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 ASYMPTOTIC OBSERVABLES FOR
N-BODY STARK HAMILTONIANS

IRERFREFTFER RIYEZR (TADAYOSHI ADACHI)

§1. Introduction

In this article, we study some asymptotic observables for N-body Stark Hamilto-
nians.
We consider a system of N particles moving in a given constant electric field £ €
"RY, € #£0. Let mj, e; and r; € R?% 1 < j < N, denote the mass, charge and
position vector of the j-th particle, respectively. The N particles under consideration
are supposed to interact with one another through the pair potentials V;i(r; — %),
1 <j <k < N. Then the total Hamiltonian for such a system is described by

~ 1
H = Z {-EATJ‘—QJE’TJ}‘I“/,

where £ -1 = E:'l=1 ¢;n; for &, n € RY and the interaction V is given as the sum of
the pair potentials

V=Y Vilr;—m).

1<j<k<N

As usual, we consider the Hamiltonian H in the center-of-mass frame. We introduce
the metric (r, ) = Z;v:1 mjr; - ¥ for r = (r1,... ,ry) and 7 = (74, ... ,Fx) € R¥*V,
We use the notation |r| = (r,r)1/2. Let X and X, be the configuration spaces
equipped with the metric (-,-), which are defined by '

Z m;r; = 0},

1<j<N
Xcm:{'reRdXN Irj:rk for1§j<k§N}.

X = {rGRdXN

These two subspaces are mutually drthdgona.l. We denote by ™ :VRdXN — X and
Tem : R¥N — X the orthogonal projections onto X and Xem, respectively. For
r € R¥*N we write z = nr and 7o, = TemT, Tespectively. Let E € X and Ecy € Xcm
be defined by ‘

E:w(e—lé‘,.. e—"’g), Ecm:ﬂ'cm(e—lé‘,... -eig),
mi

my T my "mpy
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respectively. Then the total Hamiltonian H is decomposed into H = H®Id+ I d®T e,
where Id is the identity operator, H is defined by
1

H = —58—(B,z)+V  on L3(X),

Tem denotes the free Hamiltonian Top = —Agpy, /2 — (Ecm, Tem) acting on L2 (Xem),
and A (resp. Acm) is the Laplace-Beltrami opérator on X (resp. Xem). We assume
that |E| # 0. This is equivalent to saying that e;/m; # ex/my for at least one pair
(j, k). Then H is called an N-body Stark Hamiltonian in the center-of-mass frame.

A non-empty subset of the set {1,...,N} is called a cluster. Let C;; 1 <j<m,
be clusters. If U;¢;<,,C; = {1,... ,N} and C;NCy =0 for1 < j < k < m,
a={Ci,...,Cn} is called a cluster decomposition. We denote by #(a) the number
of clusters in a. We denote by 4 the set of cluster decompositions. We let a, b € A.
If b is obtained as a refinement of a, that is, if each cluster in b is a subset of a cluster
in a, we say b C a, and its negation is denoted by b ¢ a. We note that a C ais
regarded as a refinement of a itself. If, in particular, b is a strict refinement of a, that
is, if b C @ and b # a, this relation is denoted by b C a. We denote by a = (j, k) the
(N — 1)—cluster decomposition {(j, k), (1),...,(3),..., (k),... ,(N)}.

Next we define the two subspaces X® and X, of X as

X“:{reX

Emjr_,- =0 for each cluster C in a},
! jec
Xo = {r € X |r; =y for each pair a = (j k) C a}.

We note that X< is the configuration space for the relative position of j-th and k-th
particles. Hence we can write V,(z®) = Vji(r; — rx). These spaces are mutually
orthogonal and span the total space X = X° @ X, so that L2 (X) is decomposed as
the tensor product L?(X) = L?(X?) ® L*(X,). We also denote by 7®: X — X® and
g 1 X — X, the orthogonal projections onto X and X,, respectively, and write
z® = m®r and x, = 7, x for a generic point £ € X. The intercluster interaction I, is
defined by

Li(z) = Z Va(z?),
afa
and the cluster Hamiltonian

Hy=H-1I,= ——;-A —(B,z) + Ve, Vo(z*) =) Va(z®),

aCa

governs the motion of the system broken into non-interacting clusters of particles. Let
E® = n° E and E, = 7w, E. Then the operator H, acting on L?(X ) is decomposed
into : ' ' '

, . Ho=H°®Id+I1d®T, on L*(X%)®L%*X,),
where H® is the subsystem Hamiltonian defined by i
1

Ha' = —§Aa —<Ea, $a> + Va on Lz(Xa)1
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T, is the free Hamiltonian defined by

