of minimum
decompositions and minimum canonical decom-
positions are equal.

1.2 Definitions and basic properties

Positive Boolean functions

A Boolean function, or in short a function is a
mapping $f$ : $\{0,1\}^{n}-,$ $\{0,1\}$ . Let $v\in\{0,1\}^{n}$ be
a Boolean vector, or in short a vector, for which
we introduce a notation ON$(v)=\{i|v_{i}=1\}$ .
If $f(v)=1$ (resp. $0$ ), then $v$ is called a true
(resp. false) vector of $f$ . The set of all true
vectors (resp. false vectors) is denoted by $T(f)$

(resp. $F(f)$ ). For a function $f$ , the minimal ele-
ments in $T(f)$ (resp. maximal elements in $F(f)$ )
are called the minimal true vectors (resp. max-
imal false vectors) of $f$ , and the set of all mini-
mal true vectors (resp. maximal false vectors) is
denoted by $\min T(f)$ (resp. $\max F(f)$ ). A func-
tion $f$ is called positive (or monotone) if $v\leq w$

always implies $f(v)\leq f(w)$ . It is known that
a positive function $f$ is uniquely determined by
$\min T(f)$ , and that $f$ has the unique minimal dis-
junctive form (MDF) consisting of all the prime
implicants of $f$ , such that all the literals of each
prime-implicant are uncomplemented. There is
one-to-one correspondence between $\min T(f)$ and
the set of all prime implicants of $f$ , where a
vector $v$ corresponds to the term $t_{v}$ defined by
$t_{v}= \bigwedge_{i\in \mathit{0}}N(v)x_{i}$ . For example, the vector (101)
corresponds to $x_{1}x_{3}$ , and a positive function $f=$

$x_{1}x_{2}\vee x_{2}x_{3}x_{3}x_{1}$ (which is also denoted by a
simplified form $f=122331$ in this paper)
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has $\min T(f)=$ {(110), (011), (101)}. Finally, the
constant functions $f\equiv 0$ and $f\equiv 1$ are denoted
respectively $\mathrm{b}\mathrm{y}\perp \mathrm{a}\mathrm{n}\mathrm{d}$ T.

Dual-comparable functions

(ii) $f$ is dual-major if and only if $x\not\in T(f)\Rightarrow$

$\overline{x}\in\tau(f)$ .

(iii) $f$ is self-dual if and only if $x\in T(f)\Leftrightarrow\overline{x}\not\in$

$T(f)$ . $\square$

The dual of a function $f$ , denoted $f^{d}$ , is defined
by

$f^{d}(x)=\overline{f}(\overline{X})$ ,

where $\overline{f}$ and $\overline{x}$ denote the complement of $f$ and
$x$ , respectively. As is well-known, the MDF ex-
pression defining $\dot{f}^{d}$ is obtairied from that of $f$ by
exchanging ${ }$ and A (where A is aiso denoted by .
or omitted if there is no confusion), as well as the
constants $0$ and 1. Call a vector $w$ a transversal
of $f$ if ON$(w)\dot{\mathrm{s}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{S}ON(w)\cap ON(v)\neq\emptyset$ for
all $v \in\min T(f)$ . It is known that, for a positive
function $f,$ $w\in T(f^{d})$ (resp. $w \in\min T(f^{d})$ )
holds if and only if $w$ is a transversal (resp. min-
imal transversal) of $f$ . Denote $f\leq g$ if these
functions satisfy $f(x)\leq g(x)$ for all $x\in\{0,1\}^{n}$ .
It is easy to see that $(fg)^{d}=f^{d}g^{d},$ $(fg)^{d}=$

$f^{d_{}}g^{d},$ $f\leq g$ implies $f^{d}\geq g^{d}$ , and so on. A
function $f$ is called dual-minor if $f\leq f^{d}$ , dual-
major if $f\geq f^{d}$ , dual-comparable if $f\leq f^{d}$ or
$f\geq f^{d}$ , and self-dual if $f^{d}=f$ .

For example, $f=123$ is dual-minor since $f^{d}=$

$1\vee 2\vee 3$ satisfies $f\leq f^{d}$ . Similarly, the dual of
$f=1223\vee 31$ is

$f^{d}=(1\vee 2)(2\vee 3)(3\vee 1)=122331$ .
This function is $\mathrm{s}.$el.f-dual, and-. is call-ed. the $b.a$sic
majority function; it is known to be the only pos-
itive self-dual function containing three variables.
There is no positive self-dual function of two vari-
ables. However, the function $f=x$ is a positive
self-dual function of one variable. The functions
$f$ and $g$ are called mutually dual if $f^{d}=g$ .

