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BAND GAP OF THE SPECTRUM IN
PERIODICALLY-CURVED QUANTUM WAVEGUIDES

KAZUSHI YOSHITOMI

Department of Mathematics, Osaka University, Toyonaka, Osaka, 560, Japan

1. INTRODUCTION

In this talk we study the band gap of the spectrum of the Dirichlet Laplacian. —Ag i in a

strip Qg,, in R? with constant width d, where the signed curvature + of the boundary curve
is assumed to be periodic with respect to the arc length. Let us recall that. a planer curve
is uniquely determined by its signed curvature modulo congruent transformations (cf.  [4]).
Therefore without loss of generality, the boundary curve k~ takes the following form:

5y(8) = (ar(s),Bo(s)), (L.1)

a(s) = /0 " cos (- /0 " 7(32)dsz) dsy, (1.2)
b(s) = /0 " sin (— /0 N 7(32)d32) ds1. (1.3)

d d
Qgy = {(a.,(s) - ud—sb.y(s), by(s) + u——aw(s)> €R?; seR,0<u< d} .

For d > 0, we define

ds

Roughly speaking, Qg,, is the region obtained by sliding the normal segment of length d along
Ky. We call x, the reference curve of Q4. Let -Af. ., be the Dirichlet Laplacian on €y .

Namely, —Agd , is the Friedrichs extension of the operator
—A in L*(Qq4,) with domain C§°(Qg.,).

—Agd N is the Hamiltonian for an electron confined in a quantum wire on a planer substrate,
where the vertical dimension is separated. A typical example of quantum wire is the GaAs-
GaAlAs heterostructure. The first mathematical treatment of quantum waveguide (quantum
wire) was done by Exner-Seba (see [4]). Under a suitable decay conditions on v(s) and its

~ derivatives as s — o0, they proved that —AJ . has at least one bound state for sufficiently
small d. Recently, much progress is made by several authors. Bulla et al. (see [2]) and Exner-
Vugalter (see [5] and [6]) studied the locally-deformed waveguides obtained by adding some
bump to a straight strip or replacing the Dirichlet boundary condition by the Neumann bound-
ary condition on a segment of the boundary of a straight strip. In these cases, they discussed
the existence or non-existence of bound states below the essential spectrum.

In this paper, we consider the case that 7(s) is periodic. We impose the following assumptions
on 4. .
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(A1) € C>®(R).
- (A2) 4(s+2m)=7(s) forany s€R.
(A.3) There exists do > 0 such that -

1
®—7<ﬁgﬁ@,

(ii) Qq,,y is not self-intersecting i.e. the map

R x (0,dg) 3 (s,) (a;,(s) b (5), by() + (s )) € Qo
18 injective.

Simple coordinate transformations and standard elliptic a-priori estimates show that for d €
(0,do], —Ag . 18 unitarily equivalent to the following operator (see §2):

Hy= —%(1 +'u¥y(s))—2% ;2 +V(s,u) in L%*R x (0,d)) (1.4)
with domain _ ‘
Dy ={ve H} R x (0,d)) ;v(-,0) =v(-,d) =0 in L*R)}, (1.5)

where
V(s,) = 5 (1+ wn(s)~u"(5) = 201+ wr(s) 2y (97 = 3L+ wr(9) (). (16)

Since the coefficients of Hy are periodic with respect to s, one can utilize the Floquet-Bloch
reduction scheme in the following way. First, (1.4) is unitarily equivalent to the operator

® .
Hy qdb,
[0,1]
where
Hp gy = 6(1+ ())~2ﬁ__<9f_+v( ) in L2((0,27) x (0,d 1.7
6,d = _& UY\S as auz ) S,u n ) 4T ) )) ( . )
with domain
Dg,q = {v(s,u) € H*((0,27) x (0,d)) ; v(-,0) = v(-,d) = 0 in L*((0, 2m)), (1.8)
v(2m,-) = €™(0,) in L*((0,d)),
%0(271', )= e2“’9§év(o, -) in L2((O, a)}
for 6 € [0,1].

We denote by &;(0;d) the j-th eigenvalue of Hp 4 counted with mult1phc1ty Then, we have

o(— QM)_US ([0,1);d), where &;([0,1];d) = U {£;(8;d)}.

Jj=1 - 6€fo,1]
So, the analysis of o(—AZ ..,) is reduced to that of each &;(0;d). £;([0,1];d) is either a closed
interval or a one point set. We call £;([0, 1];d) the j-th band of o(—Af, ) '
We consider the asymptotic behavior of £;(6;d) as d tends to 0. For 8 € [0,1], let

Ko =- 5 17(’3)2 in L%((0,2m)) (1.9)
with domain
Fy = {v € H*((0,2)) ;u(27) = €™0(0), v'(21) = >/ (0)}.

