
Learning One-Variable Pattern Languages Very
Efficiently *

THOMAS ERLEBACH, PETER ROSSMANITH, HANS STADTHERR, ANGELIKA STEGER,
Institut f\"ur Informatik, Technische $Un\dot{i}versit\ddot{a}t$ M\"unchen, D-80290 M\"unchen, Germany

$\{\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{e}\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{h}|\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}|\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}|\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}\}[egg0]\inf_{\mathrm{o}\mathrm{r}}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{k}$. tu-muenchen.de

AND THOMAS ZEUGMANN
Dept. of Informatics, Kyushu University, Fukuoka 812-81, Japan, thomas@i.kyushu-u.ac.jp

Abstract

A pattern is a finite string of constant and variable symbols. The language
generated by a pattern is the set of all strings of constant symbols which can be
obtained from the pattern by substituting non-empty strings for variables. De-
scriptive patterns are a key concept for inductive inference of pattern languages. A
pattern π is descriptive for a given sample if the sample is contained in the language
$L(\pi)$ generated by π and no other pattern having this property generates a proper
subset of the language $L(\pi)$. The best previously known algorithm for computing
descriptive one-variable patterns requires time $O(n^{4}\log n)$, where n is the size of the
sample. We present a simpler and more efficient algorithm solving the same problem
in time $O(n^{2}\log n)$. In addition, we give a parallel version of this algorithm that re-
quires time $O(\log n)$ and $O(n^{3}/\log n)$ processors on an EREW-PRAM. Previously,
no efficient parallel algorithm was known for this problem.

Using a modified version of the sequential algorithm as a subroutine, we devise
a learning algorithm for one-variable patterns whose expected total learning time is
$O(\ell^{2}\log\ell)$ provided the sample strings are drawn from the target language according
to a probability distribution with expected string length ℓ . The probability distri-
bution must be such that strings of equal length have equal probability, but can be
arbitrary otherwise. Furthermore, we show how the algorithm for descriptive one-
variable patterns can be used for learning one-variable patterns with a polynomial
number of superset queries.

1. Introduction
A pattern is a concatenation of constant symbols and variable symbols. The language

generated by a pattern is the set of all strings obtained by substituting strings of constants
for the variables of the pattern (cf. [1]). Pattern languages $\mathrm{a}\mathrm{n}\mathrm{d}\backslash$ variations thereof have been

*A full version of this paper appeared as Efficient Learning of One-Variable Pattern Languages
from Positive Data, DOI-TR-128, Dept. of Informatics, Kyushu University 33, December 12, 1997;
http: $//\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{i}$. kyushu-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{t}\mathrm{h}_{\mathrm{o}\mathrm{m}}\mathrm{a}\mathfrak{Z}/\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}.\mathrm{h}\mathrm{t}\mathrm{m}1$

数理解析研究所講究録
992巻 1997年 47-57 47

widely investigated (cf., e.g., [14, 15, $16]$) $.\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ continuous interest in pattern languages has
many reasons, among them the learnability in the limit of all pattern languages from text
(cf. [1, 2]). In particular, the pattern languages can be learned by outputting descriptive
patterns as hypotheses (cf. [1}). The resulting learning algorithm is consistent, and set-
driven. A learner is said to be set-driven provided its output depends only on the range of
its input (cf., e.g., [17, 19]). In general, consisteircy and set-drivenness considerably limit
the learning capabilities (cf., e.g., [12, 19]). But there is also a major disadvantage, since
no efficient algorithm computing descriptive patterns is known. Finding a descriptive
pattern of maximum possible length is NP-complete. Thus, it is unlikely that there is a
polynomial-time algorithm computing descriptive patterns.

Hence, it is natural to ask whether efficient pattern language learners can benefit from
the concept of descriptive patterns. Several authors looked at special cases, e.g., regular
patterns, non-cross patterns, and unions of at most k regular pattern languages (k a
priori fixed). In all these cases, descriptive patterns are polynomial-time computable
(cf., e.g., [16]). A further restriction is obtained by a priori bounding the number k of
different variables occurring in a pattern (k-variable patterns). It is still open if there
are polynomial-time algorithms computing descriptive k-variable patterns for any fixed
$k>1$ (cf. [8, 10]). Lange and Wiehagen [11] provided a learner LWA that is allowed to
output $\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\dot{\mathrm{i}}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}$ guesses. Their algorithm achieves polynomial update time. It is still
set-driven (cf. [18]), and even iterative, thus beating Angluin’s [1] algorithm with respect
to its space complexity. But what can be said concerning the overall time needed until
convergence, i.e., the so-called total learning time? Generally, the total learning time is
unbounded in the worst case. Thus, we study the expected total learning time. For the
LWA , the expected total learning time is exponential in the number of different variables
occurring in the target pattern (cf. [18]).

In the present paper we consider the special case of 1-variable patterns. For that case,
Angluin [1] provided an algorithm for computing descriptive patterns having running
time $O(n^{4}\log n)$ for inputs of size n . She hoped further study would provide insight for
a uniform improvement. We present such an improvement, i.e., an algorithm computing
descriptive 1-variable patterns in $O(n^{2}\log n)$ steps. Moreover, our algorithm can be par-
allelized $\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t},\mathrm{l}\mathrm{y},.\mathrm{u}\mathrm{S}$.ing $O(\log n)$ time and $O(n^{3}/\log n)$ processors on an EREW-PRAM.
Previously, no efficient parallel algorithm for learning 1-variable pattern languages was
known. \cdot

Additionally, we present a version of the sequential algorithm still learning all l-variable
pattern languages that has expected total learning time $O(\ell^{2}\log\ell)$ if the sample strings
are drawn from the target language according to a probability distribution D having
expected string length ℓ . D can be arbitrary except that strings of equal length have
equal probability.

