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Abstract

A pattern is a finite string of constant and variable symbols. For $k\geq 1$ , we denote by $k\mu\Pi$

the set of all patterns in which each variable symbol occurs at most $k$ times. In particular, we
abbreviate $\mu\Pi$ for $k=1$ . The language $L(\pi)$ of a pattern $\pi$ is the set of all strings obtained by
substituting any non-null constant string for each variable symbol in $\pi$ . In this paper, we show
that any pattern $\pi\in k\mu \mathrm{I}\mathrm{I}$ is exactly identifiable in $O(|w|^{k}+2)$ time from one positive example
$w\in L(\pi)$ using $|w|^{k+1}+|\pi|^{k}$ membership queries. Moreover, we introduce the notion of critical
pattern, and show that the number of membership queries can be reduced to $|w|+|\pi|$ if the target
pattern $\pi\in\mu\square$ is not critical. For instance, any pattern $\pi\in\mu\Pi$ whose constant parts are of
length at most 3 is not critical. Finally, we show a nontrivial subclass of $\mu\square$ that is identified
using membership queries only, without any initial positive example.

1 Introduction

We investigate the feasibility of learning pattern languages, in the setting of exact identification
using queries [4]. A pattern is a finite string of constant and variable symbols. A pattern language,
which was introduced by Angluin [1], is the set of all strings obtained by substituting any non-null
constant string for each variable symbol in the pattern. Because of its intuitive clearness of the
expression and some desirable properties as formal languages, the learnability of pattern languages
from examples has been studied in various settings. For example, pattern language learning algorithms
have been proposed within the inductive inference model [1, 11, 20], the query learning setting [4,
11, 12], the PAC-learning model $[9, 14]$ . Additionally, the average-case behavior of pattern language
learners has been investigated [25], and applications in Genome Informatics have been proposed [5,
7, 21, 22].

Learning a concept from good examples has attracted considerable attention in recent studies [10,
11, 15, 17, 24], since it provides the best case analysis as well as the limits of learnability. Possibly, the
goodness of the examples given heavily dependents on the properties of the languages to be identified.
Informally, an example is regarded to be good if it provides a significant information for learning the
concept.

Concerning the pattern languages, a positive example gives a learner crucial information to identify
the target pattern, since the hypothesis space can be immediately restricted to a finite set $[1, 2]$ . This
is a key property for showing the class of pattern languages to be identifiable from positive examples
in the framework of inductive inference [1, 2, 20]. Without any positive example, it is hard to learn
a target pattern efficiently. Angluin [1] showed that the class of pattern languages is not identifiable
in polynomial time using both membership and equivalence queries. The trick behind the adversary
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teacher is to answer equivalence queries without returning any positive example to the learner. These
results provide evidence that good examples should be positive ones.

Marron [12] refined this line of research by studying pattern language learner that initially receives
one positive example. Any other information concerning the target must be obtained by asking
membership queries. Thus, the goodness of the initial example can be $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\Gamma \mathrm{e}.\mathrm{d}$

.
by the number of

membership queries additionally needed until successful learning. The result suggests that all but
$\mathit{8}mall$ fraction of positive examples are good to learn a $k$-variable pattern.

Our goal is a bit more ambitious in that we would like to measure the information content provided
by a positive example in dependence on its length. Intuitively, the shorter the given positive example
$is$, the more informative to the learner it is, since the hypothesis space can be restricted to be a small
set of patterns if the positive example is short. Especially, if the positive example is known to be
a shortest one, the learner has only to find the positions where variable symbols occur in the target
pattern. Based on the above observation, we propose a simple learning algorithm which consists of
the following two phases: at the first phase, keep trying to shrink the given positive example by
asking membership queries, until confirmation that the resulting example is a shortest one. In the
second phase, identify the positions at which variable symbols occur in the target pattern. The second
phase is a relatively easy task for the classes we will deal with, as we shall briefly state in Section 3.
Therefore, the main part of this paper is devoted to the first phase: how to get a shortest positive
example efficiently using membership queries, from any given (possibly very long) positive example.
The process is regarded as refining the hypothesis space by shrinking the given positive example.

