SPECTRAL GEOMETRY OF KÄHLER HYPERSURFACES IN THE COMPLEX GRASSMANN MANIFOLD

YOICHIRO MIYATA (東京都立大学 宮田洋一郎)

§1. Introduction.

Let M be a compact C^{∞} -Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on M, and Δ the Laplacian on M. Then Δ is a self-adjoint elliptic differential operator acting on $C^{\infty}(M)$, which has an infinite discrete sequence of eigenvalues: $Spec(M) = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_k < \cdots \uparrow \infty\}$. Let $V_k = V_k(M)$ be the eigenspace of Δ corresponding to the k-th eigenvalue λ_k . Then V_k is finite-dimensional. We define an inner product $(\ ,\)_{L^2}$ on $C^{\infty}(M)$ by $(f,g)_{L^2} = \int_M fg \, dv_M$ where dv_M denotes the volume element on M. Then $\sum_{t=0}^{\infty} V_t$ is dense in $C^{\infty}(M)$ and the decomposition is orthogonal with respect to the inner product $(\ ,\)_{L^2}$. Thus we have $C^{\infty}(M) = \sum_{t=0}^{\infty} V_t(M)$ (in L^2 -sense). Since M is compact, V_0 is the space of all constant functions which is 1-dimensional.

In this point of view, it is one of the simplest and the most interesting problems to estimate the first eigenvalue. In [10], A. Ros gave the following sharp upper bound for the first eigenvalue of Kähler submanifold of a complex projective space.

Theorem 1.1. Suppose that M is a complex m-dimensional compact Kähler submanifold of the complex projective space $\mathbb{C}P^n$ of constant holomorphic sectional curvature c. Then the first eigenvalue λ_1 satisfies the following inequality:

$$\lambda_1 \leq c(m+1)$$

The equality holds if and only if M is congruent to the totally geodesic Kähler submanifold $\mathbb{C}P^m$ of $\mathbb{C}P^n$.

If M is not totally geodesic, J-P. Bourguignon, P. Li and S. T. Yau in [1] gave the following more sharp estimate. (See also [7].)

Theorem 1.2. Suppose that M is a complex m-dimensional compact Kähler submanifold of $\mathbb{C}P^n$, which is fully immersed and not totally geodesic. Then the first eigenvalue λ_1 satisfies the following inequality:

$$\lambda_1 \leq c \, m \, \frac{n+1}{n}$$

It is unknown when the equality holds in this inequality.

Our purpose is to give the upper bound for the first eigenvalue of Kähler hypersurfaces of a complex Grassmann manifold.

Let denote by $G_r(\mathbb{C}^n)$ the complex Grassmann manifold of r-planes in \mathbb{C}^n , equiped with the Kähler metric of maximal holomorphic sectional curvature c. We obtain the following result which is a natural generalization of Theorem 1.1.

Theorem A. Suppose that M is a compact connected Kähler hypersurface of $G_r(\mathbb{C}^n)$. Then the first eigenvalue λ_1 satisfies the following inequality:

$$\lambda_1 \le c \left(n - \frac{n-2}{r(n-r)-1} \right)$$

The equality holds if and only if r = 1, n, and M is congruent to the totally geodesic complex hypersurface $\mathbb{C}P^{n-2}$ of the complex projective space $\mathbb{C}P^{n-1}$.

The 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ admits the quaternionic Kähler structure \mathfrak{J} . For the normal bundle $T^{\perp}M$ of a Kähler hypersurface M of $G_2(\mathbb{C}^n)$, $\mathfrak{J}T^{\perp}M$ is a vector bundle of real rank 6 over M which is a subbundle of the tangent bundle of $G_2(\mathbb{C}^n)$. We consider a Kähler hypersurface M of $G_2(\mathbb{C}^n)$ satisfying the property that $\mathfrak{J}T^{\perp}M$ is a subbundle of the tangent bundle TM of M. In the section 4, we will introduce examples satisfying this property.

For a Kähler hypersurface of $G_2(\mathbb{C}^n)$ satisfying this property, we obtain the following upper bound of the first eigenvalue.

Theorem B. Suppose that M is a compact connected Kähler hypersurface of $G_2(\mathbb{C}^n)$, $n \geq 4$. If M satisfies the condition $\mathfrak{J} T^{\perp}M \subset TM$, then the following inequality holds:

$$\lambda_1 \le c \left(n - \frac{n-1}{2n-5} \right)$$

The equality holds if and only if n=4 and M is congruent to the totally geodesic complex hypersurface Q^3 of the complex quadric $Q^4=G_2(\mathbb{C}^4)$.

These two theorems are proved in the section 5. More detailed proofs of any our results are given in [8].

Notations. $M_{r,s}(\mathbb{C})$ denotes the set of all $r \times s$ matrices with entries in \mathbb{C} , and $M_r(\mathbb{C})$ stands for $M_{r,r}(\mathbb{C})$. I_r and O_r denote the identity r-matrix and the zero r-matrix.

§2. Preliminaries.

In this section, we discuss geometries of the complex r-plane Grassmann manifold and its first standard imbedding.