T, = _%Aa — (Eq,Ta) on L*(X,),

and A® (resp. A,) is the Laplace-Beltrami operator on X¢ (resp. X,). By choosing
the coordinates system of X, which is denoted. by z = (z%,z,), appropriately, we can’
write A® = |V2|? and A, = |V,4|?, where V® = 8, = 8/92z® and V, = 0;, = 0/0z,
are the gradients on X° and X, respectively. We note that we denote by z? (resp.

zo) a vector in X* (resp. X,) as well as the coordinates system of X (resp. Xg).
We write p = —iV, p* = —iV® and p, = —iV,. : '

We now state the prec1se assumptlon on the pair potentials. Let ¢ be a maximal
element of the set {a €A f E¢ = 0} with respect to the relation C. As is easily seen,
such a cluster decomposition uniquely exists and it follows that E* = 0 if & C ¢, and
E> +£0if o ¢ c. Thus the potential V,, with o ¢ ¢ (resp. a C ¢) d%cnbeﬁ the pair
interaction between two particles with e;/m; # ex/my, (resp. ej/m; = ex/my). If, in
particular, e;/m; # ex/my, for any j # k, then ¢ becomes the N-cluster decomposi-
tion. We make different assumptions on V,, according as a & ¢ or @ C c. We assume
that V,(z®) € C*°(X*) is a real-valued function and has the decay property

(V1) |85V (z%)| = O(z|~ ' +8D), ace, o >0,

(V2)  |02aVa(z®)| =O(a|"@HAI), age p>0,
(V.3)  |05aVal(a®)| = ZCal <"+“'f">> age, pp>0
with p+u > 1.

We should note that we may allow that the potentials have some local singularities,
in particular, Coulomb singularities if d > 3 (see [HMS1]). But, for the simplicity of
the argument below, we do not deal with the singularities. Under this assumption, all
the Hamiltonians defined above are essentially self-adjoint on C§°. We denote their
closures by the same notations. Throughout the whole exposition, the notations c,
p', p and p are used with the meanings described above. We make some remarks
about potentials. For a C ¢, if p’ > 1 (resp. 0 < p’ < 1), V, is called a short-range
(resp. long-range) potential. For a ¢ ¢, if p > 1/2 (resp. 0 < p < 1/2), V, is
called a short-range (resp. long-range) potential. If we consider the problem of the
asymptotic completeness for long-range N-body Stark Hamiltonians, we should study
the Dollard-type (resp. Graf-type) modified wave operators under the assumptions
(V.1) and (V.2) (resp. (V.1) and (V.3)) (cf. [Al], [AT1-2], [Gr2], [JO], [JY], [HMS2]
and [W1-2]).

We assume that ¢ C c. Then the subsystem Hamiltonian H® does not have the
Stark effect, that is, E® = 0. Hence it may have bound states in L?(X?). We denote
by 0pp(H®) the pure point spectrum of H%, and define 7, = Ub(;a opp(H?) and
Ea = Upcq 9pp(H®). We note that o,,(H®) = {0} if #(a) = N. We also denote the
direction of F by w = E/|E| and write 2 = (x,w). We should note that z = (z,,w)
because of w® = 0. We set

X“:{meXla::'waor'yER}, Xy =XoeX,
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zy = 2w € X and z, = z—1x € X, and write z,,;, = 7,z . Then we can
write T, = (Z4,1,%)). We also write & = (&, 1,&)) for the coordinates dual to
Ty, = (Ta,1,7)) and denote by p, = —iV, = (Pq,1,py) the correspondmg velocity
operator. If we write 9, = wd,, we see that p| = —i9| and p,, . = p, —p). Let IS be
the intercluster interaction obtained from H¢:

L) =E@)= Y V=)

aCec,aa

For N-body long-range scattering, some asymptotic observables are very useful
for showing the asymptotic completeness for the systems without the Stark effect.
In particular, the asymptotic energy has been used by Enss [E], Sigal-Soffer [SS1-
2], Dereziriski [D2] and Gérard [G], and the asymptotic velocity has been used by
Enss [E], Dereziniski [D1-2] and Zielinski [Z]. Especially, Derezitiski [D2] studied the
spectral properties of the asymptotic energy and the asymptotic velocity, too. We
concern ourselves with the asymptotic observables for N-body Stark Hamiltonians.

We now formulate the results obtained in this article. We use the following conven-
tion for smooth cut-off functions F’ with 0 < F' < 1, which is often used throughout
the discussion below. For sufficiently small é6 > 0, we define

F(s<d)=1 fbrsgd—é, =0 for s>d,
F(s>d)=1 for s>d+6, =0 for s<d,
F(s=d)=1 for |[s—d| <6, =0 for |s—d|>26
and F(dl < s<dg) = F(s >di) F(s < dg). The choice of § > 0 does not matter to

the argument below, but we sometimes write Fs for F' when we want to clarify the
dependence on 6 > 0.