Finally, we deal with active learning. Now the learner gains information by querying
an oracle. The algorithm for descriptive 1-variable patterns can be used for learning
1-variable patterns by asking polynomially many superset queries. A different aIgo-
rithm learning all pattern languages by asking polynomially many superset queries is
known (cf. [3]), but it queries patterns with more than one variable even if the target
pattern is a 1-variable pattern.

48

1.1. The Pattern Languages and Inductive Inference
Let IN $=\{0,1,2, \ldots\}$ be the set of all natural numbers, and let $\mathbb{N}^{+}=\mathbb{N}\backslash \{0\}$. For all

real numbers x we define $\lfloor x\rfloor$ to be the greatest integer less than or equal to x .
Let $A=\{0,1, \ldots\}$ be any finite alphabet containing at least two elements. A^{*} denotes

the free monoid over A . The set of all finite non-null strings over A is denoted by A^{+} , i.e.,
$A^{+}=A^{*}\backslash \{\epsilon \mathrm{i}\}$, where $\epsilon \mathrm{i}$ denotes the empty string. Let $X=\{x_{i}|\dot{i}\in \mathbb{N}\}$ be an infinite set
of variables with $A\cap X=\emptyset$. Patterns are strings from $(A\cup X)^{+}$, e.g., 01, $1_{X_{0^{X}0}}\mathrm{o}X_{120}Xx$

are patterns. The length of a string $s\in A^{*}$ and of a pattern π is denoted by $|s|$ and $|\pi|$,
respectively. By Pat we denote th.e set of all patterns.

Let $\pi\in Pat,$ $1\leq i\leq|\pi|$; by $\pi(i)$ we denote the i-th symbol in π , e.g., $0_{X}0111(2)=x_{0}$.
If $\pi(i)\in A$, then $\pi(i)$ is called a constant; otherwise $\pi(i)\in X$, i.e., $\pi(i)$ is a variable. We
use $s(\dot{i}),\dot{i}=1,$

$\ldots,$
$|s|$, to denote the i-th symbol in $s\in A^{+}$. By $\#\mathrm{v}\mathrm{a}\mathrm{r}(\pi)$ we denote the

number of different variables occurring in π , and $\#_{x_{i}}(\pi)$ denotes the number of occurrences
of variable x_{i} in π . If $\#\mathrm{v}\mathrm{a}\mathrm{r}(\pi)=k$, then π is a k-variable pattern. By Pat_{k} we denote the
set of all k-variable patterns. In the case $k=1$ we denote the variable occurring by x .

Let $\pi\in Pat_{k}$, and $u_{0},$
$\ldots,$

$u_{k-1}\in A^{+}$. $\pi[u_{0}/x_{0}, \ldots, u_{k-1}/x_{k-1}]$ denotes the string $s\in$

A^{+} obtained by substituting u_{j} for each occurrence of x_{j} in π . For all $\pi\in Pat_{k}$ we define
the language generated by pattern π by $L(\pi)=\{\pi[u_{0}/x_{0}, \ldots, u_{k-1}/x_{k-1}]|u_{0},$

$\ldots,$ $u_{k-1}\in$

$A^{+}\}^{1}$. By PAT_{k} we denote the set of all k-variable pattern languages. $PAT= \bigcup_{k\in 1\mathrm{N}}PAT_{k}$

denotes the set of all pattern languages over A .
1-variable patterll languages are more interesting for practical purposes than general

pattern languages, since several problems are decidable or even efficiently solvable for
PAT_{1} but undecidable or $N7\mathit{2}$-complete for PAT; e.g. for general pattern languages the
word problem is NP-complete (cf. [1]) and the inclusion problem is undecidable (cf. [9]),
but both problems are decidable in linear time for 1-variable pattern languages. On the
other hand, PAT_{1} is still incomparable to the regular and context free languages. In the
remaining sections of this paper, we will be mainly concerned with Pai_{1} and PAT_{1} .

A finite set $S=\{s_{0}, s_{1}, \ldots , s_{r}\}\subseteq A^{+}$ is called a sample. A pattern π is consistent with
a sample S if $S\subseteq L(\pi)$. A (1-variable) pattern π is descriptive for S if it is consistent
with S and there is no other consistent (1-variable) pattern τ such that $L(\tau)\subset L(\pi)$.

Next, we define the relevant learning models. First, we deal with inductive inference
of formal languages from text ($\mathrm{c}\mathrm{f}.$, e.g., [13, 19]). Let L be a language; every infinite
sequence $t=(s_{j})_{j\in \mathrm{J}\mathrm{N}}$ of strings with range$(t)=$ { $s_{j}|j\in$ IN} $=L$ is said to be a text
for L . By Text (L) we denote the set of all texts for L . Let t be a text, and $n\in \mathbb{N}$. We set
$t_{n}=s_{0},$ $.$. . , s_{n} , and call t_{n} the initial segment of t of length $n+1$. By t_{n}^{+} we denote the
range of t_{7l} . We define an inductive inference machine (abbr. IIM) to be an algorithmic
device that takes as its input larger and larger initial segments of a text $t,$ outp.uts on
every input a pattern as hypothesis, and then requests the next input (cf. [6]).

