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On the convergence of the Feynman path integral defined through
broken line paths

( Feynman 2 & 2 &FALDESHIZDOVT —REFRESOYCR)
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Section of Applied Math. Dept. of Computer Sci. Ehime Univ., Matsuyama
790, Japan (FRAZIEIH)

Abstract. We study the convergence of the Feynfnan path integral defined through
broken line paths in non-relativistic quantum mechanics. This path integral is very familiar
with us and well known to be useful. But its rigorous proof of its convergehce was given
little except for special cases. In the preceding paper, using the idea in the theory of
'd‘ifference methods and the theory of pseudo-differential operators, the author showed for a
class of potentials that this path integral converges and gives the solution of the Schrédinger
equation. In the present paper we generalize this result. We note that our result is gauge

invariant.

In the present paper we consider some charged particles in an electromag-
netic field. For the sake of simplicity we suppose charge = one and mass =
m > 0. Let £ € R* and t € [0,T]. We denote by E(t,z) = (By,---,E;) €
R? and (Bjk(t,w))15j<kgd € R¥4-1/2 the electric strength and the magnetic
strength tensor respectively. Let us introduce the electromagnetic potentials

V(t,z) € R, A(t,z) = (A1, -, Ag) € R%, which satisfy

E; =__W_— ‘5‘:1; G=1,--,d),
d
dd" Ajdz;)= Y Bjdz; Adz;, on R (0.1)
j=1 1<j<k<d
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It is well known that the electromagnetic potentials are not unique, but gauge
dependent. That is, the gauge transformation
O op .
"=V -, Ai=Aj4+ 5 =1,2,---,d 0.2
Vi=V——, * %2, (J ) (0.2)
leaves E and (Bjk(t,2))1<j<k<a unchanged.

In classical mechanics the Lagrangian function is given by
N Mg . |
L(t,z,z) = —Q—I:c| +(z-A-V). (0.3)

Let (R be the space of all paths v : [s,t] — R? and S(7) the classical

action

S(1) = [ £0,40), 4608, 3(9) = T (0) (0.4

for 4 € (R%)#Y. Then each classical path 7,

8O (1(1),4(1)) = S (t,7(2),4(0),

is given by the condition that S(v) is an extremum in the variational problem,
which is called the principle of least action (cf. [3]) So S(v) is fundamental in
classical mechanics.

Let L2 = L*(R?) denote the space of all square integrable functions on R?

with inner product (-,-) and norm || - ||. The Hamilton function
Ht,z,p) = —Ip— AP +V (0.5)
yHyP) = 2m Y4 .

is defined by the Legendre transformation H = :ic-p—/l, p=0L/0z of L(t,z,2)
in . In quantum mechanics the Hamiltonian operator H(t) can be obtained
after replacing p; by hi=10/0z; in H(t,z,p). It should be noticed that H(t)
has the ordering ambiguity (cf.[15]). Then the time evolution U(t, s)f of the
probability amplitude, i.e. ||U(¢,s)f|| = 1, is described by the Schrodinger
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equation

ihgt—u(t) = H(t)u(t), u(s)=f. (0.6)

On the other hand Feynman in [4] and [5] proposed another method of the
quantization. He claimed that the value of the ’probabilityvarrvlplitude U(t,s)f
at z is written as the sum, in some sense, of N~ (expih~1S5(7))f(7(s)) over all
paths v € (R%)*4 such that v() = z. N is a normalization factor independent
of z and . This 1s called the Feynman path integral or simply the path integral.

Since then, much Workalh‘a,s been dévoted‘by physists and mathematicians
to give the rigorous meaning of the Feynman path integral. In [1], [2], [12], [13],
[14],[16] et al. they studied the case where A is a constant magnetic potential
and V is a sum of |z|* and the Fourier transform of a complex measure of
bounded variation on R?. On the other hand Fujiwara and Yajima in [6], [7],
[17] studied the path integral defined through piecewise classical paths. They
showed its convergence for a class of potentials and that this path integral
satisfies the Schrodinger equation (1.6) with H(¢) determined by
H(t) = izdj(fwx. _4+V, D, =10 )
2m ’ 7 1 0z;