Theorem 1.1. Suppose that V satisfies (Vl), and (V.2) or (V.3). Let f € COO(X),
Coo(X) being the space of continuous functions on X vanishing at infinity. -Then the
following strong limits exist: ~

] G Py ) (1)
s— lim eHf ("’—"ﬁ) e~itH — £(0) (1.2)
t—+o0 12 ) . )

This result implies that |||[p— Etle"®*Hy|| = o(|¢|) and |||z — Et?/2|e~*H | = o(|t]?)
as t — oo for ¥ € D, where D is some appropriate dense set of L2(X) (see [Gr2]
for the two-body case). This fact was pointed out by [A2] in the term of propagation
estimates. In particular, (1.2) implies that the particles asymptotically concentrate
in any conical neighborhood of E, and this fact has played an important role for
the proof of the asymptotic completeness for long-range N-body Stark Hamiltonians
given by [A1], [AT1-2] and [HMS2]. Theorem 1.1 can be proved by the results of [A2].

The following theorem is a refinement of the above properties.
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‘Theorem 1.2. Suppose that V' satisfies (V.1), and (V.2) or (V.3). Let f; € Coo(X L),
f2 € Coo(X€), g1 € Cxo(X)) and g2 € Co(Xc). Then the following strong limits exist:

T tH TL\ —itH
o o5 (52) w9
s— lim e®*Hf, T et | (1.4)
t—+oo t ’
s — t_légloo etH g, (p” - Et) e HH (1.5)
: Ep2\
on am [T =3\ _un
8 t_l}glooe g1 <—t )e ) (1.6)
s— lim_ e g, (p. — Et) e H, (1.7)
v E ;2"
RTINS SO I L TS
s t_ljgme g2 ( ; )e . (1.8)

(1.5) (resp. (1.7)) equals (1.6) (resp. (1.8)). Moreover, there exists a unique vector
in X, (resp. X€) of commuting self-adjoint operators Pf(H ) (resp. PS*(H)) such
that (1.8) (resp. (1.4)) equals f1(PE(H)) (resp. fo(P&*(H))). PE(H) and Po*(H)
commaute with H.

This result implies that |||p. — Etle™*#4y|| < Cy and |||z — Et?/2|e™*Hy| < CL ||
as t — 300 for some positive constants Cy, and C{p. In particular, we should note that
the asymptotic velocity Pf (H) perpendicular to the vector E exists and commutes
with H. '

The notion of the asymptotic velocity is very useful for showing the asymptotic
completeness for N-body long-range scattering without the Stark effect, and, in
fact, J.Derezifiski [D2] constructed the asymptotic velocity and used it to prove
the problem. Also, he showed some properties of it, in particular, the relation be-
tween the asymptotic energy and it. He also showed the existence of the asymp-
totic “intercluster momentum” DX (Hjs, w) for the time-dependent Hamiltonian
Hpyow(t) =—0/2+V®(x) + W(t,z), which is defined by

s— lim Una,w(8) 9(pa)Unt,a,w(?)
—r 100

for g € Co(X,), where Uppq,w(t) is the propagator generated by Has e w(t). He
studied the relation between the asymptotic velocity and the asymptotic “interclus-
ter momentum”. The property that (1.5) (resp. (1.7)) equals (1.6) (resp. (1.8))
is an analogue of his results. However, both for N-body Schrédinger operators and
for N-body Stark Hamiltonians, we have not known the existence of the asymptotic
“innercluster momentum” yet: For example, in the case of N-body Schrédinger op-
erators, the asymptotic “innercluster momentum” should be defined by

- lim UM, w () 9(P") U a,w(2)
—+o00
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for g € Coo(X?). Thus we here consider the asymptotic velocity and “intercluster
momentum” only.

Of course, in the way similar to the above one, we may construct the asymptotic
velocity “Pi (H)” parallel to E by virtue of Theorem 1.2. But it is easily seen that

“Pi (HY ca.nnot commute with H since E # 0. Then we need some alternative
asymptotlc observables for H to study the spectral properties of H in terms of the -
asymptotic observables for H. Now we consider some asymptotic energy for H. The
following result is an analogue of Dereziniski’s result for N-body Stark Hamiltonians,
but we have to require that V satisfies (V.1), and (V.2) with p > 1/2 or (V.3).