While our algorithm works in general, it is not necessarily efficient (measured by the number
of membership queries needed). Thus, we introduce a syntactical measure, namely the maximum
number of occurrences of each variable symbol in the pattern, in order to isolate the polynomially
learnable subclass of pattern languages. Let $k\mu\Pi$ be the set of all patterns where each variable
symbol occurs at most $k$ times, and let $k\mu^{\mathrm{p}A\tau}$ be the corresponding class of pattern languages.
In particular, we abbreviate $\mu\Pi$ and $\mu PA\mathcal{T}$ for $k=1$ . In Section 3, we show that any pattern
$\pi_{*}\in k\mu\square$ can be identified from any initial positive example $w\in L(\pi_{*})$ using at most $|w|^{k+1}+|\pi_{*}|^{k}$

membership queries. Provided each membership query is answered in unit time and assuming the
usual RAM-model [1], the resulting learning time is $O(|w|^{k+2})$ . This result nicely contrasts the fact
that without membership queries, $k\mu \mathcal{P}A\mathcal{T}$ is not polynomial-time PAC-learnable even for the case
$k=1$ unless $\mathrm{R}\mathrm{P}=\mathrm{N}\mathrm{P}[14]$ . Note that without any initial positive example, all the classes $k\mu^{pA\mathcal{T}}$ ,
$k\geq 1$ , are not polynomial-time query-identifiable using both membership and equivalence queries,
since we can construct a malicious teacher as in [4].

Moreover, we pay special attention to subclasses of $\mu PA\mathcal{T}$ : First, reduction of the number of
membership queries. Second, we ask whether the initial positive example can be dropped. A pattern
in $\mu\square$ is called regular, since the generated language is regular $[18, 19]$ . The class $\mu\Pi$ is useful for
practical applications [5, 14, 16], since membership queries can be answered in linear time, while for
general patterns the membership problem is $\mathrm{N}\mathrm{P}$-complete [1].

In Section 4, we reduce the number of membership queries by restricting the length of the constant
parts in the pattern $\pi\in\mu\square$ . We show that any pattern in $\mu\Pi$ whose constant parts are of length at
most 3 can be exactly identified in time $O(|w|^{2})$ using exactly $|w|+|\pi_{*}|$ membership queries. This is a
natural extension of learning $sub\mathit{8}equence$ languages using membership queries as investigated in [13].

Section 5 shows a nontrivial subclass of patterns in $\mu\square$ with fixed length of constant parts, where
a learner can enumerate effectively the candidates for positive examples: That means, any pattern in
this class can be identified using membership queries only without any initial positive example. This
is also a natural extension of the good property for subsequence languages [13].

2 Preliminaries

Let $\Sigma$ be a finite alphabet, i.e., a nonempty finite set of constant $\mathit{8}ymbols$, and $X=\{x, y, \ldots\}$ be
a set of variables symbols. We assume that $\Sigma\cap X=\phi$ and $\Sigma$ contains at least two constant symbols.
For an alphabet $\triangle$ , let $\triangle^{+}$ denote the set of all nonempty strings and $\Delta^{[n]}$ the set of all strings of the
length at most $n$ for $n\geq 0$ . We denote by $w[i]$ the i-th symbol in a string $w$ , and by $w[i_{1}^{\sim}, \cdots , i_{l}^{\sim}]$ the
string which is obtained by eliminating $w[i_{1}],$ $\cdots,$ $w[i_{l}]$ from $w$ . By $w[i : j]$ , we denote the substring
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$w[i]\cdots w[j]$ of $w$ . For convenience, a
$\mathrm{p}\mathrm{r}\mathrm{I}$

efix $w[1 : i]$ is abbreviated $\mathrm{a}.\mathrm{s}w[:i]$ , and a suffix $w[i$ : $|w|\mathrm{I}$ as
$w[i$ : $]$ .

A pattern is a string in $(\Sigma\cup X)^{+}$ . The set of all patterns is denoted by $\Pi$ . For a pattern $\pi$ , the
length of $\pi$ is the number of symbols composing it, and is denoted by $|\pi|$ . We denote by $k\mu\Pi$ the
set of all patterns in which each variable symbol occurs at most $k$ times. Note that the class $k\mu\Pi$ is
different from the set of $k$ -variable patterns, in which at most $k$ kinds of variable symbols appear.

A substitution $\theta$ is a homomorphism from patterns to patterns such that $\theta(a)=a$ for each
$a\in\Sigma$ and each variable symbol is replaced with any pattern. For a pattern $\pi$ and a substitution
$\theta$ , we denote by $\theta(\pi)$ the image of $\pi$ by $\theta$ . The pattern language of $\pi$ , denoted by $L(\pi)$ , is the set
{ $w\in\Sigma^{+}|w=\theta(\pi)$ for some substitution $\theta$ }. We denote by PAT the class of all pattern languages,
and by $k\mu^{\mathrm{p}A\mathcal{T}}$ the class of all pattern languages $L(\pi)$ such that $\pi\in k\mu^{\mathrm{p}A\tau}$ . In particular, we write
$\mu\square$ and $\mu PAT$ for $k=1$ . A pattern $\pi$ in $\mu\Pi$ has been.called a re.gu.$lar$ pattern in t.h$\mathrm{e}$ literat.ure $[14, 19]$ ,
because the language $L(\pi)$ is regular.

