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SPECTRAL GEOMETRY OF KAHLER HYPERSURFACES
IN THE COMPLEX GRASSMANN MANIFOLD

YoicHIRO MIYATA (GRIE#ERSLKZ B HE—ER)

§1. Introduction.

Let M be a compact C*°-Riemannian manifold, C°*°(M) the space of all smooth
functions on M, and A the Laplacian on M. Then A is a self-adjoint elliptic
differential operator é,cting on C*°(M), which has an infinite discrete sequence of
eigenvalues: Spec(M) = {0 = Ao < A\ < A2 < -++ < A < -+ T oo}. Let
Vie = Vi(M) be the eigenspace of A corresponding to the k-th eigenvalue \j.
Then V is finite-dimensional. We define an inner product ( , )zz on C®(M)
by (f, 9)r2 = [ uy J9dvnr. where dvys denotes the volume element on M. Then
Y eep Vi is dense in C*°(M) and the decomposition is orthogonal with respect to
the inner product ( , )z2. Thus we have C*°(M) = > ;2 Vi(M) (in L%-sense).
Since M is compact, Vj is the space of all constant functions which is 1-dimensional.

In this point of view, it is one of the simplest and the most interesting problems
to estimate the first eigenvalue. In [10], A. Ros gave the following sharp upper
bound for the first eigenvalue of Kahler submanifold of a complex projective space.

Theorem 1.1. Suppose that M is a complex m-dimensional compact Kahler sub-
manifold of the complex projective space CP™ of constant holomorphic sectional
curvature c. Then the first eigenvalue \; satisfies the following inequality:

A1 Se(m+1)
The equality holds if and only if M is congruent to the totally geodesic Kahler
submanifold CP™ of CP™.

If M is not totally geodesic, J-P. Bourguignon, P. Li and S. T. Yau in [1] gave
the following more sharp estimate. ( See also [7].)

Theorem 1.2. Suppose that M is a complex m-dimensional compact Kahler sub-
manifold of CP™, which is fully immersed and not totally geodesic. Then the first
eigenvalue A\ satisfies the following inequality:

n-+1
n

A S em

It is unknown when the equality holds in this inequality.
Our purpose is to give the upper bound for the first eigenvalue of Kahler hyper-
surfaces of a complex Grassmann manifold.
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Let denote by G,(C™) the complex Grassmann manifold of r-planes in C",
equiped with the Kahler metric of maximal holomorphic sectional curvature c. We
obtain the following result which is a natural generalization of Theorem 1.1.

Theorem A. Suppose that M is a compact connected Kéhler hypersurface of
G,(C™). Then the first eigenvalue A, satisfies the following inequality:

nse (o)

The equality holds if and only ifr = 1,n, and M is congruent to the totally geodesic
complex hypersurface CP™2 of the complex projective space CP®™1,

The 2-plane Grassmann manifold G2(C") admits the quaternionic Kéhler struc-
ture J. For the normal bundle T+ M of a Kahler hypersurface M of G2(C™), JT+M
is a vector bundle of real rank 6 over M which is a subbundle of the tangent bundle
of G2(C™). We consider a Kahler hypersurface M of G2(C™) satisfying the property
that JT+M is a subbundle of the tangent bundle TM of M. In the section 4, we
will introduce examples satisfying this property.

For a Kéahler hypersurface of G3(C") satisfying this property, we obtain the
following upper bound of the first eigenvalue.

Theorem B. Suppose that M is a compact connected Kahler hypersurface of
G2(C™), n 2 4. If M satisfies the condition J T*M C TM, then the following

inequality holds:
n—1
A s c(n—.2n—-5)

The equality holds if and only if n = 4 and M is congruent to the totally geodesic
complex hypersurface Q* of the complex quadric Q* = G5(C*).

These two theorems are proved in the section 5. More detailed proofs of any our
results are given in [8].

Notations. M, ;(C) denotes the set of all 7 X s matrices with entries in C, and
M, (C) stands for M, ,(C). I, and O, denote the identity r-matrix and the zero
r-matrix.

§2. Preliminaries. A

In this section, we discuss geometries of the complex r-plane Grassmann manifold
and its first standard imbedding,.