DEFINITION 1. PAT is called learnable in the limit from text iff there is an $IIM\mathbb{J}I$

such that for every $L\in PAT$ and every $t\in Text(L)$,
(1) for all $n\in \mathbb{N},$ $M(t_{n})$ is defined,
(2) there is a pattern $\pi\in Pat$ such that $L(\pi)=L$ and for almost all $n\in \mathbb{N},$ $M(t_{n})=\pi$.
1We study so-called non-erasing substitutions. It is also possible to consider erasing substitutions

where variables may be replaced by empty strings, leading to a different class of languages (cf. [4]).

49

The learnability of the 1-variable pattern languages is defined analogously by replacing
PAT and Pat by PAT_{1} and Pat_{1} , respectively.

When dealing with set-driven learners, it is often technically advantageous to describe
them in dependence of the relevant set t_{n}^{+} , i.e., a sample, obtained as input. A learner is
said to be set-driven iff its output depends only on the range of its input (cf., e.g., [17, 19]).
Let $S=\{S_{0,1,\ldots,r}SS\}$; we set $n= \sum_{j=0}^{r}|s_{j}|$, and refer to n as the size of sample S .

PAT and PAT_{1} constitute an indexable class \mathcal{L} of uniformly recursive languages, i.e.,
there are an effective enumeration $(L_{j})_{j\in 1}\mathrm{N}$ of \mathcal{L} and a recursive function f such that for
all $j\in$ IN and all $s\in A^{*}$ we have $f(j, s)=1$ if $s\in L_{j}$, and $f(j, s)=0$ otherwise. We
refer to indexable classes of uniformly recursive languages as indexable classes for short.

Except in Section 3, where we use the PRAM-model, we assume the same model of
computation and representation of patterns in [1]. Next we define the update time and
the total leaming time. Let M be any IIM. Then, for every $L\in PAT$ and $t\in Text(L)$, let
Conv $(\mathbb{J}/I, t)=\mathrm{t}\mathrm{h}\mathrm{e}$ least number m such that for all $n\geq m,$ $\mathbb{J}I(t_{n})=\mathbb{J}I(t_{r}|l)$ denote the
stage of convergence of M on t . By $T_{M}(t_{n})$ we denote the time to compute $M(t_{n})$, and
we refer to $T_{M}(t_{n})$ as the update time of M . Furthermore, the total learning time taken
by the IIM $\mathbb{J}I$ on successive input t is defined as $TT(M, t)= \sum_{n=0^{v}}^{C_{\mathit{0}}n}(M,t)T_{M}(t_{n})$.

Finally, we define learning via queries. The objects to be learned are the elements
of an indexable class \mathcal{L} . We assume an indexable class \mathcal{H} as well as a fixed effective
enumeration $(h_{j})_{j\in 1}\mathrm{N}$ of it as hypothesis space for \mathcal{L} . A hypothesis h describes a target
language L iff $L=h$. The source of information about the target L are queries to an
oracle. We distinguish membership, equivalence, subset, superset, and disjointness queries
(cf. [3]). Input to a membership query is a string s , and the output is yes if $s\in L$ and no

otherwise. For the other queries, the input is an index j and the output is yes if $L=h_{j}$

(equivalence query), $l\iota_{j}\subseteq L$ (subset query), $L\subseteq h_{j}$ (superset query), and $L\cap lt_{j}=\emptyset$

(disjointness query), and no otherwise. If the reply is no, a counterexample is returned,
too, i.e., a string $s\in L\triangle h_{j}$ (the symmetric difference of L and h_{j}), $s\in h_{j}\backslash L,$ $s\in L\backslash h_{j}$,
and $s\in L\cap h_{j}$, respectively. We always assume that all queries are answered truthfully.

DEFINITION 2 (cf. [3]). Let \mathcal{L} be any indexable class and let \mathcal{H} be a hypothesis space
for it. A learning algorithm exactly identifies a target $L\in \mathcal{L}$ with respect to \mathcal{H} with access
to a certain type of queries if it always halts and outputs an index j such that $L=f\iota_{j}$.

Note that the learner is allowed only one guess which must be correct. The complexity
of a query learner is measured by the number of queries to be asked in the worst-case.

2. An Improved Sequential Algorithm

We present an algorithm computing a descriptive pattern $\pi\in Pat_{1}$ for a sample
$S=\{s_{0,1}s, \ldots , s_{r-1}\}\subseteq A^{+}$ as input. Without loss of generality, we assume that s_{0}

is the shortest string in S . Our algorithm runs in time $O(n|s_{0}|\log|s_{0}|)$ and is sim-
pler and much faster than Angluin’s [1] algorithm, which needs time $O(n^{2}|s_{0}|^{2}\log|s_{0}|)$.
Angluin’s [1] algorithm computes explicitly a representation of the set of all consistent

.
a

LEMMA 1 (Angluin [1], Lemma 3.9). Let $\tau\in Pat$, and let $\pi\in Pat_{1}$. Then $L(\tau)\subseteq L(\pi)$

if and only if τ can be obtained from π by substituting a pattern $\rho\in Pai$ for x .

50

For a pattern π to be consistent with S , there must be strings $\alpha_{0},$
$\ldots,$

$\alpha_{r-1}\in A^{+}$ such
that s_{i} can be obtained from π by substituting α_{i} for x , for all $0\leq\dot{i}\leq r-1$. Given a
consistent pattern π , the set $\{\alpha_{0}, \ldots, \alpha_{r-1}\}$ is denoted by $\alpha(S, \pi)$. Furthermore, a sample
S is called prefix-free if $|S|>1$ and no string in S is a prefix of all other strings in S .