The following $\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{m}\dot{\mathrm{a}}\mathrm{s}$ give $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\tilde{\mathrm{z}}$ ations of
dual-comparable functions (see [6, 7, 16, 20] for
the proofs). ..
Le.mma 1 Let $f$ be a fun.$c‘ tion_{:}$ Then:.
(i) $f$ is dual-minor if and only if $x\in T(f)\Rightarrow$

$\overline{x}\not\in T(f)$ .

Lemma 2 Let $f$ be a positive function. Then $f$

is dual-minor if and only if every pair of $v,$ $w\in$

$\min T(f)$ satisfies ON$(v)\cap ON(w)\neq\emptyset$ . $\square$

The contra-dual $f^{*}$ of $f$ is defined by

$f^{*}(x)=f(\overline{X})$ .

For example, the contra-dual of $f=122331$
is $f^{*}=\overline{1}\overline{2}\vee\overline{2}\overline{3}\overline{3}\overline{1}$ , where $\overline{i}$ stands for literal
$\overline{x}_{i}$ . By definition, $T(f^{*})=\{\overline{x}|x\in T(f)\}$ , and
hence $|T(f)|=|T(f^{*})|$ . It is known that the four
operations, identity, $d,$ $*\mathrm{a}\mathrm{n}\mathrm{d}$ complementation,
are idempotent, commute and satisfy the rela-
tion $\alpha\beta=\gamma$ , where $\alpha,$

$\beta,$
$\gamma$ are three different

operations: $(\overline{f})^{d}=\overline{(f^{d})}=f^{*},$ $(\overline{f})^{*}=\overline{(f^{*})}=$

$f^{d},$ $(f^{d})^{*}=(f^{*})^{d}=\overline{f}$ and so on. It is also trivial
to see that: $(fg)^{*}=f^{*}g^{*},$ $(f\vee g)^{*}=f^{*}\vee g^{*},$ $f\leq$

$g\Rightarrow f^{*}\leq g^{*}$ , and so on.

1.3 Decompositions of positive dual-
minor functions

Let $f$ be a positive dual-minor function. Then $f$

is called $k$ -decomposable if $f$ can be represented
by

$f=f_{1}f_{2}\ldots f_{k}\sim’$
.

(1)

where $f_{j},$ $j=1,2\ldots,$ $k$ , are all positive and self-
dual. An equivalent representation is

$f^{d}=f_{1}\mathrm{v}f_{2}\ldots\vee f_{k}$ .

A decomposition (1) is called minimal if none of
its components $f_{j}$ can be deleted from the ex-
pression. In [7] we have studied a special class of
decompositions called canonical decompositions.
For this, let $f$ and $g$ be functions, and define the
extension of $f$ with respect to $g$ by

$f\uparrow g=f\vee f^{d}g$ , (2)
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which may be considered as a generalization of
Shannon’s decomposition (e.g., [7, 16, 20]). This
extension has an important property that, if $g$ is
self-dual and $f$ is dual-minor, then $f\uparrow g$ is self-
dual. In particular, since every variable $x_{i}$ itself
is a positive self-dual function, $f\uparrow x_{i}$ is self-dual.
A decomposition of $f=f_{1}f_{2fk}\ldots$ is called a
canonical decomposition, if each component $f_{j}$ is
such an extension of $f$ by a single variable. Now,
let $t$ be a positive term (i.e. a conjunction of
uncomplemented literals) $t= \bigwedge_{i\in P}x_{i}$ . Then

$f \uparrow t=\bigwedge_{Pi\in}f\uparrow x_{i}$

$-$

holds. We say that $t$ induces a canonical decom-
position if $f=f\uparrow t$ . Conversely, it is easy to see
that any canonical decomposition is induced by
some term. The next lemma proved in [7] is fun-
damental in characterizing (minimal) canonical
decompositions.

Lemma 3 [7] Let $f$ be a positive dual-minor

function and let $t= \bigwedge_{i\in P}x_{i}$ be a positive term.