We call Ky the reference operator for Hg 4. We denote by k;(8) the j-th eigenvalue of Ky counted
with multiplicity. Then one of our main theorems is the following.
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Theorem 1.1. For 0 € [0,1] and j € N, we have

™

2
£;(0;d) = (E) +k;(8) + O(d) (as d— 0),

where the error term is uniform with respect to 6 € [0, 1.

It follows from Theorem 1.1 that if there is a band gap of the spectrum for the operator
- ;: — 37(s)? in L2(R), so is the case for the operator —Agdﬁ for sufficiently small d. In
particular, from the classical results about the inverse problem for Hill’s equation (cf. 3], [7]
and [10]), we have the following.

b

Corollary 1.2. If vy is not identically 0, there exists some jo € N and Cjo > 0 such that

eren[.(l)l,ll] 8jo+1(0; d) - orél[g")i] gjo (07 d) = Cjo + O(d) (d - O) (110)

This corollary says that if v is not identically 0, at least one band gap appears in. the spectrum
for sufficiently small d. We prove these results in section 2.

In section 3, we locate the band gap of o(—AL g 7). Namely, we specify the value of j, € N
such that (1.10) holds. For this purpose, we use the scaling v +— €7y, where € > 0 is a small
parameter. For € >0 and d > 0, we set Qf = Qg .,. We consider —Ags instead of —Agd - We
assume (A.1), (A.2), and the following. o

(A.4) There exist g > 0 and do > 0 such that
(i) ! <€ min y(s)
—— <€
do 0 s€[0,2m] NSh
(i) Qf, ds not self-intersecting for any € € (0, €.
We substitute ey for v in (1.4), (1.7), and (1.9), and denote the resulting operators by Hy.,

Hp g, and Kjy . respectively. We denote by &;(0;d;€) the j-th eigenvalue of Hg 4 counted with
multiplicity. Let {v,};2 _, be the Fourier coefficients of y(s)? :

As2= % \/'%vnei”s in L%((0,2r)).

n=—oo

Applying the analytic perturbation theory (cf. [8]) to the reference voperatory Ky ¢, we get the
following. ‘ _ : :

Theorem 1.3. Let v be not identically 0, and n € N be such that v, # 0. Then, there exists
€€ (0,€p] such that for each € € (0,€], there exists C. > 0 for which

i o — e = C, d ]
oelon Fre2 (i) = gy i) =€t O (@ =0)

In the end of section 3, we give a simple example of y(s) satisfying (A.3) or (A.4).

2. AsyYMPTOTIC EXPANSION OF BAND FUNCTIONS AND EXISTENCE OF BAND GAPS

Our main purpose in this section is to prove Theorem 1.1 and Corollary 1.2. We assume (A.1),
(A.2), and (A.3) throughout this section. As in [4], we first transform A, , into the operator
(1.4). We begin with the following remark.



For d > 0, we denote by ®4 the map

ds

R x (0,d) > (s,u) — (a,,(s) - u%bq(s), by(s) + uia.y(s)> € Q4 .

We denote by J®, the Jacobian matrix of" ®,4. We have by a direct computation
det(J®q)(s,u) =1+ uy(s) for (s,u) € R x (0,d).
Then, (i) of (A.3) implies that for d € (0, dg),
det(J®a)(s,u) 2 1+doy- >0 for (s,u) € R x(0,d),

where

_ . . __]__
7- = Din min{~y(s),0} (> —g).
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(2.1)

So, @4 is a local diffeomorphism for d € (0,dp]. This and (ii) of (A.3) imply that ®, is a global
diffeomorphism for d € (0, dp]. We assume d € (0, do] throughout this section. For f € L2(y ),

we define

(Uaf)(s,u) = (14 u(8))/2£(@a(s, w))-

Then, Uy is a unitary operator from L2(Qy,) to L3R x (0,d)), and U, maps C$°(€y.) into -

C§° (R x (0,d)) bijectively.

We are going to show that Hy in (1.4) and Hyg4 in (1.7) are self-adjoint with respective

domains in (1.5) and (1.8), and the direct integral representation
@

Hy= | Hgqdb.
[0,1]

We recall that -Af 4., is the Friedrichs extension of the operator
—A in L*(Qq4,) withdomain C{(Qqg.).
Let Hj be the Friedrichs extension of the operator

o 2 0 02 . 2
—g(l + uy(s)) 95 BaZ +V(s,u) in L*(R x (0,d))

with domain C§°(R x (0, d)), where V (s,u) is defined by (1.6). We recall (1.5):
Dy={ve H*Rx(0,d)); v(0) =v(-,d) =0 in L3R)}.
Proposition 2.1. We have | ‘
Ua(-Ag, )U; ' = Hy,
-Dd - D(Hcci))7

and
Hov = —2(1 + u'y(s))‘zi'v - 6—2'1) +V(s,u)v for veD
d ds ds Ou? ’ ¢

(2.2)
(2.3)

(2:4)

Proof. One can prove (2.2) by a direct computation and the first representation theorem. (2.3)

and (2.4) follow from the first representation theorem and the following fact.

