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§1. Introduction

In a previous paper,!) we have shown that there exist a variety of solitary waves in the following

resonant interaction equation between long and short waves: .
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where L and S denote, respectively, the long wave and the complex amplitude of the short wave.

(1.1)

The interaction can occur when the phase velocity of the long wave is nearly equal to the group
velocity of the short wave. The parameters a and # depend upon the individual properties of the
waves and media concerned. For example, o, 3 < 0 corresponds to the capillary-gravity waves,? 3)
a > 0,4 < 0 to the ion acoustic and electron plasma waves,»5 and so on.® In ref. 1, it is
numerically shown for negative 3 that eq. (1.1) has oscillatory solitary wave (solitary wave with
oscillating tails that decay as || — o0o) solutions in both long and short wave modes. The solutions
have two types of wave profiles in each wave mode, that is, envelope shock and envelope soliton
types in the short waves, while elevation and depression soliton types in the long waves.

Oscillatory solitary waves of a single mode were first examined numerically by Kawahara”) in
‘the generalized K-dV equation with a 5th order derivative term. Although this equation is known
to describe long capillary-gravity waves on shallow water, recent numerical studies by Longuet-
Higgins®) and Vanden-Broeck and Dias® showed the existence of oscillatory solitary waves in more
general case of capillary-gravity waves on deep water. Akylas'®) and Longuet-Higgins!!) showed
that such waves are described by a steady envelope solitoh solution of the Nonlinear Schrédinger
(NLS) equation, in which the condition that the phase velocity of the crest is close to the group
velocity of the oscillating tails is satisfied. However, this condition is not generally satisfied for the
waves with small wave numbers on deep water, which means that ‘long’ oscillatory solitary waves
do not exist on deep water. On the other hand, Dias and Iooss!?) analytically examined oscillatory
wave profiles of the capillary-gravity solitary waves by using the procedure of the normal form
analysis which was developed on the basis of the bifurcation theory by Iooss and his co-workers. 13- 14)
Furthermore, Grimshaw et al.1) showed that the oscillatory solitary wave in the generalized K-dV
equation is described by the steady envelope soliton solution of the higher order NLS equation,

which coincides with the result obtained through the normal form analysis.
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As is seen in the above, the ‘long’ oscillatory solitary waves do not propagate in the steady state
on deep water as far as the single wave mode propagation is concerned. However, if the wave
interaction occurs between long gravity and short capillary waves,>3) the ‘long’ oscillatory solitary
waves can exist by virtue of the interaction with the short capillafy waves even on deep water.
In this paper, to analytically examine the solutions of such oscillatory solitary waves due to the
above interaction, the normal form analysis is applied to the equation for the steady-state which
is reduced from eq. (1.1). In the next section, the dispersion relation of eq. (1.1) is examined to
physically interpret the steady propagation of solitary waves. In § 3, the normal form analysis is
carried out in our system for the steady state and analytical solutions are compared with numerical
ones. And finally, in § 4, integrability of the interaction system is briefly discussed in the parameter

region in which the solitary wave solutions exist.

§2. Dispersion relation

Before proceeding to the analysis, it will be instructive to examine linear dispersion relations of
eq. (1.1) for physical interpretation to the appearance of oscillatory solitary waves. Equation (1.1)

has the following plane wave solution with constant amplitude C:
S = Cexpli(kz —wt)], L=0, (2.1)

if the dispersion relation

w—k?=0, (2.2)

is satisfied between k and w. Furthermore, superposing an infinitesimal sinusoidal disturbance
proportional to exp[i(Kz — 2t)] on the plane wave solution (2.1), another linear dispersion relation
is obtained between K and Q '

Q3 + (BK3 — 4kK)Q? + [~K*(1 + 4kp) + 4K2KIQ + (—BKT + 4k?BK° + 2C°K3) = 0.  (2.3)

When we assume real K and complex Q for k£ = 0 (so that, w = 0 from (2.2)) in eq. (2.3), it is
found!®) that the plane wave is unstable for long wave modulations with small |K|. In addition
to this, in a certain range of negative 3, waves become unstable in an isolated region of |K| with
larger wave numbers. v '

Now, in eq. (2.3), we consider the other case that k # 0 and both K and Q2 are complex, though
/K is real. Introducing A = Q/K, eq. (2.3) is replaced by

—~ BK* + [B() — 2k)2 = AIK? 4 2C% + A(\ - 2k)% =0, (2.4)

where we have excluded a trivial solution K = 0. Since ) is the phase velocity of the modulational
wave, while the group velocity of the plane wave is given as dw/ d k = 2k from the dispersion relation