Let $M_r(\mathbb{C}^n)$ be the complex Stiefel manifold which is the set of all unitary r-systems of \mathbb{C}^n , i.e.,

$$M_r(\mathbb{C}^n) = \{ Z \in M_{n,r}(\mathbb{C}) \mid Z^*Z = I_r \}.$$

The complex r-plane Grassman manifold $G_r(\mathbb{C}^n)$ is defined by

$$G_r(\mathbb{C}^n) = M_r(\mathbb{C}^n)/U(r).$$

The origin o of $G_r(\mathbb{C}^n)$ is defined by $\pi(Z_0)$, where $Z_0 = \begin{pmatrix} I_r \\ 0 \end{pmatrix}$ is a element of $M_r(\mathbb{C}^n)$, and $\pi \colon M_r(\mathbb{C}^n) \longrightarrow G_r(\mathbb{C}^n)$ is the natural projection.

The left action of the unitary group $\tilde{G} = SU(n)$ on $G_r(\mathbb{C}^n)$ is transitive, and the isotropy subgroup at the origin o is

$$ilde{K} = S(U(r) \cdot U(n-r))$$

$$= \left\{ \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix} \middle| U_1 \in U(r), U_2 \in U(n-r), \det U_1 \det U_2 = 1 \right\}.$$

so that $G_r(\mathbb{C}^n)$ is identified with a homogeneous space \tilde{G}/\tilde{K} Set $\tilde{\mathfrak{g}} = \mathfrak{su}(n)$ and

$$\begin{split} \tilde{\mathfrak{k}} &= \mathbb{R} \oplus \mathfrak{su}(r) \oplus \mathfrak{su}(n-r) \\ &= \left\{ \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} + a \begin{pmatrix} -\frac{1}{r}\sqrt{-1}I_r & 0 \\ 0 & \frac{1}{n-r}\sqrt{-1}I_{n-r} \end{pmatrix} \, \middle| \, a \in \mathbb{R}, \, \begin{array}{c} u_1 \in \mathfrak{su}(r) \\ u_2 \in \mathfrak{su}(n-r) \end{array} \right\}, \end{split}$$

then $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{k}}$ are the Lie algebra of \tilde{G} and \tilde{K} , respectively. Define a linear subspace $\tilde{\mathfrak{m}}$ of $\tilde{\mathfrak{g}}$ by

$$ilde{\mathfrak{m}} = \left\{ \left(egin{matrix} 0 & -\xi^* \ \xi & 0 \end{array} \right) \;\middle|\; \xi \in M_{n-r,r}(\mathbb{C})
ight\},$$

then $\tilde{\mathfrak{m}}$ is identified with the tangent space $T_o(G_r(\mathbb{C}^n))$. The \tilde{G} -invariant complex structure J of $G_r(\mathbb{C}^n)$ and the \tilde{G} -invariant Kähler metric \tilde{g}_c of $G_r(\mathbb{C}^n)$ of the maximal holomorphic sectional curvature c are given by

$$J\begin{pmatrix}0&-\xi^*\\\xi&0\end{pmatrix}=\begin{pmatrix}0&\sqrt{-1}\xi^*\\\sqrt{-1}\xi&0\end{pmatrix},$$

(2.1)
$$\tilde{g}_{c_o}(X, Y) = -\frac{2}{c} tr XY, \quad X, Y \in \tilde{\mathfrak{m}}.$$

In the case of r=2, the complex 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ admits another geometric structure named the quaternionic Kähler structure \mathfrak{J} . \mathfrak{J} is a \tilde{G} -invariant subbundle of $End(T(G_2(\mathbb{C}^n)))$ of rank 3, where $End(T(G_2(\mathbb{C}^n)))$ is the \tilde{G} -invariant vector bundle of all linear endmorphisms of the tangent bundle $T(G_2(\mathbb{C}^n))$. Under the identification with $T_o(G_r(\mathbb{C}^n))$ and $\tilde{\mathfrak{m}}$, the fiber \mathfrak{J}_o at the origin o is given by

$$\mathfrak{J}_o = \left\{ J_{\tilde{\varepsilon}} = ad(\tilde{\varepsilon}) \; \middle| \; \tilde{\varepsilon} \in \tilde{\mathfrak{k}}_q \right\},$$

where $\tilde{\mathfrak{k}}_q$ is an ideal of $\tilde{\mathfrak{k}}$ defined by

$$\widetilde{\mathfrak{k}}_q = \left\{ \left(egin{array}{cc} u_1 & 0 \ 0 & 0 \end{array}
ight) \, \middle| \, u_1 \in \mathfrak{su}(2)
ight\} \cong \mathfrak{su}(2).$$

Choose a basis $\{\varepsilon_1, \, \varepsilon_2, \, \varepsilon_3\}$ of $\mathfrak{su}(2)$ satisfying $\left[\varepsilon_i, \, \varepsilon_{i+1}\right] = 2\,\varepsilon_{i+2}$, (mod 3). Set $\tilde{\varepsilon}_i = \begin{pmatrix} \varepsilon_i & 0 \\ 0 & 0 \end{pmatrix}$ and $J_i = J_{\varepsilon_i}$ for i=1,2,3, then the basis $\{J_1, \, J_2, \, J_3\}$ is a canonical basis of \mathfrak{J}_o , satisfying

$$\begin{split} J_i^2 &= -id_{\tilde{\mathfrak{m}}} \quad \text{for } i = 1, 2, 3, \\ J_1J_2 &= -J_2J_1 = J_3, \quad J_2J_3 = -J_3J_2 = J_1, \quad J_3J_1 = -J_1J_3 = J_2, \\ \tilde{g}_{c_2}(J_iX, J_iY) &= \tilde{g}_{c_2}(X, Y), \quad \text{for } X, Y \in \tilde{\mathfrak{m}} \text{ and } i = 1, 2, 3. \end{split}$$

There exists an element $\tilde{\varepsilon}_{\mathbb{C}}$ of the center of \mathfrak{k} such that J is given by $J=ad(\tilde{\varepsilon}_{\mathbb{C}})$ on \mathfrak{m} . Therefore, J is commutable with \mathfrak{J} .