Co° (R x (0,d)) is dense in Dy with respect to the norm || - || g1 (rx(0,a))- O
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Next we introduce the translational operators which reduce our problem to that of differential
operators on a torus. We set

L=2rZ, A ;=R x(0,d), and Xyg= (0, 27r) x (0, d).
For l € L and v = v(s,u) € L}, .(Aq), we define Tiv € L2 (A4) by
(Tw)(s,u) =v(s—1u), (s,u) € Aq.
{T:}iecL is an abelian group and each T} commutes with H 4 We define
Bi={veD;; 3IR>0 s.t. su'ppb C [-R, R] x [0,d]}.

One can easily see that By is dense in Dy with respect to the norm || Al H2(Ag)- For v € By and
6 € [0,1], we define

Uv)(s,u,0) = Y " (Tiv)(s,u)

leL

= Ze“ov(s —Lu), (s,u) € Aq4.
leL

We easily see that for I € L and 6 € [0, 1],
Uv)(s +1,u,0) = ¥ Uv)(s,u,0) in Ag.

Using the Parseval’s identity, we have the following.
Proposition 2.2. U is uniquely extended to a unitary operator from L2(A4) to

57
H= | L2(Zg)d.
0,1] |

Now let us recall the operator Hy 4 defined by (1.7) with domain Dy 4 from (1.8). We prove
the self-adjointness of Hy 4, which is not only important itself but also needed later to determine
D(Hy) (equivalently D(—A M)) explicitly.

Proposition 2.3. Hy 4 is self-adjoint.

Proof. Using Green'’s formula, one can show that Hp 4 is symmetric.
We choose k£ > 0 such that
inf V(s,u) > —k.

(s,u)€Xy

Let us show the following.

(2.5) Hg,q+ k is 1 to 1 and onto. Namely, for any f € L?(%;), there exists unique w € Dy 4
such that (Hg,q + k)w = f

For convenience, we enlarge ¥4 = (0, 27) % (0,d). We choose € € (0, 7). We set
¥, = (—€,2m +¢€) x (0,d),
and

Qo = {ve H(Z)) ;v(-,0) =v(-,d) =0 in L?*((—e¢27 +¢)),
v(s +2m,u) = e¥™Py(s,u) ae. in (—¢¢€) x (0,d)},



42

equipped with the inner product
(U’ w)Qo = (v’ w)Hl(Ed)'

Then Qg is a Hilbert space. For p € (—¢,¢), we set £ = (p,p + 2m) x (0,d). We define a
quadratic form gg(-,-) on Qg by

go(v,w) = / {(1 + u’y(s))’Q%b———w + %v%w + V (s, u)vw + vaE} dsdu, (2.6)
»P

d

for v,w € Qy. We note that the right- hand side of (2.6) is independent of the choice of p € (—e¢, €).
We easily see that
lgo (v, w)| < CillvliqellwllQ, for any v, w € Qo, (2.7)

go(v,v) > C2]|v||2Qo for any v € Qp, (2.8)

where C; and C3 > 0 are constants independent of v,w € Qg and v € Qg respectively. Let
f € L?(Z4). We extend f to the function in ¥/, by

_ [ ™ f(s—2mu)  for (s,u) € (2m,27 +¢€) x (0,d),
(s,) { e 20 f(s+2mu) for (s,u) € (—¢0) x (0,d).

Because (-, f)2(z,) is a bounded linear functional on Qg, and gy satisfies (2.7) and (2.8), the -
Lax-Milgram theorem implies the following. :

There exists unique w € Qg such that
go(v,w) = (v, f)L2(s,) forany ve€ Q. (2.9)
Next we show w € Dy 4. For y € R? and r > 0, we set B(y,7) = {zx € R?; |z —y| < r}.
For y € Iy, there exists r € (0, ) such that B(y,r) cC ). We choose p € (—¢,¢€) such that
B(y,r) C . Let I = (27,0). Then B(y +£1,7)N E’; = (. For v € C§°(B(y,r)), we extend v to

the functlon in Qg and denote it by . Then supp o N'X5 C B(y,r). So, (2.6) and (2.9) imply
- that

({_%(1 ()P o 6‘9—; +V(su) +'k} 2, w)

=(v, f)L2(B(y,r)>

L2(B(y,r))

for any v € C§°(B(y,r)). Therefore, the local regularlty estimate for elliptic differential equa-
tions (cf. [1] Theorem 6.3.) implies

w € HZ,,(B(y, ).