LEMMA 2. If S is a prefix-free sample then there exists a descriptive pattern $\pi\in Pat_{1}$

for S such that at least two strings in $\alpha(S,p)$ start with a different symbol.
Let Cons $(s)=\{\pi|\pi\in Pai_{1}, S\subseteq L(\pi), \exists i,j[i\neq j, \alpha_{i}, \alpha_{j}$. $\in\alpha(S, \pi), \alpha_{i}(1)\neq\alpha_{j}(1)]\}$.
$c_{ons}(s)$ is a subset of all consistent patterns for S , and $ConS(s)=\emptyset$ if S is not prefix-free.

LEMMA 3. Let S be any prefix-free sample. Then $ConS(s)\neq\emptyset$, and every pattern
$\pi\in ConS(s)$ of maximum length is descriptive for S .

Next, we explaiu how to handle non-prefix-free samples. The algorithm checks whether
the input sample consists of a single string s . If this happens, it outputs s and terminates.
Otherwise, it tests whether s_{0} is a prefix of all other strings $s_{1},$ $\ldots,$ s_{r-1} . If it is, it outputs
$ux\in Pat_{1}$, where u is the prefix of s_{0} of length $|s_{0}|-1$, and terminates. Clearly, $S\subseteq L(ux)$.
Suppose there is a pattern τ such that $S\subseteq L(\tau)$, and $L(\tau)\subset L(ux)$. Then Lemma 1
applies, i.e., there is a ρ such that $\tau=ux[\rho/x]$. But this implies $\rho=x$, since otherwise
$|\tau|>|s_{0}|$, and thus, $S\not\leqq L(\tau)$. Consequently, ux is descriptive.

Otherwise, $|S|\geq 2$ and s_{0} is not a prefix of all other strings in S . Hence, S is prefix-free
and Lemma 3 applies. Thus, it suffices to find and output a longest pattern in Cons (S) .

Let $k,$ $l\in \mathbb{N},$ $k>0$; we call patterns π with $\#_{x}(\pi)=k$ and l occurrences of constants
(k, l) -patterns. Every pattern $\pi\in ConS(s)$ satisfies $|\pi|\leq|s_{0}|$. Thus, there can only
be a (k, l) -pattern in $c_{ons}(S)$ if there is an $m_{0}\in \mathbb{N}^{+}$ satisfying $|s_{0}|=km_{0}+l$. Here
$7’\iota_{0}$ refers to the length of the string substituted for the occurrences of x in the relevant
(k, l) -pattern to obtain s_{0} . Therefore, there are at most $\lfloor|s_{0}|/k\rfloor$ possible values of l for
a fixed value of k . Hence, the number of possible (k, l) -pairs for which (k, l) -patterns in
$C_{onS}(S)$ can exist is bounded by $\sum_{k=1}^{|_{S}|}0\lfloor^{s_{0}}\mathrm{n}_{k}\rfloor=O(|S_{0}|\cdot\log|s_{0}|)$.

The algorithm considers all possible (k, l) -pairs in turn. We describe the algorithm
for one specific (k, l) -pair. If there is a (k, l) -pattern $\pi\in Cons(s)$, the lengths m_{i} of
$\alpha_{i}\in\alpha(S, \pi)$ must satisfy $m_{i}=(|s_{i}|-l)/k$. α_{i} is the substring of s_{i} of length m_{i} starting
at the first position where the input strings differ. If $(|s_{i}|-l)/k\not\in \mathbb{N}$ for some i , then there
is no consistent (k, l) -pattern and no further computation is performed for this (k, l)-pair.
The following lemma shows that the (k, l)-pattern in $ConS(s)$ is unique, if it exists at all.

LEMMA 4. Let $S=\{s_{0}, \ldots , s_{r-1}\}$ be any prefix-free sample. For every given (k, l) -pair,
there is at most one (k, l) -pattern in $ConS(s)$.

The proof of Lemma 4 directly yields Algorithm 1 below. It either returns the unique
(k, l)-pattern $\pi\in ConS(s)$ or NIL. We assume a subprocedure taking as input a sample S ,
and returning the longest common prefix u .

Algorithm 1. On input $(k, l),$ $S=\{s\mathrm{o}, \ldots, s_{r}-1\}$, and u do the following:
$\piarrow u;barrow 0;carrow|u|$;

while $b+c<k+l$ and $b\leq k$ and $c\leq l$ do
if so $(bm_{0}+c+1)=s_{i}(bm_{i}+c+1)$ for all $1\leq\dot{i}\leq r-1$

then $\piarrow\pi s_{0}(bm0+c+1);carrow c+1$ else $\piarrow\pi x;barrow b+1$ fi
$\mathrm{o}\mathrm{d}$;

51

if $b=k$ and $c=l$ and $S\subseteq L(\pi)$ then return π else return NIL fi

Note that minor modifications of Algorithm 1 perform the consistency test $S\subseteq L(\pi)$

even while π is constructed. Putting Lemma 4 and the fact that.there are $O(|s_{0}|\cdot\log|s_{0}|)$

many possible (k, l)-pairs $\mathrm{t}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{t}\backslash \mathrm{h}\mathrm{e}\mathrm{r}$, we directly obtain:
LEMMA 5. $|c_{on}s(s)|=O(|S_{0}|\log|s_{0}|)$ for any prefix-free sample $S=\{s_{0}, \ldots, S_{r}-1\}$.