(i) $t$ induces a canonical decomposition of $f$ if
and only if $t\leq f\vee f^{*}$ .

(ii) $t$ induces a minimal canonical decomposi-
tion of $f$ if and only if $t\leq ff^{*}$ and
$\bigwedge_{i\in P\backslash }\{j\}x_{i}\not\leq f\vee f^{*}for$ all $j\in P.$ $\square$

2 Minimum Decompositions

2.1 Minimum decomposition and ch-
romatic number

In this subsection we show that the minimum de-
composition size of a positive dual-minor function
$f$ equals the chromatic number of a graph $G_{f}$ as-
sociated with $f$ (for definitions and terminologies
of graphs, see e.g., [3] $)$ .

Defi.nition 1 Let $f$ be a positive dual-minor
function, and let $V_{f}$ denote the set $\min T(f^{d})\backslash$

$\min T(\dot{f})$ . The graph $c_{f}=(V_{f}, E_{f})$ associ-
ated with $f$ is then defined by $(v, w)$ $\in$ $E_{f}$

$\Leftrightarrow ON(v)\cap ON(w)=\emptyset$ . Furthermore, let

$\triangle(f)$ and $\delta(f)$ denote the size of a minimum de-
composition and the size of a minimum canonical
decomposition of $f$ , respectively, and let $\chi(f)$ de-
note the chromatic number of $c_{f}(i.e.$ , the mini-
mum number of colors needed to color all vertices
in $V_{f}$ so that no adjacent vertices receive the same
color).

Theorem 1 Let $f$ be a positive dual-minor func-
tion. Then $\triangle(f)=\chi(f)$ . $\square$

2.2 Complexity of minimum decom-
posability

By Theorem 1, in order to compute $\triangle(f)$ for a
positive dual-minor function $f$ , we first construct
a graph $G_{f}$ by dualizing $f$ , and then compute
$\chi(f)$ . However, this algorithm is not of polyno-
mial time, since the number of prime implicants
in the dual may be exponentially more than that
of the original function. Furthermore, it is un-
likely to have a polynomial time algorithm what-
ever, because we show in this section that the
problem of minimum decomposition is co-NP-
hard.

We first discuss the complexity of k-deco-
mposability, assuming that $\min T(f)$ is given,
and subsequently the same question for the case
in which $\min T(f^{d})$ is given.

Problem k-DECOMPOSABILITY
Input: A positive dual-minor function $f$ , i.e.,

$\min T(f)$ .
Question: Is $fk$-decomposable ?

Theorem 2 For $k\geq 2$ , problem k-DECOMPO-
SABILITY is co-NP-hard. $\square$

It is noted here that whether or not k-DE-
COMPOSABILITY belongs to co-NP is not ob-
vious. For example, the argument in Subsection
2.1 cannot be directly used because set $V_{f}$ of
$G_{\hat{J}}$ may contain exponentially many vertices in
$| \min T(f)|$ . Furthermore, this theorem does not
say anything about the case $k=1$ . The com-
plexity of $1- \mathrm{D}\mathrm{E}\mathrm{c}\mathrm{o}\mathrm{M}\mathrm{P}\mathrm{o}\mathrm{S}\mathrm{A}\dot{\mathrm{B}}$ ILITY, i.e., $\mathrm{p}\mathrm{r}\mathrm{o}\dot{\mathrm{b}}\mathrm{l}\mathrm{e}\mathrm{m}$

of deciding if $f=f^{d}$ for a positive dual-minor
function $f$ , is a major open problem $[5, 10]$ , but
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is unlikely to be $\mathrm{N}\mathrm{P}$-hard [12]. This problem is
also polynomially equivalent to the mutual dual-
ity problem, which will be discussed in Section
3.

In the second part of this section, we will dis-
cuss the complexity of k-DECOMPOSABILITY
if $\min T(f^{d})$ is given instead of $\min T(f)$ . This
discussion is relevant because the problem of
computing $\min T(f^{d})$ from $\min T(f)$ is not trivial
(e.g., [5, 10, 12]).

Theorem 3 Let $f$ be a positive dual-minor func-
tion. For $k\leq 2$ , given $\min T(f^{d})$ , deciding if $f$

is $k$ -decomposable is polynomially solvable. $\square$

Theorem 4 Let $f$ be a positive dual-minor func-
tion. For $k\geq 4$ , given $\min T(f^{d})$ , deciding if $f$

is $k$ -decomposable is $NP$-complete. $\square$

We remark that the above problem is still open
for $k=3$ .