So, we get ‘
w € HE (X)). (2.10)

For y = (y1,0) (y1 € (0,27)) and r € (0,¢), we set Bu(y,r) = B(y,r) N X}. Using the above
method, we have

({_%(1+uv(3))_2 Tt V) +’“}” “’)

=(v, f)L2(Br(w,))s

L2(Bn(y.¢))
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for any v € C§°(Bh(y, €)). Moreover w € Qg implies
w(-,0)=0 in L*((—e+y1, v +¢)).

Hence, the regularity estimate up to the boundary for elliptic differential equations (cf. [1]
Theorem 9.5.) implies :

we H?*(Bp(y,§)) for any y € (0,27) x {0}. (2.11)
Similarly, we have
w € H*(By(y,£)) forany y e (0,2r) x {d}, (2.12)

where By(y, 5) = B(y, §) N X. So, (2.10), (2.11), and (2.12) imply that there exists r € (0,¢)
such that
w € H2((—r,2m + 1) x (0,d)).

Combining this with w € Qg, we have
w(2m,") = ¥™w(0,-) in L*((0,d)),
and
—(?—w(27r )= ez"w—a—w(O 3 in  L3((0,d))
ds ' ds e

So, we get
w e Dg,d.

Therefore, we can integrate (2.9) by parts, and get

(v, (Ho,a + k)w)2(sy) = (v, frrzy forany v e Q.
Hence, we have
(v, (Ho,a + k)w)r2(z,) = (v, flragy forany v e C3°(Za).
Therefore,
(Hoa+ k)w=f, we€ Dygq.
On the other hand, we have

((Hp,qa + k)v,v)r2(5,) > #”U”%z(zd) for any v € Dy g4, (2.13)

where p = inf2 V(s,u) + k (> 0). So we have shown (2.5).
d

(s,u)e

Using (2.5) and (2.13), one can easily show that Hy 4 is closed. Thus, Hp 4 is self-adjoint. O
We recall the following operator defined by (1.4):

2
Hy= o (4 ure) 2 = L 4 visw i 13(Ag)

s  Ou?

with domain
Dy ={ve H*(Ag); v(,0)=wv(-,d)=0 in L*R)}.

Recall Hj defined in the head of this section. Then, we have the following.
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Proposition 2.4. We have
® .
Hy=U"! ( Hy 4 de) U, (2.14)

and . _ v
H; = H,. (2.15)

Proof. Because one can easily show (2.14) by using a standard density argument, we show (2.15)
only. Because Hp 4 is self-adjoint for 6 € [0,1] and U is unitary, (2.14) implies that H, is self-
adjoint. On the other hand, HJ is a self-adjoint extension of Hy by Proposition 2.1. Therefore,
we have Hy = HJ. This completes the proof of Proposition 2.4. O

Combining the above proposition with Proposition 2.1, —AJ - is unitarily equivalent to
f[(?l] Hp,adf. So, the analysis of o(—Ag, ) is precisely reduced to that of each o(Hp,4).
As a final preliminary, we describe the band structure of o(—AJ 4.)- Because Hp 4 has a

compact resolvent and is bounded from below, o(Hy 4) is discrete. As we have defined in section
1, for j € N, £;(0;d) denotes the j-th eigenvalue of Hy 4 counted with multiplicity:

£1(8;d) < E(0;d) < --- < Ei(B;d) < -+ - — 00,

One can easily show that &;(-; d) is Lipschitz continuous. .Therefore,

£([0,1;d) = | J {&(6;d)}
0€(0,1]
is either a closed interval or a one-point set for ; € N. We have also that
o0
o(=48,.) = J &0, 11; ).
j=1
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. In this proof, we mainly use the min-max principle. As in [4], we first
introduce an approximate operator for Hy 4. We recall (2.1):

Y- = min ]min{'y(s),O} (> —%) :

s€f0,2n
Let
= ,0}.
7+ = max max{y(s),0}
Then, we have for any d € (0, dp),
0<(Q+dy) ' <(Q+uy(s) ™ <(Q+dy-)! on X, ' (2.16)
We define '
1 3y 1 ~2,(\2
Vi(s) = 5(1+dy-)"dv} - 71+ dr) (),
and

1 _ 5 B 1 _
V_(s) = —5(1+dy.) 3dy!] — 7(L+dv) ‘P (v,)? - 7(1+dr) 2y(s)?,

where

I = "(s)| (< ), and 7} = "(8)] (< 00).
i = max [7"(s)| (< o0), and 7} Jax [7(s)] (< 00)
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Then, V, (s) and V_(s) satisfy the following.
V_(s) < V(s,u) <Vi(s) on Xy : ~(217)
We define the following approximate operators similar to those of [4]. For 6 € [0, 1], we define

0? o?
= +Vi(s) in L3*(Z;) with domain Dy 4.