(2.2), A ~ 2k is required for steady p'ropagation‘of the modulational waves. As a result of this,
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setting A = 2k in eq. (2.4), it is easily found for 8 < 0 that the equation has two pairs of complex
conjugate roots corresponding to oscillatory unstable state when |\| < A, where Ay, = \/—8GC%2.
On the other hand, the equation has real roots corresponding to stable state when A > \,,, while
purely imaginary roots to exponentially unstable state when A < —\,,. The above results suggest,
in the nonlinear stage, that oscillatory solitary waves emerge from non-oscillatory solitary waves
when A (< 0) increases through A\ = —),, while they emerge from infinitesimal sinusoidal waves
when A (> 0) decreases through A = \,,,. This is also expected from the numerical results in ref.
1. In the followings, we are concerned with the case A > 0, to which the analytical procedure is

applicable.

§3. Normal form analysis

8.1 Amplitude equations
For the steady propagation of waves in eq. (1.1), we introduce the following t1‘aveling—wave

transformation:

S = f(z — Mt) expli k(z — %t)], L=g(z—X\), (3.1)

where f and g are assumed to be real functions. Note that both functions f and g cor'resp-ond to the
modulational waves, while the exponential function corresponds to the plane wave in the preceding
section. Then, in (3.1), we can set k = A/2 from the condition for the steady wave propagation
and w/k = k from (2.2). Thus, making use of (3.1) into eq. (1.1), the following reduced ordinary

differential equations are obtained:
. a
f'="fg, Bd"+59"-2g=f*-C% (3.2)

where ' = d /d( and ¢ = z — At. On derivation of the above equations, we have imposed on f and
"

g such boundary conditions that |f| — C (Const.) and f’, f”,9,9'9" — 0 as |{| — co.

Carrying out the normal form analysis in our system (3.2), it is convenient to introduce the vector

u = (f, F,9,G)T in order to rewrite eq. (3.2) in the following form:
u' = M(p)u + N(u), (3.3)

where f =f-C,F= f "and G = ¢/, while the matrix M and the nonlinear term IN are given by

[0 1 0 0] | 0]
00 C 0 fa

2C A+ 2 ag?
=~ 0 0 I _ag”
| B g | L B 28 |

Since the parameter 1 = A— A\, denotes a deviation of A from the critical value A\, (= /—83C?,

B < 0), p = 0is the bifurcation point below which infinitesimal sinusoidal waves become oscillatory
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unstable (1 < 0). For 4 = 0, M(0) has a pair of eigenvalues 0 = 4i K, (double and non-semi-
simple), where K, = v/An/(—20). Since for each eigenvalue two eigenvectors are required in
order to complete the eigenspace, one is ¢; defined as (M(0) — oI)¢; = 0 and the other is the
generélized eigenvector (5 as (M (0) — oI)¢y = ¢;, where I is the unit matrix. In addition to this,
it is convenient to introduce the adjoint eigenvectors ¢; and ¢} belonging to @ that denotes complex
conjugate of o, which are defined as (M(0)T + 7I)¢3 = 0 and (M (0)T + GI){E = 3, respectively.

Thus, we find the following normalized eigenvectors for o = i K,

T ) T
cl—l[l . K% in’n] . [ i iKm _iK%]
- ’ my b ’

2 c’' ¢ 2|k, ¢ ¢

T T

. 1|, 2i BKZ . 1] 16K BKZ|
C1_2[1’11{"5 3¢ 'O Cz_z i Kom, —1, 2C ' 20 | (34)

We note that these eigenvectors satisfy the orthogonal conditions < ¢;, ¢; >=6;5 (4,5 = 1,2), while
< Ci,C_;f >=<(;, ¢; >= 0, where the inner product < (;, ¢; > is defined as CiT . C_;
Assuming weak nonlinearity with respect to w in the vicinity of the bifurcation point ¢ = 0, we

consider the following solution of eq. (3.3):

u(¢) = A(¢)¢1 + B(O)¢a + A(Q)Cy + B(¢)e, + B(u; A, B,4,B), - (3.5)

where the nonlinear function ¢ consists of 4 and higher order terms of A, B, 4 and B. Making
use of (3.5) into eq. (3.3) and taking the inner products with ¢} and (3, we obtain the following

amplitude equations:
A =iKnA+B+D(u;A,B,A,B), B =iKn,B+ E(u; A,B, A, B), (3.6)

where _
D=<M(0)®—-¥,(]>+<N(u),(l> E=<M0O)®-&,(>. (3.7)

According to the procedure of the normal form analysis,'>® the nonlinear terms D and E in eq.