3 Minimal Canonical Decom-
positions

In this section, we concentrate on the canonical
decompositions defined in section 1.3 and, based
on Lemma 3, clarify their structures.

3.1 Equivalence with the mutual dual-
ity problem

We first show that the complexity of checking if
a term $t$ induces a canonical decomposition or a
minimal canonical decomposition is equivalent to
the mutual duality problem, whose complexity
status is not known, but which is known to be
equivalent to many other problems including the
problem of dualizing a positive function $[5, 10]$ .

Theorem 5 The following three problems are
polynomially equivalent.

(i) (Mutual duality) Given positive functions $f$

and $g,$ $i.e.,$ $\min T(f)$ and $\min T(g)$ , decide if
$f=g^{d}$ .

(ii) (Canonical decomposition) Given a positive
dual-minor function $f(i.e., \min T(f))$ and a
positive term $t$ , decide if $t$ induces a canoni-
cal decomposition of $f$ .

(iii) (Minimal canonical decomposition) Given
a positive dual-minor function $f(i.e.,$ $\min$

$T(f))$ and a positive term $t$ , decide if $t$ in-
duces a $m\dot{i}nima_{i}l$ canonical decomposition of
$f$ . $\square$

Given a positive term $t= \bigwedge_{j\in P}x_{j}$ and a positive
dual-minor function $f$ , where $t$ induces a canon-
ical decomposition of $f$ , it may be sometimes
asked to find a term $t^{*}\geq t$ that induces a minimal
canonical decomposition. To solve this, we first
check if $\bigwedge_{j\in P\backslash \{i}$} $xj$ induces a canonical decompo-
sition of $f$ for each $\dot{i}\in P$ ; if so, let $P:=P\backslash \{i\}$ ;
otherwise, output a term $t^{*}= \bigwedge_{j\in P}x_{j}$ for the
current $P$ . By repeating this procedure until a
term is output, we can obtain a desired term.
Justification of this algorithm is similar to that
of the algorithm for finding a minimal true vector
of a positive function $[5, 23]$ . Furthermore, this
algorithm is of polynomial time if one of the prob-
lems in Theo,rem 5 can be solved in polynomial
time.

If we start from $t= \bigwedge_{j=1}^{n}x_{j}$ , this algorithm
can be used to generate one minimal canonical
decomposition of $f$ .

3.2 All minimal canonical decomposi-
tions from prime implicants

As shown in [7], any prime implicant $t$ of a pos-
itive dual-minor function $f$ induces a canonical
decomposition. However, in general, there may
be other terms (which may not be even implicants
of $f$ ) which induce minimal canonical decompo-
sitions. We consider in this subsection the con-
dition with which all minimal canonical decom-
positions are obtainable from prime implicants of
$f$ .
$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\dot{\mathrm{a}}4$ Let $f$ be a positive dual-minor func-
tion. Then the set of all $p$

,
rime implicants of $f$

precisely induces all minimal canonical decompo-
sitions of $f$ if and only if
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$\min T(f)\mathrm{n}\min T(fd)=\emptyset$

holds. $\square$

If $\min T(f)\cap\min T(f^{d})=\emptyset$ holds, $\grave{\mathrm{t}}$ he cor-
respondence between the set of all prime impli-
cants and the set of minimal canonical decom-
positions is nominally one to one and onto, as
obvious from the above proof. Here, “nominally”
means that canonical decompositions $f_{1}f_{2fk}\ldots$

and $f_{1}’f_{2}’\cdots f’k$ are considered to be different if
the inducing terms $t$ and $t’\mathrm{a}\dot{\mathrm{r}}\mathrm{e}$ different. How-
ever, it is sometimes possible that different terms
$t$ and $t’$ induce the same $\mathrm{d}\mathrm{e}\mathrm{C}\dot{\mathrm{O}}\mathrm{m}_{\mathrm{P}^{\mathrm{o}\mathrm{s}}}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ in the
sense that $f_{j}\equiv f_{j}’$ (as functions) holds for all
$j=1,2,$ $\ldots,$

$k$ . For example, a positive dual-
minor function $f=1213$ and its dual $f^{d}=$

$1\mathrm{V}23$ have $f_{2}=ff^{d}x_{2}=122331$ and
$f_{3}=f\vee f^{d}x_{3}=122331$ . Therefore, two
minimal canonical decompositions $f_{1}f_{2}$ and $f_{1}f_{3}$

induced by $t=12$ and $t’=13$ are the same, even
if they are nominally different. .