Hyy=—(1+ A

We note that both Hé’: 4 and Hy ; are self-adjoint and have compact resolvents. According to
(2.16) and (2.17), we have
Hyy < Hpa < Hf,. - (218)

We estimate the eigenvalues of H;: 4 and Hy ;. For this purpose we introduce the following
operators. For 8 € [0, 1], we define '

d? .
Toy=—(1+ d7¢.)‘2c—ls—2 +Vi(s) in L*((0,27)) with domain Fp,

where ’
Fy = {v e H*((0,2m)) ; v(2r) = e2™94(0), v'(2m) = €29 (0)}.

Both T;,' « and T, are self-adjoint and have compact resolvents. For j € N, we denote dy
Sji (6;d) the j-th eigenvalue of Toj,Ed counted with multiplicity respectively. Let {¢;h}5“;1 be
the complete orthonormal system of L2((0, 27)), where qui (0,d,-) is the eigenfunction of Toi,d

associated with the eigenvalue 5}(0;01). We have ¢;.|:(0, d,-) € Fg N C>(]0,27]). We further
introduce the following operator

2

_%5 in L?((0,d) with domain {v € H*((0,d)) ; v(0) = v(d) = 0}. (2.19)

For k € N, the k-th eigenvalue of (2.19) is (—7:1—’“)2. The associated eigenfunction is \/g sin(ﬂdﬁu).

oo
We have also that {\/g sin(ﬂal&u,)}k_1 is a complete orthonormal system of L2?((0,d)). We set

, ' )
¢fk(0’ d, s,u) = ¢5 (6, d, 8)\/;sin (%u)

for (s,u) € 4 and j,k € N. Then we have for any j,k € N,

¢;'i,:k(0> d’ K ) € -D«9,d)

and
Hy 35,0, d,-,-) = (55 k; 0; )y (6, d, -, ),
. where ‘ , :
. 7k
Hi(];k;ﬁ; d) = (7) +8;:(9;d). (2.20)

Moreover, {zpjik (6,d,-,-)};jken is a complete orthonormal system of L?(Z4). Therefore,
{uE(j; k;0;d)};.ken is the set of all eigenvalues of H(fd counted with multiplicity.
We estimate u*(j; k; 0; d). We recall (1.9): for 6 € [0, 1],
d2

Ky = i -}7(3)2 in L?*((0,27)) with domain Fj,



and that k;(0) denotes the j-th eigenvalue of Ky counted with multiplicity for j € N.

We first show the following.

For any 7 € N, we have
£ (6;d) = k;(6) + 05(d) (d—0),

and

£ (6:d) = k;(6) + 04(d) (d—0),

where each error term is uniform with respect to 0 € [0, 1].

We rewrite Tg,"' 4 and Ty, as follows.

a1

=+ ) {2 L a0

1
+ 5(1 +dy_)2dyy.

Tia =(L+dy)7? {-d—sz -1+ ) (1 +dy) 2"(8’2}

1 .. 5 _
— (L +dy-)7dnf - 2(1+dy )T % (43)*

A straightfoward calculation follows that
_ 4= = )2+ d0v+ +1-)}

T4+dy )2(1+dye) 2 -1 <0,
(1+dy-)"(1+dvs) A+ a7, )? <
e | dlvs =7 )2+ dlrs +7))
- — Y- + aly+ + -
1+dy )2 (1+dy ) 2-1=30+"7 > 0.
We set
n= max 10
Then, (2.23) ~ (2.26) implies
) d2 1 2 1 =3 3./
(1+dy-) —gZ Z’Y(S) + 5(1 +dy-) " dyy
<T3,
-2 d2 1 2 1 -3 ./
SA+dy )" -5z — 7707 ) + 5 (L +dy-)dry

1 d(yy =y ){2+d(vs +72)} 5
4 (I+dv )2 +dy-)2

and
2 1 1
-2 [ _ = 2y _ = =3 4.1
(1+dvs) ( 75 47(8)) 5(1+dy-)"dvy
1 dlys =7 {2+dy+ +7-)} o 5
47 (I+dv)?(+dy) 4
<Tsy

_ d 1 _
<(1+dyy)™2 ("d—sa - 1’7(3)2> - '2‘(1 +dy-)3dyy

(1 +dy-)~*d*(74)?