(3.6) should take the following forms in terms of the functions P and Q:
D = iAP(u;|A] %(AB — AB)), (3.82)
= iBP(s; |47, 5(AB ~ AB)) + AQ(s; AP, 5(AB - AB)), (3.8b)

Since the magnitude of |u| is assumed to be of order |A|? or |B|? in this analysis, P and Q have

the following forms to the leading order:
P = pu+plAl+op(AB-AB)+.-, (3.92)

Q = qu+aqlAP+ %qg(AB — AB)+---, (3.9b)
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-where all the coefficients py to g2 are assumed to be real. We first calculate the coeffi-
cients py and qo. With the help of (3.8) and (3.9), we can show that the linearized equa-
tions with respect to A, B, A and B in eq. (3.6) have the eigenvalues +iKpny[l + pop/Km +
V20i/(i Km)]: On the other hand, the eigenvalues of M (1) in the original system (3.3) are given
by :t\/;\m\/l + (u % V2 + 287m)/Am, which are expanded to be +iKm[l + u/(4)nm)
ivV=20Am/(2Am) + - - ] for small |p|. Comparison between these two eigenvalﬁes leads to -
1 1
8Kn T ap

Next, we calculate @ to obtain the coeflicients p1, p2, g1and g2. Since nonlinear terms including

Po=— (3.10)

are of higher order nonlinearity than O(| A3, |B|?), when & is assumed up to cubic nonlinearity, it

takes the following form with the coefficients ag to c7:

& = (agA? + C.C.) + a1|A]’ + (b0B® + C.C.) + b1|B|* + (c0AB + C.C.) + (d1AB + C.C.)
+(az2A3 + a3|A|2ZA + by B3 + b3| B|2B + C.C.) + (c2A2B + c3| A2 B + c4A%B + C.C.)
+(csB%A + csA|B|? + c7AB% 4+ C.C)). (3.11)

In the above expression, the linear terms of y have been excluded, since the coefficients pp and

go are given in (3.10). Making use of (3.11) into (3.7), while (3.9) into (3.8), we finally find the

following coefficients by comparison between the expressions (3.7) and (3.8) (see Appendix):

P o= ﬁg—a(m + 111a8 + 63082), (3.12a)
p2 = W(ﬁa +10a8% + 9508 + 426°  + 1654%), (3.12b)
a = m(a + 2100 + 546%), " (3.12¢)
@ = %(w +141aB +186%). = (3.12d)

Thus, the problem is reduced to solving the amplitude equations (3.6) through (3.8) and (3.9) by
using (3.10) and (3.12).

8.2 Solitary wave solutions

We first assume the following modulational wave solutions of eq. (3.6):
A= R(Q) expli(KnC + ), B = S(C) expli{ImC + V)] (813)
Substituting (3.13) into eq. (3.6) with the help of (3.8), we obtain the following equations:
R'=8, S =RQ;R%0), ¢ =49 =P(uR%0), - (314

where we have set {(AB — BA) = —RSsin(¢ — ) to be zero for the solitary wave solutions. Since

the representations (3.9) are written as P = pou + pyR? +--- and Q = gop + q1R% + - - - in the use



205

of (3.13), neglecting the higher order terms, eq. (3.14) are simplified to be
R'=quR+qR?, S=R, ¢ =4 =pu+pR: _ (3.15)
Consequently, solitary wave solutions of eq. (3.15) are given by

R = zasech(, ) (3.16a)

S = Faysechy(tanh~(, (3.16Db)
2
d=v = poul+ ”17“ tanh~C, (3.16¢)

where a = \/—2qo4/q1, ¥ = /g0 and qo,q1 < 0 for B, u < 0. Thus, making use of (3.16) into (3.5)
with the help of (3.13), we have the final forms of the solitary wave solutions

rl_|c !
[ , =1, + __I_{_i asech v( cos(K ()
C
: T 1, « 1
—250 54 E) %6 ﬁ — 3) cos(2K,,¢) ) )
+ m /=38 20 a” sech” y(
T (— + 3) cos(2Km()
A B 186C " B
_ma® v
+ K2 p;ya'é’ Ilgmq a sechy( tanh 7 sin( K, (). - (317)
m. m '
L ¢ t ¢ | |