Let $HM(n,\mathbb{C})$ be the set of all Hermitian (n,n)-matrices over \mathbb{C} , which can be identified with \mathbb{R}^{n^2} . For $X,Y\in HM(n,\mathbb{C})$, the natural inner product is given by

$$(X,Y) = \frac{2}{c} \operatorname{tr} XY.$$

 $GL(n,\mathbb{C})$ acts on $HM(n,\mathbb{C})$ by $X \longmapsto BXB^*, B \in GL(n,\mathbb{C}), X \in HM(n,\mathbb{C}).$ Then the action of SU(n) leaves the inner product (2.2) invariant.

The first standard imbedding Ψ of $G_r(\mathbb{C}^n)$ is defined by

$$\Psi(\pi(Z)) = ZZ^* \in HM(n, \mathbb{C}), \quad Z \in M_r(\mathbb{C}^n).$$

 Ψ is SU(n)-equivariant and the image N of $G_r(\mathbb{C}^n)$ under Ψ is given as follows:

(2.3)
$$N = \Psi(G_r(\mathbb{C}^n)) = \{ A \in HM(n, \mathbb{C}) \mid A^2 = A, \ trA = r \}.$$

The tangent bundle TN and the normal bundle $T^{\perp}N$ are given by

(2.4)
$$T_A N = \{ X \in HM(n, \mathbb{C}) \mid XA + AX = X \} \subset HM_0,$$
$$T_A^{\perp} N = \{ Z \in HM(n, \mathbb{C}) \mid ZA = ZX \}.$$

In particular, at the origin $A_o = \Psi(o) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, we can obtain

$$(2.5) T_{A_o}N = \left\{ \begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} \middle| \xi \in M_{n-r,r}(\mathbb{C}) \right\},$$

$$T_{A_o}^{\perp}N = \left\{ \begin{pmatrix} Z_1 & 0 \\ 0 & Z_2 \end{pmatrix} \middle| Z_1 \in HM(r,\mathbb{C}), Z_2 \in HM(n-r,\mathbb{C}) \right\}.$$

The complex structure J acts on $T_{A_o}N$ as follows:

(2.6)
$$J\begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\sqrt{-1}\xi^* \\ \sqrt{-1}\xi & 0 \end{pmatrix}.$$

If r=2, then the quaternionic Kähler structure \mathfrak{J} acts on $T_{A_0}N$ as follows:

(2.7)
$$J_{\tilde{\varepsilon}}\begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & \varepsilon \xi^* \\ -\xi \varepsilon & 0 \end{pmatrix}, \quad \varepsilon \in \mathfrak{su}(2).$$

Let $\tilde{\sigma}$ and H denote the second fundamental form and the mean curvature vector of Ψ , respectively. Then, for $A \in N$ and $X, Y \in T_A N$, we can see

$$\tilde{\sigma}_A(X,Y) = (XY + YX)(I - 2A)$$

(2.9)
$$\tilde{H}_A = \frac{c}{2r(n-r)} (rI - nA)$$

and $\tilde{\sigma}$ satisfies the following:

(2.10)
$$\tilde{\sigma}_A(JX, JY) = \tilde{\sigma}_A(X, Y),$$

(2.11)
$$(\tilde{\sigma}_A(X,Y), A) = -(X,Y).$$

§3. Examples.

One of the most simple typical examples of submanifolds of $G_r(\mathbb{C}^n)$ is a totally geodesic submanifold. B. Y. Chen and T. Nagano in [3, 4] determined maximal totally geodesic submanifolds of $G_2(\mathbb{C}^n)$. For arbitrary r, I. Satake and S. Ihara in [11, 5] determined all (equivariant) holomorphic imbeddings of a symmetric domain into another symmetric domain. Taking a compact dual symmetric space if necessary, we obtain the complete list of maximal totally geodesic Kähler submanifolds of $G_r(\mathbb{C}^n)$.

Since totally geodesic submanifols of $G_r(\mathbb{C}^n)$ are symmetric spaces, we can calculus the first eigenvalue of the Laplacian of M. (cf. [14])

Theorem 3.1. Let M be a proper maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$, and λ_1 the first eigenvalue of the Laplace-Beltrami operator with respect to the induced Kähler metric. Then, M and λ_1 are one of the following (up to isomorphism).