UsingAl-gorithm 1 as a subroutine, Algorithm 2 below for finding a descriptive pattern
for a prefix-free sample S follows the strategy exemplified above. Thus, it simply computes
all patterns in $ConS(s)$ and outputs one with maximum length. For inputs of size n

the overall complexity of the algorithm is $O(n|s_{0}|\log|s_{0}|)=O(n^{2}\log n)$, since at most
$O(|s_{0}|\log|s_{0}|)$ many tests must be performed, which have time compIexity $O(n)$ each.

Algorithm 2. On input $S=\{s_{0,\ldots,r-1}s\}$ do the following:

$Parrow\emptyset$; for $k=1,$ \ldots , $|s_{0}|$ and $m_{0}=1,$ $\ldots,$
$\lfloor\frac{|s_{0}|}{k}\rfloor$ do

if there is a $(k, |s_{0}|-km\mathrm{o})$-pattern $\pi\in ConS(s)$ then $Parrow P\cup\{\pi\}$ fi $\mathrm{o}\mathrm{d}$;
Output a maximum-length pattern $\pi\in P$.

Note that the number of (k, l) -pairs to be processed is often smaller than $O(|s_{0}|\log|s_{0}|)$,
since the condition $(|s_{i}|-l)/k\in$ IN for all \dot{i} restricts the possible values of k if not all
strings are of equal length. It is also advantageous to process the (k, l) -pairs in order
of non-increasing $k+l$. Then the algorithm can terminate as soon as it finds the first
consistent pattern. However, the worst-case complexity is not improved, if the descriptive
pattern is x .

Finally, we summarize the main result obtained by the following theorem.
THEOREM 1. Using Algorithm 2 as a subroutine, PAT_{1} can be learned in the limit by

a set-driven and consistent algorithm having update time $O(n^{2}\log n)$ on input samples of
$S\dot{i\mathcal{Z}}en$.

3. An Efficient Parallel Algorithm

Whereas the RAM model has been generally accepted as the most suitable model
for developing and analyzing sequential algorithms, such a consensus has not yet been
reached in the area of parallel computing. The PRAM model introduced in [5], is usually
considered an acceptable compromise. A PRAM consists of a number of processors, each
of which has its own local memory and can execute its local program, and all of which can
communicate by exchanging data through a shared memory. Variants of the PRAM model
differ in the constraints on simultaneous accesses to the same memory location by different
processors. The CREW-PRAM allows concurrent read accesses but no concurrent write
accesses. For ease of presentation, we describe our algorithm for the CREW-PRAM
model. The algorithm can be m.odified to run on an $\mathrm{E}\mathrm{R}\mathrm{E}\mathrm{t}\prime \mathrm{V}-,\mathrm{P}\mathrm{R}.\mathrm{A}\mathrm{M},$

$\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{v}\mathrm{e}.\mathrm{r},\tau \mathrm{b},\mathrm{y}$ the use
of standard techniques.

No parallel algorithm for computing descriptive 1-variable patterns has been known
previously. Algorithm 2 can be efficiently paralielized by using well-known techniques
including prefix-sums, tree-contraction, and list-ranking as subroutines (cf. [7]). A parallel
algorithm can handle non-prefix-free samples S in the same way as Algorithm 2. Checking
S to be singleton or s_{0} to be a prefix of all other strings requires time $O(\log n)$ using

52

$O(n/\log n)$ processors. Thus, we may assume that the input sample $S–\{s_{0}, \ldots;s_{r-1}\}$

is prefix-free. Additionally, we assume the prefix-test has returned the first position d

where the input strings differ and an index $t,$ $1\leq t\leq r-1$, such that $s_{0}(d)\neq s_{t}(d)$.
A parallel algorithm can handle all $o(|S_{0}|\log|s_{0}|)$ possible (k, l) -pairs in parallel. For

each (k, l) -pair, our algorithm computes a unique candidate π for the (k, l) -pattern in
$ConS(s)$, if it exists, and checks whether $S\subseteq L(\pi)$. Again, it suffices to output any
obtained pattern having maximum length. Next, we show how to efficiently parallelize
these two steps.

For a given $(k, l)- \mathrm{p}\dot{\Re}\mathrm{r}$, the algorithm uses oIlly the strings s_{0} and s_{t} for calculating
the unique candidate π for the (k, l)-pattern in $ConS(s)$. This reduces the processor
requirements, and a modification of Lemma 4 shows the candidate pattern to remain
unique.

Position j_{t} in s_{t} is said to be b-corresponding to position j_{0} in s_{0} if $j_{t}=j_{0}+b(m_{t}-$

$m_{0}),$ $0\leq b\leq k$. The meaning of b-corresponding positions is as follows. Suppose there is
a consistent (k, l) -pattern π for $\{s_{0}, s_{t}\}$ such that position j_{0} in s_{0} corresponds to $\pi(\dot{i})\in A$

for some $i,$ $1\leq\dot{i}\leq|\pi|$, and that b occurrences of x are to the left of $\pi(i)$. Then $\pi(i)$

corresponds to position $j_{t}=j_{0}+b(m_{t0}-m)$ in s_{t} .
For computing the candidate pattern from s_{0} and s_{t} , the algorithm calculates the

entries of an array $\mathrm{E}\mathrm{Q}\mathrm{U}\mathrm{A}\mathrm{L}[j, b]$ of Boolean values first, where j ranges from 1 to $|s_{0}|$

and b from 0 to k . $\mathrm{E}\mathrm{Q}\mathrm{U}\mathrm{A}\mathrm{L}[j, b]$ is true iff the symbol in position j in s_{0} is the same as
the symbol in its b-corresponding position in s_{t} . Thus, the array is defined as follows:
$\mathrm{E}\mathrm{Q}\mathrm{U}\mathrm{A}\mathrm{L}[j, b]=true$ iff $s_{0}(j)=s_{t}(j+b(m_{\iota}-m0))$. The array EQUAL has $O(k|s0|)$ entries
each of which can be calculated in constant time. Thus, using $O(k|S0|/\log n)$ processors,
EQUAL can be computed in time $O(\log n)$. Moreover, a directed graph G , which is easily
shown to be a forest of binary in-trees, can be built from EQUAL, and the candidate
pattern can be calculated from G using tree-contraction, prefix-sums and list-ranking.
Thus, we can prove:

LEMMA 6. Let $S=\{s_{0}, \ldots , s_{r-1}\}$ be a sample, and n its size. Given the array
EQUAL, tfie unique candidate π for the (k, l) -pattern in $ConS(s)$, or NIL, if no such pat-
tern exists, can be computed on an EREW-PRAM in time $O(\log n)$ using $O(k|s_{0}|/\log n)$

processors.
Now, the algorithm has either discovered that no (k, l) -pattern exists, or it has obtained

a $\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{e}.(k, l)$-pattern π . In the latter case, it has to test whether π is consistent with
S .

LEMMA 7. Given a candidate pattern π , a parallel algorithm can check whether π is
consistent wi,th a sample S of size n in time $O.(\log n)$ with $O(n/\log n)$ processors on a
CREW-PRAM.

Putting it all together, we obtain the following theorem.
THEOREM 2. There exists a parallel algorithm that computes descriptive 1-variable pat-

terns in time $O(\log n)$ using $O(|s_{0}| \max\{|S0|2,\mathrm{l}\mathrm{o}n\mathrm{g}|s_{0}|\}/\log n)=o(n^{3}/\log n)$ processors
on a CREW-PRAM for samples $S=\{s_{0}, \ldots, s_{r-1}\}$ of size n .

Note that the product of the time and the number of processors of our algorithm
is the same as the time spent by the improved sequential algorithm above whenever
$|s_{0}|^{2}=O(n\log|S_{0}|)$.

53

4. Analyzing the Expected Total Learning Time

In this section, we deal with the total learning time of our sequential learner. Let π be
the target pattern. The total learning time of any algorithm trying to infer π is unbounded
in the worst case, since there are infinitely many strings in $L(\pi)$ that can mislead it. How-
ever, in the best case two examples, i.e., $\pi[0/x]$ and $\pi[1/x]$, always suffice for a learner
outputting descriptive patterns as guesses. Hence, we assume that the strings presented
to the algorithm are drawn from $L(\pi)$ according to a certain probability distribution and
compute the expected total learning time of our algorithm. The probability distribution
must satisfy two criteria: any two strings in $L(\pi)$ of equal length must have equal prob-
ability, and the expected string length must be finite. We refer to such distributions as
proper probability distributions.

We design a learning algorithm inferring a pattern $\pi\in Pai_{1}$ with expected total learn-
ing time $O(\ell^{2}\log\ell)$, where ℓ is the expected length of a string drawn from $L(\pi)$. It is
advantageous not to calculate a descriptive pattern each time a new string is read. In-
stead, our learning Algorithm 1LA reads a certain number of strings before it starts to
perform any computations at all. It waits until the length of a sample string is smaller
than the number of sample strings read so far and until at least two different sample
strings have been read. During these first two phases, it outputs s_{1} , the first sample
string, as its hypothesis if all sample strings read so far are the same, and x otherwise.
If π is a constant pattern, i.e., $|L(\pi)|=1$, the correct hypothesis is always output and
the algorithm never reaches the third phase. Otherwise, the algorithm uses a modified
version of Algorithm 2 to calculate a set $P’$ of candidate patterns when it enters Phase 3.
More precisely, it does not calculate the whole set $P’$ at once. Instead, it uses the function
first-cand once to obtain a longest pattern in $P’$, and the function next-cand repeatedly
to obtain the remaining patterns of $P’$ in order of non-increasing length.

The pattern τ obtained from calling first-cand is used as the current candidate pat-
tern η^{-} . Each new sample string s is then compared to τ . If $s\in L(\tau),$ τ is output.
Otherwise, next-cand is called to obtain a new candidate pattern $\tau’$. Now, $\tau’$ is the cur-
rent candidate pattern and output, no matter whether or not $s\in L(\tau’)$. If the longest
common prefix of all sample strings including the new string s is shorter than that of all
sample strings excluding s , however, first-cand is called again and a new list of candidate
patterns is considered. Thus, Algorithm 1LA may output inconsistent hypotheses.

Algorithm 1LA is shown in Figure 1. Let $S=\{s, s’\}$, and let $P’=P’(S)$ be defined
as follows. If $s=vc$ for some $c\in A$ and $s’=sw$ for some string w , then $P’=\{vx\}$.
Otherwise, denote by u the longest common prefix of s and $s’$, and let $P’$ be the set
of all patterns $\tau=u\rho$ that can generate s and $s’$ if we allow substitutions that replace
different occurrences of x by different strings of the same length. The algorithm from
Section 2 yields exactly $P’$ if we omit the consistency check. Hence, $P’\supseteq Cons(S)$, where
Cons (S) is as defined in Section 2. Note that $P’$ necessarily contains the pattern π if
s and $s’$ are in $L(\pi)$ and if the longest common prefix of s and $s’$ is the same as the
longest constant prefix of π . Furthermore, $P’$ contains at most $O(|s|\log|s|)$ patterns.
Assuming $P’=\{\pi_{1}, \ldots, \pi_{t}\},$ $|\pi_{i}|\geq|\pi_{i+1}|$ for $1\leq i<t,$ $first_{-}cand(S, s’)$ returns π_{1} , and
$next_{-}Cand(s, S’, \pi_{i})$ returns π_{i+1} . Since we omit the consistency checks, a call to first-cand
and all subsequent calls to next-cand until either the correct pattern is found or the prefix
changes can be performed in time $O(|s|^{2}\log|s|)$.