Theorem 1.3. Suppose that V satisfies (V.1), and (V.2) with p>1/2 or (V.3). Let
h € Cx(R). Then there exist the following strong limits:

s— lim e h (1)) e, (1.9)
s~ lim e*¥h(T,)e | | (1.10)

where T\ = p2/2 — |E|z. Moreover, there ezists a um'que self-adjoint operator Tlfz
(resp. Ti) s'u,ch that (1.9) (resp. (1.10)) equals h(T} £ (resp. K(TE)). PE(H) (resp.
Pot(H)), T, (resp TF) and H are mutually commutatwe They have the following
properties:

o(H, P (H), Tif)
=UA{o, gm,x”) | A= —5 LFX T G, €Xo 1, N €R, TEED,
aCc (1.11)
o(H, P>*(H),T)
= U {ne€, Ae) | X = -(50)2 +tAe+7,EEXS N ER, TE &} (1.12)
aCc ‘
where Xy, 1 = X © X® and XS = X°6 X°
In §4, we will state a result analogous to this result under the assumption that V
satisfies (V.1) and (V.2) with 0 < p < 1/2.
§2. Known Results

In this section, we collect the known results to be used in later sections. First, we
recall the spectral properties of N-body Stark Hamiltonians, which has been studied
by Herbst-Mgller-Skibsted [HMS1]. We use the following notations throughout this
.article. Let w = E/|E| be the direction of E. We denote the coordinate z € R by
z = (z,w), so that H is written as H = —A/2 — |E| 2+ V. Let A = (w,p) = —id,.
We should note that

(2)"Y/20;(H + i)-i, (z)—la,-ak(H +4)71 ,:, L3(X) — L*(X)

are bounded, where 0; and 0y, are any components of V.
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Theorem 2.1. Suppose that V satisfies (V.1), and (V.2) or (V.3). Then
(1) H has no bound states. :
(2) Let 0 < 0 < |E|. Then one can take 6 > 0 so small (uniformly in A G R) that

Fs(H = Ni[H,AlFs(H = \) > o Fs(H = )\)?, (2.1)

Next, we state the known results about asymptotic observables-for N-body Hamil-
tonians without the Stark effect, which we will frequently use to prove Theorems
1.2 and 1.3. The results were obtained by Dereziniski [D2] and used for showing the
asymptotic completeness for N-body long-range scattering (see Sect. 4 of [D2]).

Let Hys be an N-body Hamiltonian without the Stark effect:

1 2 (o
Hy =—5A+V on L*(X), V(o:):;Va(z ),

where each V,(z®) satisfies (V.1). Then, as in §1, we define the cluster Hamiltonian
Hp o and subsystem Hamiltonian H$,, a € A, as follows:

. 1 2 ) a
Huo =—350+V® on I3(X), Vi(z)= ;Va(z ),

HS, = —%A“ +V*® on L%(X?).

Here we recall that Ve(z) = V%(z?%). We introduce a time-dependent potential
W (¢, z) which is a smooth real-valued function on R x X such that

|0BW (t,z)| < Ca(t)=CHAD, ¢ >1 (2.2)
for some 0 > 0. Then we define time-dependent Hamiltonians

HM,W(t) =Hpy + W(t, :B),
HM,Q,W(t) = HM,a + W(t, ZD)

We denote by Uns,w (£) (resp. Un,q,w (t)) the propagator generated by H s w (£) (resp.
Ho,w(t)), where we say that U(t) is the propagator generated by H (t) if {U(¢)}>1
is a family of unitary operators such that for ¢ € D(H(1)), ¢y = U(t)y is a strong
solution of idvyy/dt = H(t)yy, Y1 = 9.

The following theorem was proved by Dereziniski [D2] (see Theorems 4.1, 4.2 and
4.3 of [D2]). The proof is based on the Graf’s idea [Grl], but we omit it.

Theorem 2.2. (1) For any h € C(R), the following strong limits exist:

s — Jim Ung.w (8)* h(ELw)Unaw (1), (2.3)
5 — Jim Upt,o,w (8)" B(H a)Up 00 (8) (2.4)

§ = im Unpo,w ()" R(H})UM,a,w (D). (2.5)
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There exists a unique self-adjoint operator Hj,},w (resp. HA",},G,W, H?\}ft_v ) such that

(2.3) (resp. (2.4), (2.5)) equals h(H}; ) (resp. h(H 3, w), h(Hy ).
(2) For any g € Co(X,), there exist

s = lim Upg.a,w(8)"9(pa)Un,a,w (8), (2.6)
s— Jim Unaw(®*9 (22) Unaw(®), (2.7)

and they equal each other. There ezists a unique vector in X, of commuting self-
adjoint operators D} (H M,,W) such that the limits (2.6) and (2.7) equal g(D}
(HM,a,w))- Moreo'uer D} (Hpqo,w) and Hy, Mao,w COmmute, and