Theorem 6 Let $f$ be a positive dual-minor func-
$t$.ion. Given $\min T(f)$ , checking if the set of all
prim$eimp\dot{l}icants$ of $f$ precisely induces all mini-
mal canonical decompositions of $f$ can be done in
polynomial time. $\square$

4 Path and read-once functions

As discussed in Sections 2 and 3, minimal canoni-
cal decompositions and minimum decompositions
for general positive dual-minor functions appear
to be intractable. $\mathrm{T}\mathrm{h}\mathrm{e}\dot{\mathrm{r}}\mathrm{e}\mathrm{f}_{0}\mathrm{r}\mathrm{e}$ , it is natural to con-
sider nontrivial subclasses of positive dual-minor
functions, for which these problems are polyno-
mially solvable. As such a subclass, we introduce
the class of positive dual-minor path functions,
and show that all minimal canonical decompo-
sitions can be induced from prime implicants of
$f$ , and that the sizes of minimum canonical de-
compositions and minimum decompositions are
equal. A polynomial total time algorithm that
generates all minimal canonical decompositions
is also presented.

In this s.ection, we assume that each edge of a
graph $G=(V, E)$ has a label of a positive literal
$x_{i}$ , where the same label $x_{i}$ appears at most once.
For $e\in E$ , let $L(e)=\dot{i}$ if $x_{i}$ is the label of $e$ , and
for $S\subseteq$

.
$E$ , let $L(S)= \bigcup_{e\in S}L(.e)$ . A positive

function $f$ is called a path function if there exists
a graph $c_{f}=(V, E)(,\mathrm{w}$ith source $s\in V$ and sink
$t\in V)$ , such that

$\min T(f)=\{v|ON(v)=L(S)$ , (3)
$S\subseteq E$ is a minimal s-t path in $G_{f}$ }.

For example, $f=x_{1^{X}4}x_{2}x_{5}x_{1}x_{3^{X}}5^{\vee x}2x3x4$

is a path functi..O$\mathrm{n}$ because the graph of Figure 1
satisfies (3). It is easy to see that, given a graph

Figure 1: The graph $c_{f}$ representing a path func-
tion $f=x_{1}x_{4}x_{2}x_{5}\vee x_{1}x_{3}X_{5}x_{2^{X}34}x$.

$c_{f}$ representing a path function $f,$ $\min T(f^{d})$ can
be obtained by

$\min T(f^{d})=\{v|ON(v)=L(S)$ ,
(4)

$S\subseteq E$ is a minimal s-t cut in $G_{f}$ },

where $S\subseteq E$ is an s-t cut if removing $S$ from $c_{f}$

separate.$\mathrm{s}s$ and $t$ in the re.sulting grap. $\mathrm{h}$ . For the
function in Figure 1, we have

$\min T(f)$ $=$ {10010, 01001, 10101, 01110} (5)

$\min T(f^{d})$ $=$ {11000, 10101, 01110, 00011}. (6)

Path functions are well studied in reliability the-
ory [8].

A Boolean expression is called read-once $[1, 18]$

if it contains at most one occurrence of each vari-
able, where an expression is given by using op-
erations: conjunction, disjunction and negation.
For instance, $\overline{x}_{1}x_{2}(x_{3}\vee x_{4}\overline{x}_{5})$ is a read-once
expression. Read-once expressions are also called
$repetition-f_{Te}e-[14]$ , irredundant [15], p-formulas
[23] or Boolean trees. A function is called read-
once if it has a read-once expression. It is known
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[18] that a positive read-once function $f$ is a path
$\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\grave{\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}$ whose $c_{f}$ (with source $s\in V$ and sink
$t\in V)$ is an s-t series-parallel graph. In such a
graph, parall-.el.(resp: seri.es) edges corre.spond to
disjunctions (resp.s conjunctions). $\dot{\mathrm{F}}\mathrm{o}\mathrm{r}$ example,
$x_{1}x_{2}(x_{3}x_{4}x_{5})$ is represented by the series-
parallel graph in Figure 2, and its $\min T(f)$ given
by (3) is $\min T(f)=$ {(10000), (01100), (01011)}.