5 _
= (4 dy )T ()%
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(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Applying the min-max principle to (2.27) and (2.28), we get -
£ (65d) = (1 +d1-)k;(6) + O(d) (d—0),

and )
£ (63d) = (1+d74)™2ks(6) + O(d) (d—0),

where each error term is uniform with respect to 6 € [0, 1]. Because k;(-) is continuous on [0, 1],
we get (2.21) and (2.22).
Next we show the following.
For any jo € N, there ezists d = d(jo) such that for any d < d,
(5 k3 05d) > p* (jo; 1;6;d) + 1 (2.29)
for any k > 2', j>1,and 6 € [0,1].
We fix any jo € N. Using (2. 20), we have for any k£ > 2, j € N, and 0 € [0, 1],

(.77k 0; d) :t(JO:]- 9 d)

2 2 _
_(%_1) +E£(6;d) - £2(8;d)
3 .
> +£1(6;d) - £5(6;d)
3 2
= d2 + rr%m kl(e) + O(d) - In[a‘X] k.’lo( ) + Ojo (d)a

where we used (2.21) and (2.22) in the fourth line. Therefore, we have (2.29).

(2 29) implies the followmg For any jo € N, there exists d = d(jo) such that for any d < d,
the j-th eigenvalue of H 9.d 18 pE(j;1;6;d) for any j < jo and 8 € [0,1]. Hence, (2.18) and the

min-max principle imply the following. For any d < d(jo), we have
#~(4;156;d) < €;(8;d) < p* (45 1;6;d)
for any j < jo and 6 € [0, 1]. Using (2.20), (2.21), and (2.22), we have

™

2
Ei(6;d) = (5) +Fio(6) +0(d) (d—0),

where the error term is uniform with respect to 8 € [0, 1]. This completes the proof of Theorem
1.1 O

Next we prove the existence of the band gap of a(—Ag ,)- Recall (1.9). We define

o
KE—%——’)’(SV in L?*(R) with domain H?(R).

The following facts are well-known (see [9] Chapter XIII16).
i) Each k;(-) is continuous on [0,1], and

k;j(1—6) =k;(0) forany 6 €]0,1].
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ii) For j odd (even), k;(#) is monotone increasing (decreasmg) as 0 increases from 0 to-31
Especially, we have

F1(0) < ku(3) < Ba(3) < Ba(0) < -+ < g-1(0) < aga(3) < g (3) < hiy(0) <

iii) We set :

gy = { O (o o)

T [kj(%),kj(o)] (for j even), |
d : _

- (kj(3),kj+1(3)) (for j odd such that k;(1) # kjy1(3)),

G; =< (kj(0),k;+1(0)) (for j even such that k;(0) # k;41(0)),

0 " (otherwise).

Then, we have. '
o(K) = B;.
Jj=1
We call B; the j-th band of o(K), and G; the gap of o(K) if G; # 0.

Combining these with Theorem 1.1, we have the following.
Corollary 2.5. For eachl € N, we have »

i Eusa(654) = max £:0:d) = |Gi| +0(@) (d—0), (2.30)
and
€:([0,1]; d)| = Ile+0(d) (d—>0)
where | - | is the Lebesque measure.

Here we recall the following classical result about the inverse problem for Hill’s equation,
which was first proved by Borg ([3]). For alternative proofs, see [7] and [10].

Theorem (Borg). Suppose that W is a real-valued, piecewise continuous function on [0, 2].
Let )\J:-k be the j-th eigenvalue of the following operator counted with multiplicity respectively -
d? ) 2

' ) +W(s) in L*((0,2m))
with domain :

{v € H*((0,27)) ; v(2m) = £v(0), v'(27) = £'(0)}.
We suppose that ‘

A =X, forall even j,

and '

Aj = Ain

for all odd j.
Then, W is constant on [0, 27].
We are now in a position to prove Corollary 1.2.

Proof of Cdlolla’ry 1.2. In virtue of (2.30), it suffices to show the following;
There ezists some jo € N such that G, # 0.

We show this by contradiction. We suppose that G; = @ for all j € N. Then, the above Borg’s
theorem and (A.2) impliy that ~(s)? is constant in R. Because v is continuous, v(s) is constant
in R. On the other hand, v is not identically 0 by assumption. So, there exists a constant k # 0
such that v(s) = k in R. Then, the reference curve s, must be a circumference of radius l_llcl

This violates (ii) of (4.3). O
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3. LocATioN OoF BAND GAPS

The purpose in this section is to prove Theorem 1.3. First we recall (2.30):

ererhl)fll]ﬁzﬂw; d) - o8, &1(6;d) = |Gi| + O(d) (d —0).