Hytow = Hyjw + (D (Huaw))?. (28)

l\DIH

(3) Let J € Cy(X), Cy(X) being the space of bounded continuous functions on X.
Then there ezxists

s — lim Upgw (8)*J (;) Umw(t). (2.9)

There ezists a unique vector in X of commuting self-adjoint operators P (H W)
such that the limit (2.9) equals J(P*(Hm,w)). Moreover, P*(Hyw) and Hiyy,
commute, and

D} (Humaw) = PH(Humaw)a- (2.10)

(4) When W (t,z) =0,
E{o) (P*(H)) = EPP(H). (2.11)

Here Eo(P) is the spectral projection of a vector in X of commuting self-adjoint
operators P onto a Borel subset © of X, and EPP(H) is the eigenprojection of H.

(5)

o Hypw P Huw)) = | {V&) | A= —§2+T bo € Xa, TEE,). (2;12)
acEA

§3. Proof of Theorems 1.2 and 1.3 -

In this section, we prove Theorems 1.2 and 1.3. First we assume that V satisfies
(V.1), and (V.2) or (V.3). We begin with stating the propagation estimates for the
propagator e~**H_ which were obtained by [AT2] (see Propositions 3.1, 3.2, 3.5 and
3.7 of [AT2]). We omit the proof. |

Proposition 3.1. Let h € CP(R).
(1) Then there exists M > 1 dependent on h such that for ) € L2 (X),

= “F (%l :M) h(H)e—#Hy

2 .
<Clyl? (3.1)
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' and, for ¢ € 8(X), S(X) being the Schwartz space on X,

. oo
L5
(2) Let0<v < |E| and L > 0. Then for any ¢ € L?(X)
© dt z v e 112
_ L << —itH < 2. . )
/1 1 ”F( L=z —z)h(H)e ¢’ <Cl¥l (3.3)

(8) Let M be as in (1) and v be as in (2). Fizx e > 0 and r > 0. Assume that
q € So(X) = {g € C®(X) ||68¢(z)| < Cpx)~1A1} vanishes in T'(w, €,7) = {reX|
(w, :1:/]9:|) >1—ey,|z| > r}, where w = E/|E|. Then

2
<oo. (3.2)

F ((tx) > M) h(H)e~*Hy

-

” 723)F (m s M) et <o @4

(4) Let M, v and q€ SO(X ) be as above. Let ®(t) denote one of the following three
operators

P(2an). FEey), r(Eepr(Den)e

s — lim ®(t)h(H)e 7 =0.
t—o0 .

Then

By taking account of this proposition and following the argument of [ATZ2], we
introduce an auxiliary time-dependent Hamﬂtoman H.(t) which approximates the
full Hamiltonian H:

Let g. € So(X) be such that ¢ = 1 in I'(w,€,|E|/3), and ¢ = 0 outside
['(w,2€1,|E|/4). Let G, € So(X) be such that ¢, = 1 in I'(w,2¢1,|E|/4), and ¢, =0
outside I'(w, 3¢, |E|/5). By definition, it follows that §.q. = ¢.. We define

eetie)=F (B <) (22 ) o) (35)
W(t2) = Welt,2%,22) = F (55 2 1) a.0)(o), (3.5)

We should note that ¢.(t,z)I.(x) = ¢c(t,z)W(t,z). By the assumption (V.2) or
(V.3), W, obeys the estimate

07205 We(t, )| < Cmp(t)"™((8) + (2)V/2)~3PHAD, ¢ > 1. (3.7)
Then we define the time-dependent Hamiltonian 7
| H.(t) = H, + W,(t, ), (3.8)

and denote by U,(t) the propagator generated by H.(t), that is, {U(t)};+>1 is a family
of unitary operators such that for v € D(Hc(1)), 4t = U(t)y is a strong solution of
idyy/dt = He()r, 1 = ¢

Then we have the following proposition which is an analogue of Proposition 3.1 for

the propagator U,(t). The result was obtamed by [AT2] (see Propositions 4.1-4.4 of
[AT2]). We omit the proof.
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Proposition 3.2. Let h € CP(R). |
(1) The there exists M > 1 dependent on h such that for ¢ € L*(X),

I

and, for ¢y € §(X),

2
<Clvl?, (3.9)

H (5 > M) aeopveco 2 (3.10)
(2) Let 0 < v< |E| and L > 0. Then for any ¢ € L?(X)’
[ %lr ( <& <3 IOV <clvir @)

(3) Let M be as in (1) and v be as in (2). Fizx e, > 0 and r > 0. Assume that
q € So(X) vanishes in I'(w, €1,7). Then . :

2
< Clyl*. (3.12)

” t2 = g)F(( > <M> qh(Hc(t))Uc(t)y

(4) Let M, v and q € So(X) be as above. Let ®(t) denote one of the following three
operators

P(G2u), r(3<8). P(G=pr(Dem)s

Then
s — tllglo S(t)R(H(1))U.(t) = 0.