Let M,(C") be the complex Stiefel manifold which is the set of all unitary -
systems of C™, i.e., '

M. (C")={Z e M,.(C)|2*Z=1}.
The complex r-plane Grassman manifold G,.(C™) is defined by

G,(C™) = M,(C™)/U(r).
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The origin o of G.(C") is defined by W(VZO), where Zo = (I(;) is a element of

M, (C"), and 7: M,(C") — G,(C") is the natural projection.
The left action of the unitary group G = SU(n) on G,(C") is transitive, and the
isotropy subgroup at the origin o is

K=5(U(r)-Uln—r))
-{(3 &)

so that G,.(C™) is identified with a homogeneoﬁs space G/K
Set g = su(n) and

Ul (S U(’f’), Uz € U(n — ’I‘), det‘Ul detUz = 1} .

t=R®su(r) ®su(n —r)

u; 0 —1/-1I, 0
= +a
0 wup 0 'n,ir \Y _'1In—'r
then g and t are the Lie algebra of G and K , respectively. Define a linear subspace
m of g by .
_ 0 ¢ ,
w={(e T s},

then M is identified with the tangent space T,(G,(C")). The G-invariant complex
structure J of G(C") and the G-invariant Kahler metric §. of G,(C") of the
maximal holomorphic sectional curvature c are given by

(6 7) -0 59)

(2.1) i (X,Y) = —24rXY, XY €.
° c

u; € sulr
a €R, ' (") },

ug € su(n — r)

In the case of r = 2, the complex 2-plane Grassmann manifold Go(C") admits
another geometric structure named the quaternionic Kahler structure J. J is a
G-invariant subbundle of End(T(G2(C"))) of rank 3, where End(T(G2(C"))) is
the G-invariant vector bundle of all linear endmorphisms of the tangent bundle
T(G2(C™)). Under the identification with T,(G,(C™)) and t, the fiber J, at the
origin o is given by :

3o = {Jg=ad(§) lée%q},

where Eq is an ideal of & defined by

w={(5 %)

up € 5u(2)} = su(2).
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Choose a basis {¢1, g9, €3} of su(2) satisfying [€i, s,—+1] = 2¢&i42, (mod 3) . Set

€ = (%z 8) and J; = J, for i = 1,2, 3, then the basis {J1, Ja, J3 } is a canonical

basis of J,, satisfying

J? = —idy fori=1,2,3,
ToJo=—Jody =Js3, Jodz=—JsJo=J1, J3Ji=-J1Jz = Jo,
G (J:iX, JY) =G, (X,Y), for X,Y €mandi=12,3.

There exists an element &c of the center of € such that J is given by J = ad(éc) on
m. Therefore, J is commutable with J.

Let HM(n,C) be the set of all Hermitian (n,n)-matrices over C, which can be
identified with R*". For X,Y € HM (n,C), the natural inner product is given by

| 2
(2.2) | (X,Y) =~ trXY.

GL(n,C) acts on HM(n,C) by X +— BXB*, B € GL(n,C), X € HM(n,C).
Then the action of SU(n) leaves the inner product (2.2) invariant.

The first standard imbedding ¥ of G.(C") is defined by
U(n(Z))=ZZ* € HM(n,C), Z € M.(C").
V¥ is SU(n)-equivariant and the ima,ge N of GT(C-") undef ¥ is given as follows:
(2.3) N =¥(G.(C")) = {A € HM(n,C) | A> = A, trA=r}.
| The tangent bundle TN and the normal bundle T+ N are given by

T4N ={X € HM(n,C)| XA+ AX = X} C HM,,

2.4
(24) TN ={Z € HM(n,C)| ZA = ZX}.

I 0) , we can obtain

In particular, at the origin 4, = V(o) = ( 6 0

TN = {(2 50) l £ e A/fn_r,r«t:)} .
YA 0
rin={(7 2)

The complex structure J acts on T4, N as follows:

oo 9)=( )

(2.5)

Z, € HM(r,C), Z € HM(n — r,cr:)} .
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If r = 2, then the quaternionic Kéhler structure J acts on T4, N as follows:

Cen J: (g 5(;) (_%e eg*), e € su(2).

Let & and H denote the second fundamental form and the mean curva,ture vector
of ¥, respectively. Then, for A € N and X,Y € T4 N, we can see

(2.8) - oa(X,)Y) = (XY+YX)(I-2A)
and & satisﬁes the following;:

(2.10) G4(JX,JY) = 54(X,Y),
(2.11) (G4(X,Y), A) = -(X,Y).