In the sequel, let $\pi_{*}$ be a target pattern to be identified. A string $w$ is said to be a positive example
if $w\in L(\pi_{*})$ and a negative example if $w\not\in L(\pi_{*})$ .

The problem to find a consistent pattern $\pi\in\mu\square$ from given positive and negative examples
is shown to be $\mathrm{N}\mathrm{P}$-complete [14]. Thus the class $\mu PAT$ is not polynomial-time learnable in the
PAC-learning model [23], under the assumption of $\mathrm{N}\mathrm{P}\neq \mathrm{R}\mathrm{P}$.

To overcome this computational hardness, we allow learning algorithms to use membership queries
[3, 4, 6, 8]. A membership query is to propose a string $w$ . The answer is “

$ye\mathit{8}$

” if $w\in L(\pi_{*})$ , and
“no” otherwise. We denote by $Me\mathrm{m}_{L(\pi_{*})}$ the membership oracle which answers membership queries
about the language $L(\pi_{*})$ . We assume that it takes $|w|$ steps to use a membership query for $w\in\Sigma^{*}$ .
It is known that the class $\mathcal{P}A\mathcal{T}$ is not learnable using membership queries only [4]. We can show that
for any $k\geq 1$ , the class $k\mu \mathcal{P}AT$ is not learnable using membership queries only in the same way.

A learning algorithm $A$ may collect information about $\pi_{*}$ using one positive example $w\in L(\pi_{*})$

and asking to the membership oracle $M\mathrm{e}\mathrm{m}_{L(\pi_{*})}$ . The goal of $A$ is exact identification in polynomial
time, that is, $A$ must halt and output $\pi\in k\mu\Pi$ such that $L(\pi)=L(\pi_{*})$ , within the time polynomial
with respect to $|\pi_{*}|$ and $|w|$ . .

3 Learning a pattern in $k\mu\square$ from one positive example using membership queries

When trying to learn an unknown target pattern $\pi_{*}$ from examples, a positive example $w\in L(7\ulcorner_{*})$

provides crucial information to a learner, since the hypothesis space can be restricted to a finite
set { $L(\pi)\subseteq\Sigma^{+}|\theta(\pi)=w$ for some $\theta$ }. This is a key property to show that the class of pattern
languages is identifiable from positive examples in the framework of inductive inference $[1, 20]$ . The
shorter the positive example $w$ is, the smaller the hypothesis space is. Especially, if the positive
example $w$ is a shortest one, the learner has only to find the positions where variable symbols occur
in the target pattern $\pi_{*}$ , since $|\pi_{*}|=|w|$ . For example, if the target pattern $\pi_{*}$ is in $\mu\Pi$ and the
given positive example $w$ is known to be a shortest one, the learner can exactly identify $\pi_{*}$ using $|w|$

membership queries: This is because the learner can decide whether the i-th symbol of the target
pattern $\pi_{*}$ is a variable symbol or the constant symbol by asking whether $w[!i]\in L(\pi_{*})$ or not, where
$w[!i]$ is a string obtained from $w$ by replacing $w[i]$ with another $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\cdot \mathrm{a}\mathrm{n}\mathrm{t}$ symbol. In the same way,
if the target pattern $\pi_{*}$ is in $k\mu\Pi$ and $w\in L(\pi_{*})$ is a shortest positive example, $|w|^{k}$ membership
queries are enough to identify $\pi_{*}$ . Therefore, in the sequel, we concentrate our attention on how to
get a shortest positive example by using membership queries. We denote by $S\mathcal{P}S(L(\pi))$ the set of
all shortest strings in $L(\pi)$ , i.e., $SPS(L(\pi))=\{w\in L(\pi)|\forall v\in L(\pi), |v|\geq|w|\}$ . An element in
$SPS(L(\pi))$ is called a $shorte\mathit{8}t$ positive string of $L(\pi)$ . Remark that $SPS(L(\pi))=L(\pi)\cap\Sigma^{[|\pi|]}$ for
any $\pi\in\Pi$ .