If we have the above two propositions, we can prove the following theorem and its
corollary, which are the key facts for showing the asymptotic completeness for N-body
Stark Hamiltonians in [AT2] (see Theorems 4.5 and 4.6 of [AT2]). We omit the proof.

Theorem 3.3. Let the notations be as above. Then there erist the following strong
limits
Qe = s — lim A (t), (3.13)
t—o0
Qf = s— lim U(t)*e ¥, (3.14)
‘ t—o0 ‘
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Corollary 3.4. (Asymptotic clustering) Let the notation be as above. Then for
€ L?(X), there exists 1. € L*(X) such that ast — oo,

e *Hy = U, (t)ye +o(1). (3.15)

Now we prove Theorem 1.2. For this sake, we introduce a family of the unitary
operators {T'(t)}scr on L?(X) as follows: For u(z) € L2(X), we define

(T(t)u)(z) = P11 /6y (:1: - -gft?) . (3.16)
We also introduce the time-dependent Hamiltonian
E
HM,c(t) = HM,c + W, (t,xc,xc + Etz) = HM,c + WM,c(t), (317)

where we recall that Hpyr. = —A/2 + V°(z) acts on L#(X) and does not have the
Stark effect. We denote by Up(t) the propagator generated by Has(t), where
Um,(1) = Id. The family of transformations {T'(¢)}:cr was introduced by Jensen-
Yajima [JY], by which Stark Hamiltonians are transformed into Hamiltonians without
constant electric fields (see also [AH] and [H]). In fact, we see by the argument similar
to [JY] that

Ue(t) = T()Unm,o())T (1)~ (3.18)

This representation has played an important role to prove the asymptotic complete-
ness of the Dollard-type modified wave operators for N-body Stark Hamiltonians in
[AT2]. We should note that the observables p, , x, /¢, p° and z¢/t which we consider
in Theorem 1.2 do not undergo a change under the transformation 7°'(¢). We also note
that for f € Coo(X), ‘ ‘

T@) " f (a: — %ﬁ) T(t) = f(x). (3.19)

By virtue of the relations (3.18) and (3.19), we have only to apply Theorem 2.2 to
the propagator Up.(t) in order to prove the existence of the asymptotic velocities
(1.3) and (1.4), and of the limits (1.6) and (1.8), since the time-dependent potential
W () satisfies the estimate (2.2) with o0 = 2p by virtue of (3.7). It is sufficient to
show that (1.3) and (1.6) exist.

Proof of the existence of (1.8) and (1.6). By Theorem 3.3, we have only to show that
there exists the strong limit

s = Jlim Ue(t)'f (m “t%P) Ue(t) (3.20)

for f((z — Et2/2)/t) = fl(x;L /t) with f; € C(X_) in the case for proving the
existence of (1.3), or for f((x — Ft?/2)/t) = g1((z) — Et?/2)/t) with g1 € Coo(X]))
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in the case for proving the existence of (1.6). If we obtain the limit (3.20), the limits
(1.3) and (1.6) can be written as '

, xr — E—tg ,
s— lim ethf 2 e—th

t—o0 t

:Qc (3 - tllvrgo Uc(t)*f (1" —t%t2) Uc(t)) Q:a

and, hence, we see that there exist (1.3) and (1.6). Now, by (3.18) and (3.19), the
limit (3.20) can be written as

5= Jm T()0he(0) (2) UnacOT(1) (3:21)

Thus, by applying Theorem 2.2, we see that the limit (3.21) exists, that is, (3.20)
exists. In particular, the asymptotic velocities P}(H) and P®*(H) exist, and they
commute with H. O '

Next we prove the existence of the limits (1.5) and (1.7). Obviously, we have only
to show the existence of (1.7). We need the following lemma. '

Proof of the existence of (1.7). It is sufficient to prove that for any go € C§°(X,),
there exists (1.7). The Heisenberg derivative of go(p. — Et) is calculated as follows:
By (3.7),

d .
DHc(t)QQ(pc - Et) Zagz(Pc - Et) + "'[Hc(t)ag2(pc e Et)]
=i[We(t,2), 92(p — Et)) = Ot 429,
Thus, by using Cook’s method, we see that (1.7) exists. O

Next we prove that (1.7) equals (1.8). We need the following lemma.
Lemma 3.5. Let ¢ € S(X) Then ast — oo,

(mc — Pel + §t2> Uc(t)"p“ = O(tmax(o’l_2p)). ' - (3.22)