§3. Examples.

One of the most simple typical examples of submanifolds of G,.(C™) is a totally
geodesic submanifold. B. Y. Chen and T. Nagano in [3, 4] determined maximal
totally geodesic submanifolds of G3(C"). For arbitrary r, I. Satake and S. Ihara
in [11, 5] determined all ( equivariant ) holomorphic imbeddings of a symmetric
domain into another symmetric domain. Taking a compact dual symmetric space
if necessary, we obtain the complete list of maximal totally geodesic Kahler sub-
manifolds of G,.(C™).

Since totally geodesic submanifols of G,(C™) are symmetric spaces, we can cal-
culus the first eigenvalue of the Laplacian of M. (cf. [14]) v

Theorem 3.1. Let M be a proper maximal totally geodesic Kahler submanifold of
G,(C"), and A1 the first eigenvalue of the Laplace-Beltrami operator with respect
to the induced Kahler metric. Then, M and X\; are one of the following (up to
isomorphism).

1) My =G.(C"1) G, (C*), 1Sr<n-2, and I =c(n-1)

(2) M =G,_1(C*) > G,(C*), 25rSn-1, and X =c(n-1)

(3) M; = Gn ((Cnl) X Grz((C"?) — G,,-1+1-2 (Cn1+n2), 1 g T; g n;—1,1=1,2,

and A\; = cmin{n;,nqs}

(4) My =M,p,=Sp(p)/U(p) = Gp(C??), p22, and I =c(p+1)

(5) Ms = Ms, = SO(2p)/U(p) — Gp(C?), p24, and A =c(p—-1)

(6) Msg,;m = CPP — G,.(C") : the complex projective space,

_( P _(p+1 <m<op—
"'—(m_l))n—( m )7 2smsp-1,

1
(7)) My = Q3 — Q* = G2(C*) : the complex quadric,c and A; =3¢
(8) Mg = Ms,zl Q?* — G,.(C?*) : the complex quadric, r=2""1, 12> 3,
21
21-2

and ,\1=c(p+1)(p"1)_

~and A =c
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In above list, notice that My s = My and M54 = Mg . _
Another one of the most simple typical examples of submanifolds of G,.(C") is a
homogeneous Kéhler hypersurface. K. Konno in [6] determined all Kahler C-spaces

embedded as a hypersurfa.ce into a Kahler C-space with the second Betti number
by = 1.

Theorem 3.2. Let M be a compact, simply connected homogeneous Kahler hy-
persurface of G.(C™), and ); the first eigenvalue of the Laplace-Beltrami operator
with respect to the induced Kihler metric. Then, M and )\, are one of the following
(up to isomorphism). ‘

(1) Mg =CP" 2 CP"1=Gi(C") and X =c(n-1)

(2) Mip=Q" 2 —>CP*1=Gi(C") and X =c(n-2)

(B) My =Q@*—=Q*=G2(C*) and X =3c

(4) My, = Sp(1)/U(2)Sp(l — 2) — Gi(C?) : Kahler C-space of type (C,az),

122 and X =c(20-1)

My and M7 are totally geodesic. My My and My are symmetric spaces. If | = 2,
then M is congruent to Mr.

For each | with [ > 2, Mj; is not a symmetric space. Then, it is not easy to
calculus the first eigenvalue A\; of My;. We will calculus A; of Mj; in the next
section. '

From these two theorems, we obtain the following proposition:

Proposition 3.3. Let M be either a proper maximal totally geodesic Kahler sub-
manifold of G.(C™) or a compact simply connected homogeneous Kahler hypersur-
face of G,(C™). Then, the first eigenvalue A\; of M with respect to the mduced
Kahler metric satisfies the following inequality:

A1 Sce(n—1).
Moreover, the equality holds if and only if M is congruent to one of the follows:

My, M,, Mys=M; My, M.

§4. the homogeneous Kahler hypersurface (C;, as).

In this section, we will consider the first eigenvalue of the Kahler C-space of type
(Ci, a,). For details, see [2] and [13].