54

$\perp \mathrm{n}\mathrm{e}$ Iollowlng rneorem summarlzes tne $\mathrm{m}\mathrm{a}\ln$ result $\mathrm{o}\mathrm{I}$ tlus $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}_{\mathrm{l}\mathrm{o}\mathrm{n}}$. $1^{\backslash }i$ ote that $\mathrm{l}\mathrm{t}\mathrm{s}$ proof
requires a series of lemmata which had to be omitted here because of the page limit.

THEOREM 3. Let π be a 1-variable pattern. Algorithm lLA correctly infers π from text
in the limit. Furthermore, if the sample strings are drawn from $L(\pi)$ accordin.q to a proper
probability distribution with expected string length ℓ then Algorithm lLA correctly infers
π from random text with probability 1, and the expected total learning time is $O(\ell^{2}\log\ell)$.

5. Learning with Superset Queries

Angluin [3] showed that PAT is not learnable with polynomially many queries if only
equivalence, membership, and subset queries are allowed provided range $(\mathcal{H})=PAT$. This
result may be easily extended to PAT_{1} . However, positive results are also known. First,
PAT is exactly learnable using polynomially many disjointness queries with respect to the
hypothesis space $PAT\cup FIN,$ where FIN is the set of all finite languages (cf. [11]). The
proof technique easily extends to PAT_{1} , too. Second, Angluin [3] established an algorithm
exactly learning PAT with respect to PAT by asking polynomially many superset queries.
However, it requires choosing general patterns τ for asking the queries, and does definitely
not work if the $\mathrm{h}\mathrm{y}_{l}\mathrm{p}.\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{S}.\mathrm{i}\mathrm{S}$ space is PAT_{1} . Hence, the $\mathrm{f}\mathrm{o}11_{0}.\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ question arises.

Does there exist a superset query algorithm learning PAT_{1} with respect to PAT_{1} that
uses only polynomially many superset queries?

Using the results of previous sections, we are able to answer this question affirmatively.

55

Nevertheless, whereas PAT can be learned with respect to PAT by restricted superset
queries, i.e., superset queries not returning counterexamples, our query algorithm needs
counterexamples. But it does n.ot need a counterexample for every query answered nega-
tively, instead two counterexamples always suffice. First, we show that 1-variable patterns
are not learnable by asking polynomially many restricted superset queries.

THEOREM 4. Any algorithm exactly identifying all $L\in PAT_{1}$ generated by a pattern π

of length n with respect to PAT_{1} by using only restricted superset queries and restricted
equivalence queries must make at least $|A|^{n-2}\geq 2^{n-2}$ queries in the worst case.

Furthermore, we can show that learning PAT_{1} with a polynomial number of superset
queries is impossible if the algorithm may ask for a single counterexample only.

THEOREM 5. Any algorithm that exactly identifies all 1-variable pattern languages by
restricted superset queries and one unrestricted superset query needs at least $2^{(}k-1$) $/4-1$

queries in the worst case, where k is the length of the counterexample returned.

if $L(\pi)\subseteq L(\mathrm{O})$ then $\tauarrow 0$

else $iarrow 1$;
while $L(\pi)\subseteq L(C(\mathrm{o})^{\leq i_{X}})$ do $\dot{i}arrow\dot{i}+1\mathrm{o}\mathrm{d}$;
if $L(\pi)\subseteq L(C(\mathrm{O}))$ then $\tauarrow C(\mathrm{O})$

else $Sarrow\{C(\mathrm{o}), C(c(\mathrm{o})^{\leq}i_{X})\};Rarrow\dot{C}_{on}S(S)$;
do $\tauarrow\max(R);Rarrow R\backslash \{\tau\}.\mathrm{u}$ntil $L(\pi)\subseteq L.(\tau)$

fi
fi; return τ

Figure 2: Algorithm $\mathrm{Q}\mathrm{L}$. This algorithm learns a pattern π by superset queries. The
queries have the form “

$L(\pi)\subseteq L(\tau),$
” where $\tau\in Pat_{1}$ is chosen by the algorithm. If the

answer to “
$L(\pi)\subseteq L(\tau)’ j$ is no , QL can ask for a counterexample $C(\tau)$. By $w^{\leq i}$ we denote

the prefix of w of length i and by $\max(R)$ some maximum-length element of R .