First we consider how to find a shortest positive string of $L(\pi_{*})$ when one positive example
$w\in L(\pi_{*})$ is given. The basic idea is quite simple: Just ask to the membership oracle whether a
subsequence $w’$ of $w$ is in $L(\pi_{*})$ or not. If the reply is “yes”, we have the shorter positive example
$w’$ . Repeat this procedure until we have confirmed that $w’$ is a shortest one.$\cdot$ Fig. 1 illustrates this
scheme for the case $\pi_{*}\in\mu\Pi$ .

The following lemma supports the correctness of the scheme in Fig. 1. ..’
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while ( $w[i]\sim\in L(\pi_{*})$ for some $i$ ) do
$/*\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}w[i]$ is redundant, delete $\mathrm{i}\mathrm{t}*/$

$w:=w[i];\sim$

return $w$

Figure 1: The basic idea to find a shortest positive string of $L(\pi_{*})$ from one positive example $w\in L(\pi_{*})$

for $\pi_{*}\in\mu\Pi$ .

Lemma 1. For a pattern $\pi_{*}\in\mu\Pi$ and $w\in L(\pi_{*}),$ $w\in SPS(L(\pi_{*}))$ if and only if $w[i]\sim\not\in L(\pi_{*})$ for
any $i$ .

We now analyze the complexity of the procedure which implements the scheme in Fig. 1. At the
first glance, the procedure Shrink in Fig. 2, which checks whether each $w[i]\sim$ is redundant or not only
once, may work correctly. The running time of Shrink is obviously $O(|w|^{2})$ since it uses exactly $|w|$

Procedure Shrink$(w)/*shrink$ a positive example from left to right $*/$

Input: a string $w$ in $L(\pi_{*})$ .
Given: $Mem_{L(\pi_{*})}$ for $\pi_{*}\in\mu\Pi$ .
$i:=1$ ;
while $(i\leq|w|)$ do

begin
while $(Me\mathrm{m}_{L()}(\pi_{*}w[^{\sim}i])=" yes^{\prime/})$ do

$w:=w[^{\sim}i]$ ;
$i:=i+1$ ;

end
return $w$ ;

Figure 2: Procedure Shrink

membership queries.
However, unfortunately, the procedure Shrink does not always output a shortest positive string

of $L(\pi_{*})$ . We present an instance where Shrink fails to find a shortest example.

Example 1. For a pattern $\pi_{*}=x\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{c}y\in\mu\Pi$ and a positive example $w=\mathrm{a}\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{a}\in L(\pi_{*})$ , the
procedure Shrin$k(w)$ returns the string aababaca, which is not a shortest.

In Section 4, we will give a sufficient condition which guarantees that the output of Shrink is
always a shortest one. In general, for $\mu\Pi$ , we need the procedure $Fi\mathrm{n}dSh_{\mathit{0}}\mathrm{r}test$ in Fig. 3 which calls
Shrink as a subroutine.

Theorem 1. For a pattern $\pi_{*}\in\mu\Pi$ and a string $w\in L(\pi_{*})$ , the procedure $Fi\mathrm{n}dSh_{\mathit{0}}rtest$ returns a
string $s\in SPS(L(\pi_{*}))$ in $O(|w|^{3})$ time using at most $|w|^{2}$ membership queries.

By these results, we can conclude that any pattern $\pi\in\mu\Pi$ can be exactly identified in polynomial
time using one positive example and membership queries.
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Procedure FindShortest$(w)$

Input: a string $w$ in $L(\pi_{*})$ .
Given: $Me\mathrm{m}_{L(}\pi_{*}$ ) for $\pi_{*}\in\mu\Pi$ .
Output: a string $s$ in $SPS(L(\pi_{*}))$ .
$s:=w$ ;
do

$s:=Shrink(s)$
while ( $s$ is modified)
output $s$ ;

Figure 3: Procedure FindShortest

Theorem 2. There exists a learning algorithm which exactly identifies every pattern $\pi_{*}\in\mu\square$ in
$O(|w|^{3})$ time using one positive example $w\in L(\pi_{*})$ and at most $|w|^{2}+|\pi_{*}|$ membership queries.

We can extend the procedure FindShortest to treat patterns in $k\mu\Pi$ for any fixed $k\geq 1$ , and we
have the following theorem.