(1)
$$M_1 = G_r(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n)$$
, $1 \leq r \leq n-2$, and $\lambda_1 = c(n-1)$

(2)
$$M_2 = G_{r-1}(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n), \quad 2 \leq r \leq n-1, \quad \text{and} \quad \lambda_1 = c(n-1)$$

(2)
$$M_2 = G_{r-1}(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n), \quad 2 \leq r \leq n-1, \quad \text{and} \quad \lambda_1 = c(n-1)$$

(3) $M_3 = G_{r_1}(\mathbb{C}^{n_1}) \times G_{r_2}(\mathbb{C}^{n_2}) \hookrightarrow G_{r_1+r_2}(\mathbb{C}^{n_1+n_2}), \quad 1 \leq r_i \leq n_i-1, i=1,2,$
and $\lambda_1 = c \min\{n_1, n_2\}$

(4)
$$M_4 = M_{4,p} = Sp(p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \geq 2, \quad \text{and} \quad \lambda_1 = c(p+1)$$

(4)
$$M_4 = M_{4,p} = Sp(p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \geq 2, \quad \text{and} \quad \lambda_1 = c(p+1)$$

(5) $M_5 = M_{5,p} = SO(2p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \geq 4, \quad \text{and} \quad \lambda_1 = c(p-1)$

(6)
$$M_{6,m} = \mathbb{C}P^p \hookrightarrow G_r(\mathbb{C}^n)$$
: the complex projective space, $r = \binom{p}{m-1}, \quad n = \binom{p+1}{m}, \quad 2 \leq m \leq p-1,$ and $\lambda_1 = c(p+1) \binom{p-1}{m-1}^{-1}$

and
$$\lambda_1 = c(p+1) \begin{pmatrix} p-1 \\ m-1 \end{pmatrix}^-$$

(7)
$$M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4)$$
: the complex quadric, and $\lambda_1 = 3c$

(7)
$$M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4)$$
: the complex quadric, and $\lambda_1 = 3c$
(8) $M_8 = M_{8,2l} = Q^{2l} \hookrightarrow G_r(\mathbb{C}^{2r})$: the complex quadric, $r = 2^{l-1}$, $l \geq 3$, and $\lambda_1 = c \frac{2l}{2^{l-2}}$

In above list, notice that $M_{4,2} = M_7$ and $M_{5,4} = M_{8,6}$.

Another one of the most simple typical examples of submanifolds of $G_r(\mathbb{C}^n)$ is a homogeneous Kähler hypersurface. K. Konno in [6] determined all Kähler C-spaces embedded as a hypersurface into a Kähler C-space with the second Betti number $b_2 = 1.$

Theorem 3.2. Let M be a compact, simply connected homogeneous Kähler hypersurface of $G_r(\mathbb{C}^n)$, and λ_1 the first eigenvalue of the Laplace-Beltrami operator with respect to the induced Kähler metric. Then, M and λ_1 are one of the following (up to isomorphism).

- (1) $M_9 = \mathbb{C}P^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$ and $\lambda_1 = c(n-1)$ (2) $M_{10} = Q^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$ and $\lambda_1 = c(n-2)$
- (3) $M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4)$ and $\lambda_1 = 3c$
- (4) $M_{11} = Sp(l)/U(2)Sp(l-2) \hookrightarrow G_l(\mathbb{C}^{2l})$: Kähler C-space of type (C_l, α_2) , $l \geq 2$ and $\lambda_1 = c(2l-1)$

 M_9 and M_7 are totally geodesic. M_9 M_{10} and M_7 are symmetric spaces. If l=2, then M_{11} is congruent to M_7 .

For each l with l > 2, M_{11} is not a symmetric space. Then, it is not easy to calculus the first eigenvalue λ_1 of M_{11} . We will calculus λ_1 of M_{11} in the next section.

From these two theorems, we obtain the following proposition:

Proposition 3.3. Let M be either a proper maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$ or a compact simply connected homogeneous Kähler hypersurface of $G_r(\mathbb{C}^n)$. Then, the first eigenvalue λ_1 of M with respect to the induced Kähler metric satisfies the following inequality:

$$\lambda_1 \leq c (n-1).$$

Moreover, the equality holds if and only if M is congruent to one of the follows:

$$M_1, \quad M_2, \quad M_{4,2}=M_7, \quad M_9, \quad M_{11}.$$

§4. the homogeneous Kähler hypersurface (C_l, α_2) .

In this section, we will consider the first eigenvalue of the Kähler C-space of type (C_l, α_r) . For details, see [2] and [13].

The Kähler C-space of type (C_l, α_r) is a compact simply connected homogeneous Kähler manifold $M = G/K = Sp(l)/U(r) \cdot Sp(l-r)$, $1 \le r \le l$. Denote by g and \mathfrak{k} Lie algebras of G and K, respectively, i.e.,

$$\mathfrak{g}=\mathfrak{sp}(l)=\left\{\left(egin{array}{cc} A & -\overline{C} \ C & \overline{A} \end{array}
ight) \left|egin{array}{cc} A,C\in M_l(\mathbb{C}), \ A^*=-A,\,^tC=C \end{array}
ight\},$$

$$\mathfrak{k} = \left\{ \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A' & 0 & -\overline{C'} \\ 0 & 0 & \overline{A} & 0 \\ 0 & C' & 0 & \overline{A'} \end{pmatrix} \middle| \begin{array}{c} A \in M_r(\mathbb{C}), \\ A', C' \in M_{l-r}(\mathbb{C}), \\ A^* = -A, A'^* = -A', {}^tC' = C' \end{array} \right\}$$

$$= \mathfrak{u}(r) + \mathfrak{sp}(l-r).$$

 \mathfrak{g} is a compact semisimple Lie algebra of type C_l .