Proof. The Heisenberg derivative of z, — p.t + Et2/2 is
E 2 —2p
DHc(t) ZTe— Pt + _2't = thWc(ta :E) = O(t )

Thus, by integration, we have (3.22). [
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Proof of (1.7)=(1.8). We have only to show that for any go € C§°(X,), (1.7) equals
(1.8). By a calculus of pseudodifferential operators, we have

E2 '
r— 5t
92( 2 )—gz(Pc-'Et)

11
1 _ By . — Pt + Et?
:/ <chz(0x = +(1—0)(Pc—Et)>,x p°t+2 >d0
0
i x — E42
+ — | Acge | 0—=2— + (1 =0)(p. — Et) | do.
2t Jo t

Thus, by Lemma 3.5, we see that for ¢ € §(X),

_Eg |
(.92 (z t2t ) — g2(pc —Et)) Ue(t)y

This implies that (1.7) equals (1.8). O

l — O(tma.x(—l,—2p)).

Now we prove Theorem 1.3. Here we assume that V satisfies (V.1) and (V.2) with
p > 1/2. The case where V satisfies (V.1) and (V.3) can also be proved similarly.
First we prove the existence of the limits (1.9) and (1.10). Then we obtain the
existence of the asymptotic energies T”Jr and T} by the similar argument to the one

of Dereziniski [D2]. Obviously, it is sufficient to prove that (1.10) exists.

Proof of the existence of (1.10). We have only to show that for any h € C§*(R),
(1.10) exists. We shall prove the existence of the following limit:

s — lim Uq(t)" h(T.)Ue(2). ' (3.23)
—00
If we have the limit (3.23), the limit (1.10) can be written as
s — lim e*H (T, )e H
t—oo
—Q, (s ~ Jim Uc(t)*h(Tc)Uc(t)) Q,

and, by Theorem 3.3, we see that (1.10) exists. Since T, commute with H,, the
Heisenberg derivative of h(T.) is : '

Dy h(T.) = i[W,(t, z), i(T})].

By using the almost analytic extension method and the fact that (2)~/2p.h/(T,) is
bounded, we have, by virtue of (3.7),

Dy )h(T.) = Ot~2).

Since 2p > 1, by using Cook’s method, we see that (3.23) exists. [
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Taking account of that x, /¢ (resp. z°/t) commute with T)| (resp. T.), we see that
P} (H) (resp. Pe+(H)) commute with T”Jr (resp. T'). Also, by using the argument
similar to the one for showing the intertwining property of the wave operators, we
have T“Jr and TF commute with H. Thus we are interested in the joint spectrum of

those commuting self-adjoint operators.
We introduce the new time-dependent Hamiltonian

E
Hec(t) = Ho+ W, g(t,2°), W,qg(t,z°) =W, (t, x°, '§t2> ) (3.24)
and denote by U, ¢(t) the propagator generated by H (t). Since we may write
Heo(t) = HE() @ Id+ Id@ T, HE() = H + W,gl(t, 2, (3.25)
we should note that, denoting by U&(t) the propagator generated by H &(t), we may

write
Uec(t) = US(t) @ e #t-DTe (3.26)

We also note that, by virtue of (3.7), W, ¢(t) satisfies the estimate
18705 W (£, 3°)| < Crag () ™™ ({8) + () 1/2) (2o +BD, (3.27)

Now we shall replace U,(t) by U, g(t).
Lemma 3.6. Let i € S(X). Then ast — oo,

I(pe — EY (8]l = O(1), (3.28)
(- 5e) Uc-(t)w“ — o), (3.29)
I(pe — Et) U, c ()] = O(1), (3.30)
(zc - gﬁ) UC,G(t)¢|! = O(t). | (3.31)

Proof. Since the Heisenberg derivatives of p; — Et are
D . (pe — Bt) = Ot~ (29, Dy )(pe — Bt) = 0,

we have (3.28) and (3.30) by integration. Also, the Heisenberg derivatives of z,—Et2/2
are

E N _ E
DHc(t) (:Ec - Etz) =p. — Ft, DHc,G(t) (xc - —2-t2) = p. — Ft.

By integration, we have (3.29) and (3.31), by virtue of (3.28) and (3.30). O
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Proposition 3.7. Suppose that V- satisfies (V.1), and (V2) with p > 1/ 2 or (V.3).
Then there e:mst the following strong limits:

s— lim U())'Uec(), (33
s— lim Uec(®)Ve(®). (333

Proof. We have only to prove that for any ¢ € S(X), the limits (3.32) and (3.33)
exist. We prove the existence of (3.33) only We may show the existence of (3.32)
similarly. Since

& Ve Uel)) = Uc,c(tw(wc,a(t, 2) — We(t, 2))Ue(0)

1
We.a(t, z°) — W(t,z) = — / <VCWC (t,mc, Oz + (1 — G)g—tz) , Lo — §t2> do,
0 .

we have, by virtue of (3.7) and Proposition 3.7,
d « _
2 et Ul) = Ot™).
Since 2p > 1, by using Cook’s method, we see that (3.33) exists. O

Combining Theorem 3.3 with Proposition 3.7, we have the following proposition.