The new algorithm QL works as follows (cf. Figure 2). Assume it should learn some
pattern π . QL asks whether $L(\pi)\subseteq L(\mathrm{O})=\{0\}$. This is the case iff $\pi=0$, and if the
answer is yes QL knows the right result. Otherwise, QL obtains a counterexample $C(\mathrm{O})\in$

$L(\pi)$. By asking $L(\pi)\subseteq L(C(\mathrm{o})^{\leq j}x)$ for $j=1,2,3,$ \ldots until the answer is no , QL computes
$\dot{i}=\min\{j|L(\pi)\not\subset L(C(\mathrm{o})\leq j_{X})\}$. Now we know that π starts with $C(\mathrm{O})^{\leq i}=1$, but what
about the \dot{i}-th position of π? If $|\pi|=\dot{i}-1$, then $\pi\in A^{+}$ and therefore $\pi=C(\mathrm{O})$. QL asks
$L(\pi)\subseteq L(C(\mathrm{O}))$ to determine if this is the case. If $L(\pi)\not\in L(C(\mathrm{O}))$, then $\#_{x}(\pi)\geq 1$ and
$\pi(\dot{i})\not\in A$, since this would imply that $\pi(\dot{i})=C(0)(\dot{i})$ and, thus, $L(\pi)\subseteq L(C(\mathrm{o})^{\leq i}x)$,
a contradiction. Hence, $\pi(i)=x$. Now QL uses the counterexample for the query
$L(\pi)\subseteq L(C(\mathrm{o})\leq i_{X})$ to construct a set $S=\{C(\mathrm{O}), C(c(\mathrm{O})^{\leq}i_{X})\}$. By construction, the
two counterexamples differ in their \dot{i} -th position, but coincide in their first $\dot{i}-1$ positions.

Algorithm 2 on page 6 computes $R=Cons(s)$. Since $S\subseteq L(\pi)$ and since π coincides
with S in the first $\dot{i}-1$ positions, $\pi\in R$. Again we narrowed the search for π to a
set R of candidates. Let m be the length of the shortest counterexample. in S . Then
$|R|=O(m\log m)$ by Lemma 5. Now, the only task left is to find π among all patterns
in R . We find π by removing other patterns from R by using the following lemma.

LEMMA .8. Let $S\subseteq A^{+}$ and $\pi,$ $\tau\in Cons(S),$ $|\pi|\leq|\tau|$. If $L(\pi)\subseteq L(\tau)$ then $\pi=\tau$.

56

QL tests $L(\pi)\subseteq L(\tau)$ for a maximum length pattern $\tau\in R$ and removes τ from
$R_{\text{ノ}}$ if $L(\pi)\not\subset L(\tau)$. Iterating this process finally yields the longest pattern τ for which
$L(\pi)\subseteq L(\tau)$. Lemma 8 guarantees $\tau=\pi$. Thus, we have:

THEOREM 6. Algorithm QL learns PAT_{1} with respect to PAT_{1} by asking only superset
queries. The query complexity of QL is $O(|\pi|+m\log m)$ many restricted superset queries
plus $tujO$ superset queries (these are the first two queries answered no) for every language
$L(\pi)\in PAT_{1}$, where m is the length of the shortest counterexample returned.

References
[1] D. Angluin. Finding patterns common to a set of strings. J. Comp. Syst. Sci., 21:46-

62, 1980.
[2] D. Angluin. Inductive inference of formal languages from positive data. Inf. Control,

45:117-135, 1980.
[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
[4] G. Fil\’e. The relation of two patterns with comparable languages. In Proc. $\mathit{5}tl\iota$ Ann.

Symp. Theoretical Aspects of Computer Science, LNCS 294, pp. 184-192, Berlin, 1988.
[5] S. Fortune and.I. Wyllie. Parallelism in random access machines. In Proc. 10th Ann. ACM

Symp. on Theory of Computing; pp. $114-118_{j}$ New $\mathrm{Y}\mathrm{o}\mathrm{r}\mathrm{k}_{i}$ 1978. ACM, ACM Press.
[6] E. M. Gold. Language identification in the limit. Inf. Control, 10:447-474, 1967.
[7] .I. .I\’a.I\’a. An introduction to parallel algorithms. Addison-Wesley, Reading, Mass., 1992.
[8] K. P. Jantke.. Polynomial time inference of general pattern languages. In Proc. Symp.

Theoretical Aspects of Computer Science, LNCS 166, pp. $314-325_{j}$ Berlin, 1984.
[9] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Inclusion is undecidable for pattern languages.

In Proc. 20th Int. Colloquium on Automata, Languages and Programming, LNCS 700, pp.
301-312, Berlin, 1993.

[10] K.-I. Ko and C.-M. Hua. A note on the two-variable pattern-finding problem. J. Comp.
Syst. Sci., 34:75-86, 1987.

[11] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern languages. New
Generation Computing, 8:361-370, 1991.

[12] S. Lange and T. Zeugmann. Set-driven and rearrangement-independent learning of recursive
languages. Mathematical Systems Theory, 29:599-634, I996.

[13] D. $\mathrm{O}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}\mathrm{n}_{J}$. M. Stob and S. Weinstein. Systems that learn, An introduction to learning
theory for cognitive and computer scientists. MIT Press, Cambridge, Mass., 1986

[14] A. Salomaa. Patterns. EATCS Bulletin 54:46–62, 1994.
[15] A. Salomaa. Return to patterns. EATCS Bulletin 55:144–157, 1994.
[16] T. Shinohara and S. Arikawa. Pattern inference. In Algorithmic Learning for Knowledge-

Based Systems, LNAI 961_{i} pp. 259–291, Berlin, 1995.
[17] K. Wexler and P. Culicover. Formal Principles of Language $Acqui_{S}ition$. .MIT Press, Cam-

bridge, Mass., 1980.
[18] T. Zeugmann. Lange and Wiehagen’s pattern language learning algorithm: An average-

case analysis with respect to its total learning time. Annals of Mathematics and Artificial
Intelligence, 1996. to appear.

[19] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning recursive
languages. In Algorithmic Le,arning. for Knowledge-Based Systems, LN.AI 96.1, pp. 190-
258, Berlin). 1995. .

57