For $x, y \in M_{l-r,r}(\mathbb{C})$ and $z \in M_r(\mathbb{C})$ with t = z, define

$$\eta(x,y,z) = egin{pmatrix} 0 & 0 & 0 & 0 \ x & 0 & 0 & 0 \ z & {}^t y & 0 & -{}^t x \ y & 0 & 0 & 0 \end{pmatrix}.$$

Note that, if r=l, then we ignore x and y, and $\eta(x,y,z)$ and $\eta(0,0,z)$ denote a matrix $\begin{pmatrix} 0_l & 0_l \\ z & 0_l \end{pmatrix}$, $z \in M_l(\mathbb{C})$, ${}^tz=z$.

Let m, m⁺ and m⁻ be subspaces of g defined by

$$egin{aligned} \mathfrak{m} &= \left\{ \eta(x,y,z) - \eta(x,y,z)^*
ight\}, \\ \mathfrak{m}^+ &= \left\{ \eta(x,y,z)
ight\}, \\ \mathfrak{m}^- &= \left\{ \eta(x,y,z)^*
ight\}, \end{aligned}$$

so that \mathfrak{m} , \mathfrak{m}^+ and \mathfrak{m}^- are K-invariant under the adjoint action, and \mathfrak{m} is identified with the tangent space T_oM of M at the origin $o = \{K\}$. Moreover, the complexification $\mathfrak{m}^{\mathbb{C}}$ of \mathfrak{m} is the direct sum $\mathfrak{m}^{\mathbb{C}} = \mathfrak{m}^+ + \mathfrak{m}^-$, and \mathfrak{m}^{\pm} is the $\pm \sqrt{-1}$ -eigenspace of the complex structure J of M at the origin o.

For any positive real number a, the Einstein-Kähler metric g(a) of M is given by

(4.1)
$$g(a)(X,X) = 2a \operatorname{tr}(x^*x + y^*y + \overline{z}z), \quad X = \eta(x,y,z) - \eta(x,y,z)^* \in \mathfrak{m}.$$

Relative to this metric, the scalar curvature τ of M is given by

$$\tau = \frac{2(2l-r+1)}{a}\dim_{\mathbb{C}} M.$$

Y. Matsushima and M. Obata showed the following:

Theorem 4.1 [9]. Let M be an n-dimensional compact Einstein Kähler manifold of positive scalar curvature τ . Then the first eigenvalue $\lambda_1(M)$ of the Laplacian satisfies that

$$\lambda_1(M) \geqq \frac{\tau}{n}.$$

The equality holds if and only if M admits an one-parameter group of isometries (i.e., a non-trivial Killing vector field).

The natural inclusion $Sp(l)\mapsto SU(2l)$ defines an immersion φ of M into $\tilde{M}=G_r(\mathbb{C}^{2l})=\tilde{G}/\tilde{K}=SU(2l)/S(U(r)\cdot U(2l-r))$ by

$$\varphi(g \cdot K) = g \cdot \tilde{K}, \quad g \in G.$$

Under identification of $T_o\tilde{M}$ with $\tilde{\mathfrak{m}}$, the image of $X=\eta(x,y,z)-\eta(x,y,z)^*\in\mathfrak{m}$ is

$$arphi_*(X) = egin{pmatrix} 0 & -x^* & -\overline{z} & -y^* \ x & 0 & 0 & 0 \ z & 0 & 0 & 0 \ y & 0 & 0 & 0 \end{pmatrix},$$

so that we have

(4.2)
$$\tilde{g}_c(\varphi_*(X), \varphi_*(X)) = \frac{4}{c} \operatorname{tr}(x^*x + y^*y + \overline{z}z).$$

Therefore, Theorem 4.1, (4.1) and (4.2) imply the following.

Theorem 4.2. For the Kähler C-space $M = Sp(l)/U(r) \cdot Sp(l-r)$ of type (C_l, α_r) equiped with the Kähler metric $g(\frac{2}{c})$, M is immersed to $G_r(\mathbb{C}^{2l})$ by the Kähler immersion φ . The complex dimension, and the first eigenvalue $\lambda_1(M)$ of the Laplacian are given by

$$\dim_{\mathbb{C}} M = \frac{r(4l-3r+1)}{2}, \quad \lambda_1(M) = c\left(2l-r+1\right).$$

In particular, if r=2, then $M=Sp(l)/U(2)\cdot Sp(l-2)$ is a Kähler hypersurface of $G_2(\mathbb{C}^{2l})$, whose first eigenvalue $\lambda_1(M)$ of the Laplacian is given by

$$\lambda_1(M) = c(2l-1).$$

For $z \in M_r(\mathbb{C})$, define an unit vector ν at the origin o of $G_2(\mathbb{C}^{2l})$ by

$$\nu(z) = \begin{pmatrix} 0 & 0 & -z^* & 0 \\ 0 & 0 & 0 & 0 \\ z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \tilde{\mathfrak{m}}, \quad \frac{4}{c} \operatorname{tr} z^* z = 1.$$

Then $\nu(z)$ is tangent to M if and only if z is symmetric.