The Kahler C-space of type (Ci, a,) is a compact simply connected homogeneous
Kahler manifold M = G/K = Sp(l)/U(r) - Sp(I —r), 1 £ r £ I. Denote by g and
t Lie algebras of G and K, respectively, i.e., '

A -C A,C e M;(C),
g=5p(l)={(c Z)’A*=—A,tlc("—)‘0}’



A 0 0 O
0 A 0 —o7 A€ M,(C),
te=3o % 7 o A,C'e M-, (C),
0 Cl 0 E A*—'—_—-—A,A,*:—Al,tclzcl
=u(r) +sp(l —r).

g is a compact semisimple Lie algebra of type C.
For z,y € M;_,,(C) and z € M,(C) with tz = z, define

0 O 0
T 0
n(w,y, z) = 2 _ty

o o oo

0
ty
y 0 0

Note that, if » = I, then we ignore = and y, and 5(z,v, z) and n(0,0, z) denote a

matrix (Ol Ol) , 2 € Mi(C), tz = 2.
z 01

Let m, m™ and m~ be subspaces of g defined by

m = {77(53, Y, Z) - 7](.’13,y, Z)*} ’
m+ = {T](:lf, Y, z)} ’
m~ = {n(z,y, z)*},

so that m, m™ and m™ are K-invariant under the adjoint action, and m is identified
with the tangent space T,M of M at the origin o = {K}. Moreover, the complexi-
fication m® of m is the direct sum m€ = m+ +m~, and m* is the ++/—1-eigenspace
of the complex structure J of M at the origin o.

For any positive real number a, the Einstein-Kahler metric g(a) of M is given
by ’

(41)  g(a)(X,X) = 2atr(z*c +y'y +22), X = n(z,y,z) — n(z,y,2)* €m.

Relative to this metric, the scalar curvature 7 of M is given by

__20Q-r+1)
, a
Y. Matsushima and M. Obata showed the following:

dim¢ M.

Theorem 4.1 [9]. Let M be an n-dimensional compact Einstein Kihler manifold

of positive scalar curvature 7. Then the first eigenvalue A\;(M) of the Laplacian
satisfies that

.
A > —.
1(M) 2 -

The equality holds if and only if M admits an one—paraméter group of isometries
(i.e., a non-trivial Killing vector field).

The natural inclusion Sp(l) +— SU(2l) defines an immersion ¢ of M into M =
G.(C?) = G/K = SU(2l)/S(U(r) - U(2l — 7)) by

vlg-K)=g-K, geG.

101
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Under identification of T,M with 1, the image of X = n(z,y, ;) —n(z,y,2)* €m

18
*

0 —-z* -z -y
’ z 0 0 0
(P*(X) - z 0 0 0 )
Y 0 0 0
" 'so that we have
- 4 " " —
(42) e (X), 94(X)) = S tr("5 + 37y +32).

Therefore, Theorem 4.1, (4.1) and (4.2) imply the following.

Theorem 4.2. For the Kihler C-space M = Sp(l)/U(r)- Sp(l — ) of type (Ci, o)
equiped with the Kélher metric g(2), M is immersed to G,(C*) by the Kéhler im-
mersion ¢. The complex dimension, and the first eigenvalue A1 (M) of the Laplacian
are given by

r(4l = 3r +1)

2 , )\1(M)=C(21—’l"+1)

dimec M =

In particular, if r = 2, then M = Sp(l)/U(2) - Sp(l — 2) is a Kahler hypersurface of
G2(C?"), whose first eigenvalue A;(M) of the Laplacian is given by

A(M) =c(21 - 1).

For z € M,(C), define an unit vector v at the origin o of G2(C?') by

*

N

v(z) =

onNn © O
[ew i e B en B o]
[en B en B )

Then v(z) is tangent to M if and only if 2z is symmetric.
The Kahler hypersurface M = (C}, a) satisfies the following property relative
to the quaternionic Kahler structure J of G2(C?").

Proposition 4.3. The Kahler hypersurface M = Sp(1)/U(2) - Sp(l - 2) of Go(C?)
satisfies
(4.3) IJT*M CTM (< J¢ L 3¢ forany ¢ € TTM ),
where TM and T+ M are the tangent bundle and the normal bundle of M, respec-
tively.