In the preceding paper [10] the author studied the path integral defined
through broken line paths, which is very familiar with us and well known to
be useful. Let A : 0 =1t <t < --- < t, = t be an arbitrary subdivision
of the interval [0,2] and put |A] = max;<j<a(t; — tj-1). Let 29 € R? (5 =
0,1,-+- ,n — 1) and denote by 7o = ya(z©@,zM, ... 201 z) € (R4 the
broken line path joining (t;,z¢)) ( = 0,1,--- ,n,z(™ = z). Let S be the
space of rapidly decreasing functions on R?. We define the operator C(A) on
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S by the oscillator integral

C(A)f
oT d (18) £(3OV g gz . . . dg™=1)
—_ i~ S(va 0 d 0 d 1 o dz(™ -1
]];_-_[1 2mih(t; —-tJ_ ) Os /Rd /Rd f(iE Ydzdx T
n . A N
= I_-_I 27rlh t _ t] 1) C—>O -/I;d Ad RS 0a) (em(l)) X(C:E( 1))

f(;v(o))d:c(o)d:c(l) oo dz™Y) (0.8)

where x(z) € S such that x(0) = 1 and Vi = e"/*. The path integral
is defined by lima|oC(A)f. For a multi-index a = (ai, - ,aq) we write

= (0/0z,)™ ---(0/0z4)* and |a| = 4_1a;j. In [10] the author proved
that this path integral can be defined and satlsﬁes the Schrodinger equation
(1.6) with H(t) determined by (1.7), assuming the below. There exist constants
§>0,v >0, and C, such fhat

102A4;(t,2)] < Co < 2 >0 |a| > 2, [828:4;(t,2)| < Ca, |0 21,
102V (t,z)| < Cay la] 22, [028:V(t,2)| < Ca<z>”, || 21

on (t,z) € [0,T] x R%, where < z >= /1 + |z|2.

In the present paper we generalize this result. We obtain the following.

Theorem. Let 8°E;(t,z),0%Bji(t,z), and 0;02B;j(t,z) be continuous on
[0,T] x R? for all o and suppose

|6§Bjk(t,$)| <Ca<cz >—(1+6)) lal > 1,
B (t,2) < Cor o 21, (1,3) € [0,T] X B (0.9)

for some § >0 and Cy. Let V and A; (j =1,2,--- ,d) be arbitrary continu-
ously differentiable potentials on [0,T] x R®. Then C(A) can be extended to a
bounded operator on L? and for f € L* C(A)f converges in L? uniformly in
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t € [0,7] as |A] — 0. So the path integral through broken line paths can be
defined. In addition, this path integral satisfies the Schrodinger equation with
H(t) determined by (1.7). |

The outline of the proof of Theorem is as follows. We use the idea in
difference methods and the theory of pseudo-differential opérators as in [10].
We denote by B* (a > 0) the weighted Sobolev space {f € L?; ||fl|lgs = || <
> f|| + |l < - >° f|| < oo}, where f is the Fourier transform [e =t f(z)dz.
Let us define 722 € (R*)lY by | |

(c-y) (s<0<t) (0.10)

t,s___
Tz y+t—s

and set for f € S

C(t,s)f = Vm/(2mih(t — 5)) [ exp(ih™' (7)) (9)dy, s <1,
g S =(0.11)

Then we can easily write for f € S

C(A)f =lim €t taa)x(€)C (b, tu)X(€) - Clta, t)X()C(t1, 0.

(0.12)
First we can show that there exist potentials V and A satisfying
V=0, [074;(t z)|+]0:074,(t )| < Ca,
la| >1, (t,z) €[0,T] x R (0.13)

for some C,. We fix these V and A for the moment. Then we can prove :

(1) C(t,s) is extended to a bounded operator on L? and satisfies
IC@t, s)fll < XUINIfl, 0<t—s<p* fel (0.14)

for some constants p* > 0 and K > 0.
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(ii) C(A) is extended to a bounded operator on L? and satisfies
C(A)f = Ct,tn-1)Cltn1,tn2) - -Clts,11)C(t1,0)f, f€ L% (0.15)

(iii) There exists an a > 0 such that

C(S+p73)f—f_H

Jim, oA ||eR (s)fll=0
uniformly in f € {g; [lg|lpe < C < o0} (0.16)

for any C.

The properties (i) and (ii) above can be proved by the analogous arguments in
[10]. But to prove (iii) we need a different method from that in [10]. We can
prove (iii) by showing the boundedness theorem on B® of the operators C(t,s),
0:C(t,s), and etc. From (i)-(iii) Theorem can be proved by the same arguments |
as in [10]. For the general potentials V' and A, applying the arguments about
the gauge transformation, we can prove Theorem.

This result will be published in [11].
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