The Kähler hypersurface $M = (C_l, \alpha_2)$ satisfies the following property relative to the quaternionic Kähler structure \mathfrak{J} of $G_2(\mathbb{C}^{2l})$.

Proposition 4.3. The Kähler hypersurface $M = Sp(l)/U(2) \cdot Sp(l-2)$ of $G_2(\mathbb{C}^{2l})$ satisfies

$$(4.3) \Im T^{\perp}M \subset TM \quad (\iff J\xi \perp \Im\xi \text{ for any } \xi \in T^{\perp}M),$$

where TM and $T^{\perp}M$ are the tangent bundle and the normal bundle of M, respectively.

Proof. Let ν_o be an unit normal vector of M at o defined by

$$u_o =
u(z_o), \quad z_o = \frac{1}{2} \sqrt{\frac{c}{2}} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

so that the normal space $T_o^{\perp}M$ is given by

$$T_o^{\perp} M = \mathbb{R} \left\{ \nu_o, J \nu_o = \nu(\sqrt{-1}z_o) \right\}.$$

Then we see

$$\mathfrak{J}_o \ T_o^{\perp} M = \mathbb{R} \left\{ J_i \nu_o, \ J_i J \nu_o, \quad i = 1, 2, 3 \right\}$$

= $\mathbb{R} \left\{ \nu(z_o \varepsilon_i), \ \nu(\sqrt{-1} z_o \varepsilon_i), \quad i = 1, 2, 3 \right\},$

where J_1 , J_2 and J_3 are a canonical basis of \mathfrak{J}_o defined in the section 2. It is easy to check that $z_o\varepsilon_i$ and $\sqrt{-1}z_o\varepsilon_i$ are symmetric, so that we obtain

$$\mathfrak{J}_o T_o^{\perp} M \subset T_o M$$
.

Since the quaternionic Kähler structure $\mathfrak J$ is $\tilde G$ -invariant, and since the immersion φ is G-equivariant, (4.3) holds at any point of M. \square

If the ambient space is $G_2(\mathbb{C}^4)$, then the condition (4.3) determines a Kähler hypersurface as follows:

Proposition 4.4. Suppose that a Kähler hypersurface M of $Q^4 = G_2(\mathbb{C}^4)$ satisfies the condition

$$\mathfrak{J} T^{\perp} M \subset TM$$
.

Then M is totally geodesic. Moreover, if M is compact, then M is congruent to a complex quadric $Q^3 = Sp(2)/U(2)$.

Proof. Denote by $\tilde{\nabla}$ the Riemannian connection of Q^4 , and denote by ∇ , σ , A and ∇^{\perp} , the Riemannian connection, the second fundamental form, the shape operator, and the normal connection of M, respectively. It is well-known that Gauss' formula and Weingarten's formula hold:

(4.4)
$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$$

$$\tilde{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi,$$

for $X,Y\in TM$ and $\xi\in T^{\perp}M.$ The metric condition implies

(4.5)
$$\tilde{g}_c(\sigma(X,Y),\xi) = \tilde{g}_c(A_{\xi}X,Y).$$

Relative to the complex structure J, σ and A satisfy

(4.6)
$$\sigma(X, JY) = J\sigma(X, Y), \quad A_{\xi} \circ J = -J \circ A_{\xi} = -A_{J\xi}.$$

For a local unit normal vector field ξ , we define local vector fields as follow: $e_i = J_i \xi$, i = 1, 2, 3, where J_1 , J_2 and J_3 are a local canonical basis of \mathfrak{J} . Then,

under the assumption of this proposition, $\{e_1, e_2, e_3, Je_1, Je_2, Je_3, \xi, J\xi\}$ is a local orthonormal frame field of Q^4 such that $\{e_1, e_2, e_3, Je_1, Je_2, Je_3\}$ is a tangent frame of M. For $X \in TM$, (4.4) implies

(4.7)
$$\nabla_X e_i + \sigma(X, e_i) = \tilde{\nabla}_X e_i = (\tilde{\nabla}_X J_i) \xi + J_i (\tilde{\nabla}_X \xi)$$
$$= (\tilde{\nabla}_X J_i) \xi - J_i A_{\xi} X + J_i (\nabla_X^{\perp} \xi)$$

Since \mathfrak{J} is parallel with respect to the connection $\tilde{\nabla}$, we have $\tilde{\nabla}_X J_i \in \mathfrak{J}$, so that the normal component of (4.7) is

$$\sigma(X, e_i) = -\tilde{g}_c(J_i A_{\xi} X, \xi) \xi - \tilde{g}_c(J_i A_{\xi} X, J \xi) J \xi$$

= $g_c(A_{\xi} X, e_i) \xi + g_c(A_{\xi} X, J e_i) J \xi$,

where g_c is the induced Kähler metric of M. On the other hand, (4.5) and (4.6) imply

$$\sigma(X, e_i) = \tilde{g}_c(\sigma(X, e_i), \xi)\xi + \tilde{g}_c(\sigma(X, e_i), J\xi)J\xi$$

= $g_c(A_{\xi}X, e_i)\xi - g_c(A_{\xi}X, Je_i)J\xi$.