Proéf. Let v, be an unit normal vector of M at o defined by

1 /e/f0 -1
Vo = V(zo)> 2o = 5 5 1 0 y
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s0 that the normal space T;-M is given by

TiM = R{vo, Jvo =v(v/~12,)}.
Then we see

Jo T M =R {Jiv,, JiJve, i=1,2,3}
:R{u(zosi), v(vV—=1z,¢;), i=1, 2,3} ,

where Jy, J; and J; are a canonical basis of J, defined in the section 2. It is easy
to check that z,e; and v/—12z,¢; are symmetric, so that we obtain

Jo TM C T, M.
Since the quaternionic Kahler structure J is G-invariant, and since the immersion

¢ is G-equivariant, (4.3) holds at any point of M. O

If the ambient space is G3(C*), then the condition (4.3) determines a Kahler
hypersurface as follows:

Proposition 4.4. Suppose that a Kahler hypersurface M of Q* = G, (C4) satisfies
the condition

JTIM Cc TM.

Then M is totally geodesic. Moreover, if M is compact, then M is congruent to a
complex quadric Q* = Sp(2)/U(2).

Proof. Denote by V the Riemannian connection of Q*, and denote by V, o, A and
V1, the Riemannian connection, the second fundamental form, the shape operator,
and the normal connection of M, respectively. It is well-known that Gauss’ formula
and Weingarten’s formula hold:

VxY =VxY +0(X,Y),

4.4) .
( Vx€ = —AeX + Vx,

for X,Y € TM and ¢ € T+M. The metric condition implies

(45) 3e(0(X,Y),6) = (A X, Y).

Relative to the complex structure J, o and A satisfy

(4.6) q(X, JY)=Jo(X,Y), A¢oJ=-JoAs=—Ay.

For a local unit normal vector field &, we define local vector fields as follow:
e; = Ji€, 1 = 1,2,3, where J;, J2 and J; are a local canonical basis of J. Then,
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under the assumption of this proposition, {e;,ez,es3, Jey, Jez, Jé3, & JE} is a lo-
cal orthonormal frame field of Q* such that {ej,e,, 63, Jey, Jea, Jes} is a tangent
frame of M. For X € TM, (4.4) implies

(4.7) Vxe; +0(X,e) = Vxe; =(Vx )€+ J;(VxE)
= (VxBi)é — JiAeX + Ji(V%E)

Since J is parallel with respect to the connection V, we have VxJ; € J , so that the
normal component of (4.7) is

0(X, &) = = Gu(JiAe X, €)6 — Go(JiAeX, JE)JE
=9gc(Ae X, ;) + gc(Ae X, Je;)JE,
where g. is the induced Kéhler metric of M. On the other hand, (4.5) and (4.6)
imply
o(X,e;) =gc(0(X, €:), )¢ + G0 (X, €5), JE)JE
=gc(Ae X, ;)€ — gc(Ae X, Je;)JE.
From these two equations, we get
(4.8) - gc(AeX, Je;) = 0.
Instead of X, applying to JX, we have
9c(AeX, ;) = go(—AeJ X, Je;) = 0.

Therefore, we have A¢ = 0, or ¢ = 0, so that M is totally geodesic. By B. Y. Chen
and T. Nagano [3]’s results, if M is compact, M is congruent to a complex quadric

Q® =5p(2)/U(2). O

§5. proof of main theorems.

Let M be a compact connected Kahler hypersurface of G,.(C") immersed by a
immersion . It is well-known that every H M (n,C)-valued function F satisfies
(5.1) (AF, AF)p2 — M\ (AF, F);2 20

The equality holds if and onmly if F is a sum of eigenfunctions with respect to
eigenvalues 0 and A;. It is equivalent to that there exists a constant vector C e

HM(n,C) such that A(F — C) = A\ (F - C).

Denote by H the mean curvature vector of the isometric immersion ® = ¥ o ¢.
Then, since M is minimal in G,(C"), (2.9) implies
(5.2) 2(r(n—r) = )Ha =2r(n - r)Ha ~ 54(¢,€) — 54(J¢, JE)

| :c(rI_nA)—&A(svf)_&A(Jéﬂjé.)’

where A is a position vector of ®(M) in HM(n,C), and ¢ is a local unit normal
vector field of ¢. Using (2.11) and (5.2) , we get
(5.3) - (Hyg, A) = -1.