So, we will specify the value of I € N such that |G| > 0. For this purpose, we use the scaling
7Y+ €y, wheree > Ois a small parameter. As we have introduced in section 1, we set Q5 = Qg .
Now we consider —AJ. instead of ~AZ2 4, We assume (A.1), (A4.2), and (A 4). Besides, we

assume d € (0, dp] and € € (0,e0]. We recall that Hy ., Hp 4., and Ky . denote the operators
obtained by substituting ey for « in (1.4), (1.7), and (1. 9) respectively, and £;(6; d; €) denotes the
J-th eigenvalue of Hy 4 . counted with multiplicity. Especially, Ky . has the followmg expression.

2

Ko = —% - ie%(s)? in L%((0,27)) with domain Fj (3.1)

for 8 € [0,1]. Let k;(6;¢) be the j-th eigenvalue of Kjp . counted with multiplicity. We set

(kj(3:€),kj+1(3;€)) (for j odd such that ki(3€) # kjv1(3;€)),
Gj(e) = q (k;j(0;€),kj+1(05¢))  (for j even such that k;(0;€) # k;11(0;€)), (3.2)
0 (otherwise).

Then, (2.30) implies that for each | € N and € € (0, €], we have

oin Ei+1(0;d;€) — oo, &i(0;d; €) = |Gi(e)| + Oc(d) (d— 0). (3.3)

We consider the asymptotic behavior of |G;(€)| as € tends to 0, and specify the value of I € N
such that |G;(e)| > 0 for sufficiently small e. For this purpose, we use the analytic perturbation
.theory (see [8]).

- To treat this problem in a more general situation, we introduce the new notations. Let
(A.6) W e L2([0,27]; R).

We define P
_ . 2
LE]'- = —@ n L ((0, 271'))
with domain
Fo = {v € H*((0,2m)) ; v(2r) = v(0), v'(27) = v'(0)},

and
2

Ly=—25 in L*((0,2m))

with domain ,
Fi = {v e H*((0,27)) ; v(2 m) = —v(0), v'(27) = —'(0)}.

2

For B € C, we define

LY (B) = Lg + W

S )
= ;2 +pBW(s) in L%*(0,27)) with domain Fp,
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and

L~(B) =Ly +BW

2 ‘ '
=L 4 6W(s) in IX(0,2r)) with domain F.

We regard Lf)t as the unperturbed operators and SW as a perturbation. For 8 € R, we denote by

l;t (B) the j-th eigenvalue of L*(B) counted with multiplicity. Let us write down the eigenvalues
and eigenfunctions of unperturbed operator L(jf. For n € N, we set ‘

1 ‘ 1 . 1 )
— , Py = 'ms, o = —ins 4
Vo= o= Yn1 = =™, Yna = —ome (34)

Then, {¢§, Yn,1, ¥n,2}nen is a complete orthonormal system of L%((0,2x)), and we have
Lo =0, L§ 9,1 = n*Pn1, L§tnz = n’Pns (3.5)
for n € N. Therefore, we have
iH=0,1,0=1,,0)=n® for neN. (3.6)
Next, for n € N, we set

i(n—1%)s 1

Pn,1 = "‘\/2——7;6“ ) Pn2 = ﬁe—i(n——;—)s. (3.7

Then, {¢n 1, ¥n2}nen is a complete orthonormal system of L2((0,27)), and we have

1\? 1\2 |
Ly ony = (n - 5) ®n1, Lo n2 = (n - 5) Pn,2 (3.8)

for n € N. Therefore, we have

2 .
lon_1(0) =15,(0) = (n - %) for neN. (3.9)
For e R and n € N, we set :
6': (:@) = l;-n+1(ﬂ) - l;n(ﬁ)a (310)
and |
b5, (B) = 15,,(8) — I3 _1(B). (3.11)

For # € R and n € N, we define
b2n—-1(8) = 6, (B), 82n(B) = 67 (D).

We consider the asymptotic expansion of 6,(8) as 8 — 0. Now we recall the analytic per-
turbation theerem due to Kato and Rellich, which is rewritten suitably in our situation (see [8]
Chapter VII and Theorem 2.6 in Chapter VIII).
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Theorem (Kato and Rellich). Let Hy be a self-adjoint operator in a Hilbert space H. Suppose
that Ey is an eigenvalue of Ho with multiplicity m, and there exists € > 0 such that o(Hp) N
(Eo — €, Eg + €) = {Ep}. Let {Q4,---,Qn} be an orthonormal system of eigenvectors of Hy
associated with the eigenvalue Ey:

Qj € D(Ho), Hij = E()Qj for 1<j<m,
(2, Q)3 =65 for 1<4,5<m.
Let V be a symmetric, Hy-bounded operator. For § € C, we define
H(B)=Ho+ BV in H with domain D(Hy).