From these two equations, we get

$$(4.8) g_c(A_{\ell}X, Je_i) = 0.$$

Instead of X, applying to JX, we have

$$g_c(A_{\xi}X, e_i) = g_c(-A_{\xi}JX, Je_i) = 0.$$

Therefore, we have $A_{\xi} = 0$, or $\sigma = 0$, so that M is totally geodesic. By B. Y. Chen and T. Nagano [3]'s results, if M is compact, M is congruent to a complex quadric $Q^3 = Sp(2)/U(2)$. \square

§5. proof of main theorems.

Let M be a compact connected Kähler hypersurface of $G_r(\mathbb{C}^n)$ immersed by a immersion φ . It is well-known that every $HM(n,\mathbb{C})$ -valued function F satisfies

$$(5.1) \qquad (\Delta F, \Delta F)_{L^2} - \lambda_1 (\Delta F, F)_{L^2} \ge 0$$

The equality holds if and only if F is a sum of eigenfunctions with respect to eigenvalues 0 and λ_1 . It is equivalent to that there exists a constant vector $C \in HM(n,\mathbb{C})$ such that $\Delta(F-C) = \lambda_1(F-C)$.

Denote by H the mean curvature vector of the isometric immersion $\Phi = \Psi \circ \varphi$. Then, since M is minimal in $G_r(\mathbb{C}^n)$, (2.9) implies

(5.2)
$$2(r(n-r)-1)H_A = 2r(n-r)\tilde{H}_A - \tilde{\sigma}_A(\xi,\xi) - \tilde{\sigma}_A(J\xi,J\xi)$$
$$= c(rI-nA) - \tilde{\sigma}_A(\xi,\xi) - \tilde{\sigma}_A(J\xi,J\xi),$$

where A is a position vector of $\Phi(M)$ in $HM(n,\mathbb{C})$, and ξ is a local unit normal vector field of φ . Using (2.11) and (5.2), we get

$$(5.3) (H_A, A) = -1.$$

 $HM(n,\mathbb{C})$ -valued function Φ satisfies $\Delta\Phi=-2(r(n-r)-1)H$, so that (5.1) and (5.3) imply the following. The equality condition dues to T. Takahashi's theorem in [12].

Lemma 5.1.

(5.4)
$$2(r(n-r)-1)\int_{M}(H_{A}, H_{A}) dv_{M} - \lambda_{1} vol(M) \ge 0.$$

The equality holds if and only if Φ is a minimal immersion of M into some round sphere in $HM(n,\mathbb{C})$, more precisely, there exists some positive constant R and some constant vector $C \in HM(n,\mathbb{C})$ such that H_A satisfies

Lemma 5.2. If the equality holds in (5.4), then M is contained in a totally geodesic submanifold of $G_r(\mathbb{C}^n)$ which is product of Grassmann manifolds, more precisely, there exist integers k_i , r_i , $i = 1, \dots, m$ such that

$$0 \leq r_{i} \leq k_{i}, \qquad r_{1} \geq r_{2} \geq \cdots \geq r_{m},$$

$$\sum_{i=1}^{m} r_{i} = r, \qquad \sum_{i=1}^{m} k_{i} = n,$$

$$(5.6) \qquad M \subset G_{r_{1}}(\mathbb{C}^{k_{1}}) \times G_{r_{2}}(\mathbb{C}^{k_{2}}) \times \cdots \times G_{r_{m}}(\mathbb{C}^{k_{m}}) \subset G_{r}(\mathbb{C}^{n}).$$

Notice that $G_0(\mathbb{C}^{k_i}) = G_{k_i}(\mathbb{C}^{k_i}) = \{\text{one point}\}.$

proof. Assume that this equality holds in (5.4).

Since M is minimal in $G_r(\mathbb{C}^n)$, H is normal to $G_r(\mathbb{C}^n)$. Then, from (2.4) and (5.5), we get

$$(5.7) CA = AC,$$

where C is a constant vector in Lemma 5.1. Since SU(n) acts on $G_r(\mathbb{C}^n)$ transitively, without loss of generalization, we can assume that C is a diagonal matrix as follows:

(5.8)
$$C = \begin{pmatrix} c_1 I_{k_1} & & & & \\ & c_2 I_{k_2} & & & \\ & & \ddots & & \\ 0 & & & c_m I_{k_m} \end{pmatrix}, \quad k_i > 0, \quad c_i \neq c_j \ (i \neq j).$$

Notice that

$$n = k_1 + k_2 + \dots + k_m.$$

Define a linear subspace L of $HM(n,\mathbb{C})$ by $L=\big\{Z\in HM(n,\mathbb{C})\;\big|\; ZC=CZ\big\},$ so that

$$L = \left\{ egin{pmatrix} Z_1 & & & 0 \ & Z_2 & & \ & & \ddots & \ 0 & & & Z_m \end{pmatrix} \middle| Z_i \in M_{k_i}(\mathbb{C})
ight\}.$$

From (5.7), M is contained in $G_r(\mathbb{C}^n) \cap L$.