HM(n,C)-valued function ® satisfies A® = —2(r(n—r) — 1)H, so that (5.1) and
(5.3) imply the following. The equahty condition dues to T. Takahashi’s theorem
in [12].



Lemma 5.1.
(5.4) 2(r(n—r) - 1)/ (Ha, Hq)dvp — Mvol(M) 2 0.
M
The equality holds if and only if ® is 4 minimal immersion of M into some round
sphere in HM (n,C), more precisely, there exists some positive constat R and some

constant vector C € HM((n,C) such that H4 satisfies

(5.5) Ha= % (C — 4).

Lemma 5.2. If the equality holds in (5.4) , then M is contained in a totally
geodesic submanifold of G,(C™) which is product of Grassmann manifolds, more

precisely, there exist integers k;, r;, i = 1,--- ,m such that
0§r,§_k,, 7’127‘22 zrm,
dri=n Y oki=n,
i=1 : i=1
(5.6) M C G, (C*) x G,,(CF¥2) x --- x G, (C*) c G,.(C™).

Notice that Go(C*) = Gy, (C*) = {one point}.

proof. Assume that this equality holds in (5.4) .
Since M is minimal in G,(C"), H is normal to G,(C"). Then, from (2.4) and
(5.5) , we get

(5.7) CA = AC,

where C' is a constant vector in Lemma 5.1. Since SU(n) acts on G,(C") transi-
tively, without loss of generalization, we can assume that C is a diagonal matrix as
follows: '

c1ly, O

. caly, . .,
(5.8) C= ‘ . y ki >0, ci#ci(i#£7).

O “ Cm Ikm

Notice that : .
n=ky+ks+---+kp.

Define a linear subspace L of HM(n,C) by L = {Z € HM(n,C) | ZC = CZ}, so

that p
1
| n 0
L= . Z; € Mk,- (C)

0 ; Zm

105
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From (5.7) , M is contained in G,(C*)N L. , ‘
For each integer r; with 0 < r; < k;, Y oo, r; =, let’s define connected subsets

of G.(C™) by

4 0
W _ AZ Ai € Mk,‘ (C)7
SRS .. A2 = A;, trA;=r;

0 a7

So, G-(C™) N L is a disjoint union of all W, ... ;. ’s. Since M is connected, M is.

contained in suitable one of W, .. s, saying W, ... ».. By the definition, we see

*Tm
Wi = G (C) X Gy (C2) x -+ X G, (CF).

Without loss of generalization, we can choose a diagonal matrix C with respect to

which the inequalities 7y 2 73 2 -+ 2 7, hold. O v

From (2.8), (2.10) and (5.2) , we get

C

B9 M=o

{(rI —nA) — %(\11*5)2(I - 2A)} )
Using (2.2) and (2.3) , we see

(5.10)

(Ha, Ha) = 50 _CT) =t {nr(n —7) ot %’r (1,¢)>2 (I + 2 ;2TA>

+itr 1—3(%5)2(1 — 24)(T,8)%(I - 2A)}.

Since the immersion ¥ is G-equivariant, for any A € ®(M), there exists a element
g4 € G and a matrix v, € M,_,,(C) satisfying A, = g,A g} and

(5.11) 2 ( 0 ”g‘) = g4(0u&) 94 -

Vg

Since the inner product (,) is G-equivariant and ¢ is unit, we have tr VRv, =
trv,v% = 1. After translating by ga, together with (5.11) , (5.10) implies

(512)  (Ha, Ha) = o _CT) = {n(r(n—r) = 2) +2tr (vivswivs)}




Lemma 5.3. (a) Forv € M,,_,,(C) with tr v*v = 1, the following inequality holds
(5.13) trv*vv*v £ 1.

(b) Moreover, next three conditions are equivalent to each other.
(1) The equality holds in (5.13)

(2) The hermitian r-matrix v*v is similar to ((1) 0 0 ) .
r—1

(3) The hermitian (n — r)-matrix vv* is similar to <(1) 0 0 ) .
n—r—1

(c) If the equality holds in (5.13) , then there exists R = (15 g) e S(U(r) -

U(n —r)) such that v' = QuP* satisfies

I 1 1 0 1, 1% __ 1 0
v v—(o Or—l) and v'v —<0 On—-r—1)'

Proof. Lemma 5.3 follows from that both of hermitian matrices v*v and vo* are
similar to diagonal matrices with non-negative eigenvalues.