It is noted that the second term of RHS in (3.17) is of O(|u|'/2), while the third and fourth terms
are of O(|p4|), since a and v are of order |x|'/2. In the followings, the above analytical solutions are
compared with numerical ones which are directly obtained from eq. (3.2) by means of the shooting
method used in ref. 1. We first adopt — sign of % signs in (3.17). In this case, the numerical
solutions are found for a < 0, which is corresponding to the capillary-gravity waves. For example,
fora = -2, =-0.5and C =1 (\, =2 and K,, = v/2), Figs. 1 show the comparison between
analytlcal (broken lines) and numerical (solid lines) wave profiles. In these figures, the short wave
envelope f is of dark soliton type, while the long wave g of elevation soliton type. When we take
A =19 (p = —0.1) close to the bifurcation point, Fig. 1(a) shows that the analytical results ‘with
small amplitude are in good agreement with the numerical ones except for the small dlscrepa,ncy
in oscillatory parts. However, when A = 1.6 (x = —0.4) corresponding to further deviation from
the bifurcation point, as is seen from Fig. 1(b) with larger amplitudes, discrepancy between both
results becomes large with respect to the peak amplitudes as well as the oscillatory parts. On the
other hand, when + sign is adopted in (3.17), it seems to be difficult to find the corresponding
‘numerical solutions for a < 0. Instead of this, we can find such numerical solutions for large positive

a, though this parameter is the case for the ion acoustic and electron plasma waves. For example,
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when o = 12 and B = —0.5 are taken, Figs. 2 show the comparison between analytical (broken
lines) and numerical (solid lines) results where f is of ‘bright’ soliton type, while g of depression
soliton type. In Fig. 2(a) for A = 1.9, the analytical results (broken lines) with respect to the peak
amplitudes are found to be in fairly good agreement with the numerical ones (solid lines), while
some discrepancy between them is found in Fig. 2(b) for A = 1.6. Furthermore, in both figures
Figs. 2(a) and 2(b), the analytical results with respect to the oscillatory parts do not agree well
with the numerical ones.

Inref. 1, numerical solutions of envelope shock type in f are found. However, analytical solutions
of this type could not be obtained in the procedure of the normal form analysis, since we consider

the weakly nonlinear waves which bifurcate from linear modulational waves on | f |=C,g=0.

§4. Concluding remarks

In the preceding section, we have shown the analytical solutions when ¢o,q1 < 0 for B, < 0.
Since qo < 0 is always satisfied for # < 0, the soﬁtary waves can exist for either a > —180
or &« < —30 from the condition of q; < 0 in (3.12¢c). Thus, the solutions can always exist for
a < 0,8 < 0 which corresponds to the capillary-gravity waves. On the other hand, integrability of
the resonant system has been examined through the Painlevé test.l:17) It is shown that eq. (1.1)
does not pass the Painlevé PDE test except for @ = = 0, while the reduced equations (3.2) does
pass the Painlevé ODE test only for a + 63 = 0 when C # 0. These situations are summarized in
Fig. 3, where the hatched region in the (a, 3) parameter space shows the existence region of the
solitary waves, while the results of the PDE and ODE tests are, respectively, shown on the closed
circle and on the solid line. Resulting from this, in the hatched region, our system is not integrable,
at least, in the sense of Painlevé, which means that the oscillatory solitary waves will not have the

soliton properties.

Appendix:

The leading order in the representations of D and E is found to be O(|A]3,|BJ?) from (3.8)
and (3.9), while it is O(|A|?,|B|?) from (3.7) and (3.11). Therefore, setting all the coefficients
of quadratic terms of A and B in (3.7) to be vanished, the following coefficients in (3.11) are

obtained:
' - 1 a 1 ;
~ (oo~ 22) - 15 o]
C'728 24 =54+ —
_iKm(ﬂi_i) 0(4 43
_ C ‘368 12 _ 0
ag = _,/_28 _‘_X__{_ﬁ y a1 = /93 ’
g2C ‘18 ' 127 T 2cp
. -2, a P . 0
_—1.Km 7C (9+6)- , L
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Using the above coefficients, comparison between (3.7) and (3.8) with respect to the cubic nonlinear

terms of A and B leads to the coefficients p1, po, g1 and g¢s.
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Fig. 1. Comparison between analytical (broken lines) and numerical (solid lines) profiles of the oscillatory solitary
waves for (a) A = 1.9 and (b) A = 1.6, in which a = —2, 8 = —0.5 and C = 1, and - sign of + signs in eq. (3.17)

is adopted in the analytical solution.
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Fig. 2. Comparison between analytical (broken lines) and numerical (solid lines) profiles of the oscillatory solitary
waves for (a) A = 1.9 and (b) A = 1.6, in which @ =12, 8 =—-0.5and C =1, and + sign of + signs in eq. (3.17)

is adopted in the analytical solution.
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Fig. 3. Parameter region of a and 3, where analytical solitary wave solutions (3.17) can exist in the hatched region,

while eq. (1.1) passes the Painlevé PDE test on the closed circle (o) and eq. (3.2) passes the Painlevé ODE test
on the solid line.