Proposition 3.8. Suppose that V satisfies (V.1), and (V.2) with p > 1/2 or (V.3).
Then there exist the following strong limits:

Q¢ =5~ lim U, (1), (3.34)
ec = 8= lim U.cl(t)"e —uH (3.35)

Proof of (1.12). Now we write
f2(Pe*(H)) =s — lim e f, (%) e~
=Qe,q (3 = Jim Ue,c(t)" fo ($—> Uc,‘G(t)) Q

e
e { (o= v 5 (%) v500) 010

=Qe,cf2(POH(HE) 6
h(H®%) =s — Jim et h(H)e H

=6 (3~ Jim Uec(8)* H(HVea (1)) U
Q. {(s — Jim U&(t)*h(Hc,)U&(t)) ® Id}
=Q..c(h(HG") ® 1) .
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Noting that H® = H$,, we may apply Theorem 2.2. Thus we have
o(H", PO+ (H)) =0 (HG", P> (HE))

=U{058) | 2= S +n & e Xe T e L),
ace | -(3.36)

Moreover, we shall prove the existence of the asymptotic energy HF: For h € Co(R),
R(HF)=s- Jim e h(H, )e #H, (3.37)
—r00

We have only to prove that for h € C§°(R), the limit (3.37) exists. For this sake, we
show that the following strong limit exists:

s— tlim Usc(t)* h(H.)Ue, g (2). (3.38)
—00
The Heisenberg derivative of h(H,) is
Dy, o h(He) = ilWe,g(t,2°), h(He)] = O(t™),

where we used the fact that (z)~1/2V<h/(H,) is bounded. Since 2p > 1, by Cook’s
method, we see that (3.38) exists. Then we may write the limit (3.37) as

R(HY) = Qe (s = lim Uea®) h(HVec(t)) .0

and thus we see that H_ exists. Taking account of the fact H, = H¢® Id + [d ® T,
we also obtain that for h € C(R),

h(H}) = h(H®T + TF). - (3.39)
Also, by virtue of (3.26), we have
h(Tg) = Qe h(Te)%

and, hence, we see that o(T,}) = o(T.) = R. Combining this fact with (3.36) and
(3.39), we obtain

o(HS, PH(H), TS)

—J{nee ) |2 = %(53)2 At EEXS A ER, TEE).
aCec (3.40)

Finally we prove that for k € C(R),

h(H) = h(H}). | (3.41)
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If we have (3.41), (1.12) follows from (3.40).. We have only to prove that for any
h e CP(R) and v = hy(H)y € L#(X) with by € CP(R),

h(Hyp = lim e*Hh(H, )e 1y, (3.42)

We define ¢, (t, x) associated with k; as in (3.5). Then by virtue of Propos1t10n 3.1,
the right-hand side of (3.42) may be written as

lim GitH (H.) e—itH¢
= tgrg etH h(H, ). (t, z)e~Hy
= lim e o (t, z)h(H )e #Hy
= lim e*Th(H)e™**"y = h(H)y,

where we used the fact that h(H.)pc (2, ) — @c(t, z)h(H) = O(t~2#). Thus the proof
of (1.12) is completed. O

Proof of (1.11). By Theorem 1.2, we know that (1.5) equals (1. 6), and (1.7) equals
(1.8). From this fact, we have for g3 € Coo (X, 1),

93(P; (H)) = s — lim ¥ g5(p.,1)e™ = Q¢ c95(pe, L)% s

and thus we see that o(P}, (H)) = X,,1 and h(T}}) = h(T;" + (P.,1 (H))?/2). There-
fore, (1.11) follows from this fact, (1 12) and X,,; = X¢ @XC,J_. a

§4. Long-range case

We may prove an analogue of Theorem 1.3 under the assumption that V satisfies
(V.1) and (V.2) with 0 < p < 1/2:

Theorem 4.1. Suppose that V satisfies (V.1) and (V.2) with 0 < p <1/2. Then

o(H,H} |, PF(H)) = [ {(MAe1:6a,1) | A=At X%, Aot = —(é., ) +,
aCc
A e R, ﬁa,,J_ € Xa,,J_a T ega}7
| (4.1)

where H, | = H° @ Id+ 1d®T,,, and T, = (pc,1)?/2.
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