Theorem 3. For a fixed $k\geq 1$ , there exists a learning algorithm which exactly identifies every
pattern $\pi_{*}\in k\mu\square$ in $O(|w|^{k+2})$ time using one positive example $w\in L(\pi_{*})$

.
and at most $|w|^{k+1}+|\pi_{*}|^{k}$

membership queries.

4 Reducing the number of membership queries

In the previous section, we have shown that for any target pattern $\pi_{*}\in\mu\Pi$ , we can find a shortest
positive string of $L(\pi_{*})$ from one positive example $w\in L(\pi_{*})$ with using $|w|^{2}$ membership queries.
In this section, we reduce the number of membership queries into $|w|$ for some subclass of $\mu\square$ , by
showing a sufficient condition that the procedure Shrink always outputs a shortest positive string of
$L(\pi_{*})$ .

At first, we introduce the notion of components of a pattern. The components of a pattern $\pi$

are the constant parts of $\pi$ . The component size of $\pi$ is the maximum length of components in $\pi$ .
For example, the components of a pattern aa $x_{1}\mathrm{b}x_{2}x_{3}\mathrm{a}\mathrm{b}\mathrm{a}x4\mathrm{a}\mathrm{b}x_{5}$ are $\mathrm{a}\mathrm{a},$

$\mathrm{b},$
$\mathrm{a}\mathrm{b}\mathrm{a}$ , and ab. Thus the

component size of the pattern is 3.
Next we introduce the notion of critical pattern, by carefully analyzing the patterns for which the

procedure $Sh\sim rink$ fails to produce a shortest one.

Definition 1. We say that a string $p\in\Sigma^{+}$ is critical if there exists a string $w\in\Sigma^{+}$ which satisfies
the following conditions:

(1) $p$ is a prefix of $w$ ,

(2) $p$ does not appear in $w[2:]$ ,

(3) $p$ appears in $w1^{2:i},-1$ ] $w[i+j_{w,p,i}:]$ for some $i\in\{1,2, \cdots, |p|\}$ , where

$j_{w,p,i}= \max$ {$j\geq 0|p$ appears in $w[:i-1]w[i+k$ :] for any $k\in\{0,$ $\cdots,j\}$ }.

We say that a pattern $\pi\in\mu\square$ is critical if some component of $\pi$ is critical.
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Example 2. The string $p=\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{c}$ is critical, since for $w=\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{b}\mathrm{a}\mathrm{C}$ and $i=4$ , these conditions hold,
where $j_{w,p,i}=1$ . Thus the pattern $\pi_{*}=x$abacy in Example 1 is critical.

Let $\pi=xpy$ be a pattern such that $p$ is not critical, and let $w$ be a string which satisfies the
following conditions:

$w$ $\in$ $L(\pi)$ , (a)
$w[l:]$ $\not\in$ $L(\pi)$ for any $l\geq 2$ . (b)

For $i\in\{2,3, \cdots, |p|+1\}$ , we consider the following string: $w(i)=w[:i-1]w[i+j_{i} :]$ such that
$w[:i-1]w[i+k:]\in L(\pi)$ for any $k\in\{0, \cdots , j_{i}\}$ and $w[:i-1]w[i+j_{i}+1 :]$ $\not\in L(\pi)$ . Remark that each
string $w(i)$ satisfies (a) and (b) by the definition of critical pattern.s. The abo.v$\mathrm{e}$ features of cr.iticalstrings is used in Lemma 2.

We now show that Shrink outputs a shortest positive string of $L(\pi_{*})$ from a positive example
$w\in L(\pi_{*})$ when the target pattern $\pi_{*}\in\mu\Pi$ is not critical. We denote by $s_{k}$ the string which is
obtained when the oracle $Me\mathrm{m}_{L(}\pi_{*}$ ) outputs “no” $k$ times in the inner while loop in Shrink.
Lemma 2. Let $\pi_{*}\in\mu\square$ . If $\pi_{*}$ is not critical, there exists a substitution $\theta$ such that $\theta(\pi_{*}[:k])=s_{k}[$ : $k]$

for any $k\in\{1,2, \cdots , |\pi_{*}|\}$ .

Theorem 4. Let $\pi_{*}\in\mu\Pi$ and $w\in L(\pi_{*})$ . If $\pi_{*}$ is not critical, then Shrink$(w)\in SPS(L(\pi_{*}))$ .

Corollary 1. Let $\pi_{*}\in\mu\square$ and $w\in L(\pi_{*})$ . If $\pi_{*}$ is not critical, Shrink outputs a string in $SPS(L(\pi_{*}))$

in $O(|w|^{2})$ time from a positive example $w\in L(\pi_{*})$ using $|w|$ membership queries.