Figure 2: A read-once function $x_{1}\vee X_{2(x_{4}}X_{3^{)}}X_{5}$ .

Lemma 5 Let $f$ be a dual-minor (but not self-
dual) path function. Then the set of all prime
implicants $t$ of $f$ precisely induces all minimal
canonical decompositions of $f$ . $\square$

An algorithm to generate items is called a poly-
nomial total time algorithm if its running time is
polynomial in the size of both input and output
[17].

Theorem 7 Let $f$ be a dual-minor path func-
tion. Then there is a polynomial total time al-
gorithm for computing all minimal canonical de-
compositions $f=f_{1}f_{2}\cdots f_{k}(i.e.$ , all $\min T(f_{j})$

of such decompositions are output). $\square$

Corollary 1 Let $f$ be a positive dual-minor
read-once function. Then there is a polynomial
total time algorithm for computing all minimal
$canoni_{C}\dot{a}ldeC\dot{O}mp_{osi}tionsf=f_{1}f_{2}\cdots f_{k}$ . $\square$

Now we turn to a minimum canonical decom-
position.

Theorem 8 Let $f$ be a dual-minor path func-
tion. Then, given $\min T(f)$ , a term $t$ that in-
duces a minimum canonical decomposition of $f$

can be found in $O(n| \min\tau(f)|)$ time. Further-
more, there is a polynomial total time algorithm
for computing all $\min T(f_{j})$ of a minimum canon-
ical decomposition $f=f_{1}f_{2}\cdots f_{k}$ . $\square$

Corollary 2 Let $f$ be a positive dual-minor
read-once function. Then, given $\min T(f),$ $a$

term $t$ that induces a minimum canonical decom-
position of $f$ can be found in $O(n| \min T(f)|)$

time. Furthermore, there is a polynomial to-
tal time algorithm for computing all $\min T(f_{j})$

of a minimum canonical decomposition $f$ $=$

$f_{1}f_{2}\cdots.f_{k}$ . $\square$ . . $\sim$

Finally, we consider the relation between mini-
mum canonical decompositions and minimum de-
compositions. Recall that, for a positive dual-
minor function $f,$ $\Delta(f)$ denotes the size of a min-
imum decomposition of $f$ , and $\delta(f)$ denotes the
size of a minimum canonical decomposition of $f$ .

Lemma 6 Let $f$ be a dual-minor path function.
Then $\triangle(f)=\delta(f)$ . $\square$

Theorem 9 Let $f$ be a dual-minor path func-
tion. Then, given $\min T(f)$ , a term $t$ that induces
a minimum decomposition of $f$ can be found
in $O(n| \min\tau(f)|)$ time. Furthermore there is
a polynomial total time algorithm for comput-
ing all $\min T(f_{j})$ of a minimum decomposition
$f=f_{1}f_{2}\cdots fk$ . $\square$

Corollary 3 Let $f$ be a positive dual-minor and
read-once function. Then, given $\min T(f)$ , $a$

term $t$ that induces a minimum decomposition of
$f$ can be found in $O(n| \min T(f)|)$ time. Further-
more there is a polynomial total time algorithm
for computing all $\min T(f_{j})$ of a minimum de-
composition $f=f_{1}f_{2}\cdots f_{k}$ . $\square$

Conclusion

We addressed in this paper the problem of finding
minimum decompositions of positive dual-minor
functions, which was first studied in [7]. The
complexity of $k$-decompositions is clarified for the
cases in which $\min T(f)$ is given, and $\min T(f^{d})$ is
$\mathrm{g}\mathrm{i}\dot{\mathrm{v}}\mathrm{e}\mathrm{n}$ . In the latter case the $\mathrm{q}\mathrm{u}\mathrm{e}\dot{\mathrm{s}}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ is left open
for $k=3$ . For a canonical decomposition, which
was also introduced in [7], we have shown that the
complexity of canonical decomposability is poly-
nomially equivalent to the problem of mutual du-
ality. The complexity of the latter problem is still
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a major open problem $[5, 10]$ , but is unlikely to
be $\mathrm{N}\mathrm{P}$-hard [12]. Finally, we have shown that all
these problems are solvable in polynomial time
for the class of path functions.
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