Let piy, -+, pm be the all eigenvalues of the matriz (VS%, Q5)w), <i,j<m counted with multiplicity.
Then, we have the following.

There ezist m (single-valued) analytic functions ui(B),: - -, um(B) in B € C near 0 such that
u1(B), -+, um(B) are the all eigenvalues of H(B) counted with multiplicity in {E € C ; |[E—Ep| <
£} for B € C near 0, and

w;(8) = Bo+ ;8 + O(I82) (8 — 0) (3.12)

for1<j<m.

As a simple consequence of this theorem, we can see the splitting of a doubly degenerate
eigenvalue when a purturbation is turned on:

Corollary 3.1. Let m = 2 in the statement of above theorem. Then, we have

(u1(8) —ua2(B))*
=[{(VQ1, Q)n — (VQ2, Q)1 )} + 4|(VQ1, Q2)2/* 8% + O(I8P) (3.13)
(ﬂ — 0).

Using this corollary, we compute the asymptotic expansion of (B)as B — 0. Let {wn}2 _,
be the Fourier coefficients of W (s):

1 ;
W(s) = —= wpe™ in  L2((0,2m)). 3.14
©=7m 2 ((0,2m) (3.14)
Because W is real-valued, we have

Wy, =W-, for nez. (3.15)

Then, we have the following.

Theorem 3.2. For each n € N, we have

6n(B) = \/glwnl 181 +0(I81*) (8- 0,8 €R). (3.16)

Proof. We show (3.16) only for even n because odd case is similar. We recall (3.4), (3.5), (3.6),
and (3.10). We apply the preceding Kato and Rellich’s theorem and Corollary 3.1 by setting

H = L%((0,27), Ho= L, V=W, m=2, (3.17)
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Ey = l;n 0) = 2n+1(0) =n?

1 1 i
O =1 = ——e Qy=ah o, = ~ins €N.
1 "/)n,l \/2_1|' 2 "bn,Z \/2—7['6 or n
Let u1(B) and uz(0) be as in the preceding theorem under the situation (3.17). Then, we have

(61 (8))?
=(l3n4+1(8) — 15,(8)?
=(u1(B) — u2(B))? ,
=[{(Wtn,1, ¥n,1)1 — (Wihn2, ¥n2)n}* + 4(Whn,1, ¥n,2)n|? 182 + O(|8]?)
(B—0, BER). |

We compute

{(Wtn,1,%n,1) 1 — (Wen 2, ¥n2)1}? + 4| (Wt 1, ¥n,2)n)?

2m 27
= ( W(s)ds —
0 0

2

2 L e 2
W(s)ds) +4 l—— W (s)e®™*ds
2r Jo

_4 ‘Lw_%
V2r
=%|w2n|2,
where we used (3.14) in the third line and (3.15) in the fourth line. Thus we have
(6:n(B))? =(55(B8)? (3.18)
=2fuml6" +0(8F) (80, B R).
We note that u;(8) — u(0) is analytic in 8 € C near 0, and
5%(8) = lur(8) —u2(B)| for BER near 0.
Then, (3.18) implies
62n(8) =6 (8)
‘=\/§ fwza] - 18]+ O(B2) (80, BER).

Thus we showed (3.16) for even n. O
Now we turn to the proof of Theorem 1.3.

Proof of Theorem 1.83. We recall (3.1), (3.2), and (3.3). As we have introduced in section 1,
{vn}82 _, denote the Fourier coefficients of v(s)?:

7(s)? = — Z v,e™ in  L%((0,2n)).

By assumption, v # 0 in L%((0,27)). Let n € N be such that v, 7& 0. Then, Theorem 3.2
implies that

|Gr(e)| = Z\/;€2|’Un| + O(e*) (e — O).
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Therefore, |Gyn(€)| > 0 for sufficiently small .  Combining this with (3.3), we get the conclu-
sion. O

Next we give an example of (s) satisfying (4.3) or (A.4). Now we suppose (4.1) and (A.2).
For € € (0, 1], we define

K5 @ R s (a5(s),b5(s)) € R?,
where

as(s) = /08 cos(—eh(s1)) dsi,
bi(s) = /03 sin(—eh(sl)‘) dsy,

W

»

)= /08 v(s2) dsa.

Then, &£ is a C™ curve whose curvature at kS (s) is ey(s). We define a map ®¢ by
P - R2 ' € d be bE d € R2.
: 3 (s,u) = [as(s) — u=e ~(8), b5(s) + uﬁaw(s) € R%.

Then, we have the following.

Proposition 3.5. Suppose
h(2r) =0

and

s
h —.
sén[()a,gc'n]l (S)l < 2

Then, there ezists some do > 0 such that for any € € (0,1], ®|rx(0,do) s injective.
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