We can show that the following theorem holds by exhaustively checking each string $w$ with $|w|\leq 3$ .
Theorem 5. There is no critical string $w$ with $|w|\leq 3$ .

We denoted by $\mu\Pi[l]$ the set of all patterns $\pi\in\mu\Pi$ of which component size are at most $l$ . Then,
by Corollary 1 and Theorem 5, the following theorem holds.
Theorem 6. There exists a learning algorithm which exactly identifies every pattern $\pi_{*}\in\mu\Pi[3]$ in
$O(|w|^{2})$ time using one positive example $w\in L(\pi_{*})$ and exactly $|w|+|\pi_{*}|$ membership queries.

5 Generating a positive example using membership queries

In this section, we show a nontrivial subclass of $\mu\square$ where a learner can effectively enumerate a
series of candidates for a positive example. As a consequent, any pattern in the class will be identifiable
using membership queries only, without any initial positive example. The constraint which enables
the effective enumeration consists of two conditions: One is that component size is fixed. The other
is that the both ends of the pattern are variable symbols. These conditions are trivially hold for
subsequence languages, for which we have developed a learning using membership queries only [13].
Definition 2. For an integer $l\geq 0$ , let $\mu\Pi[l]^{e}$ be the set of all patterns $\pi\in\mu\Pi$ , such that the
component size of $\pi$ is at most $l$ and both the first and last symbols of $\pi$ are variable symbols.

The idea to guess a positive example using membership queries is based on the following simple
observation.

Remark 1. For an alphabet $\Sigma$ and a nonnegative integer $l$ , let $p\Sigma,l$ be a string which contains any
string in $\Sigma^{[l]}$ as a substring. For instance, the string aaabbbaabab contains any strings of length at
most 3 over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ . Let $p_{\Sigma,l}^{k}$ be the string a $p\Sigma,l$ a $p_{\Sigma,l}\mathrm{a}\ldots$ a $p_{\Sigma,l}\mathrm{a}$ , the $k$-times repetitions of $p\Sigma,l$

with using $\mathrm{a}\in\Sigma$ as a delimiter symbol. Then for any pattern $\pi\in\mu\Pi[l]^{e}$ , there is an integer $k\leq|\pi|$

such that $p_{\Sigma,l}^{k}\in L(\pi)$ .

Theorem 7. For any fixed $l\geq 0$ , any pattern $\pi_{*}\in\mu\Pi[l]^{e}$ can be exactly identified in $O(m^{3}n^{3})$ time
using at most $m^{2}n^{2}+2n$ membership queries only, where $m=l(|\Sigma|+1)^{l}+2$ and $n=|\pi_{*}|$ .
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6 Conclusion

In this paper, we investigated exact identification of a pattern in $k\mu\Pi^{\tau}$ using queries for a fixed
$k\geq 1$ . We have shown that there exists a learning algorithm which exactly identifies every pattern
$\pi_{*}\in k\mu\square$ in $O(|w|^{k+}2)\backslash$ time using one positive example $w\in L(\pi_{*})$ and at most $|w|^{k+1}+|\pi_{*\mathrm{t}^{k}}$

membership queries.
In Section 4, we $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{e}’ \mathrm{d}$ the notion of critical patterns. Then we have shown that if a pattern

$\pi_{*}$ is not critical, a shortest positive string of $L(\pi_{*})$ is found from one positive example $w\in L(\pi_{*})$

and exactly $|w|$ membership queries. In particular, since any pattern $\pi\in\mu\Pi[3]$ is not critical, we
have shown that there exists a learning algorithm which exactly identifies every pattern $\pi_{*}\in\mu\Pi[3]$

in $O(|w|^{2})\mathrm{t}$.ime using one positive example $w\in L(\pi_{*})$ and exactly $|w|+|\pi_{*}|$ membership queries. We
summarize these results in Table 1.

Table 1: Summary of the results in Section 3 $\mathrm{a}\mathrm{n}\dot{\mathrm{d}}4$ . In the table, $m$ is the length of the positive

example and $n$ is the length of a pattern to be identified.

In Section 5, for a fixed $l\geq 0$ , we show that any pattern in the class $\mu\Pi[l]^{e},$

. is exactly identifiable
using membership queries only.

As future works, we will study a necessary condition of a pattern for which Shrink outputs a
shortest positive string of $L(\pi_{*})$ . It may be interesting to study the learnability of a class of unions
of pattern languages in our setting.
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