Form (5.12) and Lemma 5.3, the following lemma is immediately obtained,
which is used to prove Theorem A.

Lemma 5.4.

. c n—2
6 S o i)

The equality holds if and only if, for any A € ®(M), it is possible to choose v,
satisfying

« _ (1 O « (1 0
(5.15) 'vAvA—<0 0r—1> and vAvA—(O 0n—-r—-1>.

proof of Theorem A. (5.4) and (5.14) imply

n—2
A S - .
l—c(" r(n—.r)—l)
Let’s assume that this equality holds. Then, the equality conditions of Lemmas
5.1 and 5.4 hold. :

Assume m = 1. Then, (5.5) and (5.9) imply

c

1 | 4
7 (i — A) = =) =) {(rI —nA) - z(fo,;g)“’(I - 2A)} :

107



108

After translating by ga, together with (5.11) and (5.15) , we obtain

e e A UL OO ) 3

1 ¢ o0
ﬁclI"—T T 2r(n—r)—1) {rIn-_r - (0 On—r—1 ) } -

The first equation implies r = 1, and the second one implies n —r = 1. So, we have
n = 2 and r = 1. This contradicts that M is a complex hypersurface.

Since m 2 2, from Lemma 5.2, M is contained in a proper totally geodesic
submanifold of G,.(C"). On the other hand, M is of complex codimension 1 in
G.(C"). Consequently, either r = 1 or » = n — 1 occurs, and M is a totally

geodesic complex hypersurface of a complex projective space CP*~! 2~ G, (C") =

Gno1(CP). O

Proof of Theorem B. Let’s assume that M is a compact connected Kahler hyper-
surface of G2(C") satisfying the condition J¢ L JE. Since both of the complex
structure and the quaternionic Kahler structure are G-invariant, we obtain, at the
origin A, ' | '

0 vy (0 vy .
(5.16) J(UA O) J'J’(UA- 0>, 1 =1,2,3,

where J;, Jo and Js are a canonical basis of J, defined in the section 2. Set
vy=(vy v%), V4, vy €M, o,(C)=C" 2

Using (2.6) and (2.7), (5.16) implies that |v/,| = [v’}| and v/, L v;" . Combing

them with trviv, = 1, we obtain |v/y] = |v/{] = —lﬁ, so that

. : . 1(1 0
(517) N UAUA=§(O 1)
Together with (5.17) , (5.12) implies
c | h— 1
Hjpy, Hy) = — - .
(Ha, Ha) = 5575 {" 2n—5}
Therefore, form Lemma 5.1, we obtain |
n—1
/\1_S_c(n—-2n_5).

Let’s assume that this equality holds. Then, the equality conditions of Lemma
5.1 holds. :




Computing dimensions of manifolds in (5.6) , we have
. ) m
(5.18) 2n—5 § Zri(ki—ri).
i=1

m .
From ) " r;=2and ry 2ry 2 --- 2 r,,. the following two cases occur:

Casel: r

Case II:

TZZ:]--» 7'3:"':7’771:03

2, ro=---=r,=0.

- In Case I, (5.18) implies 2n —5 S k1 + ks —2 < n—2,s50 n £ 3. This is
contradiction.
Therefore, Case II occurs. Then, (5.18) implies 2n — 5 < 2(k; — 2), so that we

haven==%, m=1 ky=---=k,=0. (5.5) and (5.9) imply
L (e - A) ¢ (2T = nd) — 20,621 QA)
— (el -A)= —— —nA)— —(U, - .
Rz 2(2n - 5) nd) = LA

After translating by ¢, together with (5.11) and (5.17) , we obtain

1 c 1
Eﬁ(cl‘l)_m{?_"*i}’

1 c

—c1ly o =——— {2, 5 — v v}
R2 ! “ 7 9(2n — 5){ 2 lAlA}

The second equation implies

(5.19)  wh=dly, d=2-

From (5.17) , we have

dvg =dl,_svs = (v4v})vy = vy(vvy) = 5v4

so that d = % Consequently, taking traces of both sides of (5.19) , we obtain
n = 4. .
Therefore, from Proposition 4.4, M is congruent to Q3. O
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