For each integer r_i with $0 \le r_i \le k_i$, $\sum_{i=1}^m r_i = r$, let's define connected subsets of $G_r(\mathbb{C}^n)$ by

$$W_{r_1,\cdots,r_m} = \left\{ egin{pmatrix} A_1 & & & 0 \ & A_2 & & \ & & \ddots & \ 0 & & & A_m \end{pmatrix} \left| egin{array}{c} A_i \in M_{k_i}(\mathbb{C}), \ A_i^2 = A_i, & tr A_i = r_i \end{array}
ight\}.$$

So, $G_r(\mathbb{C}^n) \cap L$ is a disjoint union of all W_{r_1,\dots,r_m} 's. Since M is connected, M is contained in suitable one of W_{r_1,\dots,r_m} 's, saying W_{r_1,\dots,r_m} . By the definition, we see

$$W_{r_1,\dots,r_m} = G_{r_1}(\mathbb{C}^{k_1}) \times G_{r_2}(\mathbb{C}^{k_2}) \times \dots \times G_{r_m}(\mathbb{C}^{k_m}).$$

Without loss of generalization, we can choose a diagonal matrix C with respect to which the inequalities $r_1 \geq r_2 \geq \cdots \geq r_m$ hold. \square

From (2.8), (2.10) and (5.2), we get

(5.9)
$$H_A = \frac{c}{2(r(n-r)-1)} \left\{ (rI - nA) - \frac{4}{c} (\Psi_* \xi)^2 (I - 2A) \right\}.$$

Using (2.2) and (2.3), we see

(5.10)
$$(H_A, H_A) = \frac{c}{2(r(n-r)-1)^2} \left\{ nr(n-r) - 2 \operatorname{tr} \frac{4}{c} r (\Psi_* \xi)^2 \left(I + \frac{n-2r}{r} A \right) \right\}$$

+
$$tr \frac{16}{c^2} (\Psi_* \xi)^2 (I - 2A) (\Psi_* \xi)^2 (I - 2A)$$

Since the immersion Ψ is \tilde{G} -equivariant, for any $A \in \Phi(M)$, there exists a element $g_A \in \tilde{G}$ and a matrix $v_A \in M_{n-r,r}(\mathbb{C})$ satisfying $A_o = g_A A g_A^*$ and

(5.11)
$$\sqrt{\frac{c}{4}} \begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix} = g_A(\Psi_* \xi) g_A^*.$$

Since the inner product (,) is \tilde{G} -equivariant and ξ is unit, we have $tr\,v_A^*v_A=tr\,v_Av_A^*=1$. After translating by g_A , together with (5.11), (5.10) implies

$$(5.12) \qquad (H_A, H_A) = \frac{c}{2(r(n-r)-1)^2} \left\{ n(r(n-r)-2) + 2 \operatorname{tr} \left(v_A^* v_A v_A^* v_A \right) \right\}.$$

Lemma 5.3. (a) For $v \in M_{n-r,r}(\mathbb{C})$ with $tr v^*v = 1$, the following inequality holds

$$(5.13) tr v^*vv^*v \leq 1.$$

- (b) Moreover, next three conditions are equivalent to each other.
 - (1) The equality holds in (5.13)
 - (2) The hermitian r-matrix v^*v is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix}$.
 - (3) The hermitian (n-r)-matrix vv^* is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}$.
- (c) If the equality holds in (5.13), then there exists $R=\begin{pmatrix} P&0\\0&Q\end{pmatrix}\in S(U(r)\cdot U(n-r))$ such that $v'=QvP^*$ satisfies

$$v'^*v' = \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix}$$
 and $v'v'^* = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}$.

Proof. Lemma 5.3 follows from that both of hermitian matrices v^*v and vv^* are similar to diagonal matrices with non-negative eigenvalues.

Form (5.12) and Lemma 5.3, the following lemma is immediately obtained, which is used to prove Theorem A.

Lemma 5.4.

(5.14)
$$(H_A, H_A) \leq \frac{c}{2(r(n-r)-1)} \left\{ n - \frac{n-2}{r(n-r)-1} \right\}.$$

The equality holds if and only if, for any $A \in \Phi(M)$, it is possible to choose v_A satisfying

$$(5.15) v_A^* v_A = \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix} and v_A v_A^* = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}.$$

proof of Theorem A. (5.4) and (5.14) imply

$$\lambda_1 \le c \left(n - \frac{n-2}{r(n-r)-1}\right).$$

Let's assume that this equality holds. Then, the equality conditions of Lemmas 5.1 and 5.4 hold.

Assume m = 1. Then, (5.5) and (5.9) imply

$$rac{1}{R^2} \left(c_1 I - A
ight) = rac{c}{2(r(n-r)-1)} \left\{ (rI - nA) - rac{4}{c} (\Psi_* \xi)^2 (I - 2A)
ight\}.$$

After translating by g_A , together with (5.11) and (5.15), we obtain

$$\begin{split} \frac{1}{R^2}(c_1-1)I_r = & \frac{c}{2(r(n-r)-1)} \left\{ (r-n)I_r + \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix} \right\}, \\ \frac{1}{R^2}c_1I_{n-r} = & \frac{c}{2(r(n-r)-1)} \left\{ rI_{n-r} - \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix} \right\}. \end{split}$$

The first equation implies r = 1, and the second one implies n - r = 1. So, we have n = 2 and r = 1. This contradicts that M is a complex hypersurface.

Since $m \geq 2$, from Lemma 5.2, M is contained in a proper totally geodesic submanifold of $G_r(\mathbb{C}^n)$. On the other hand, M is of complex codimension 1 in $G_r(\mathbb{C}^n)$. Consequently, either r=1 or r=n-1 occurs, and M is a totally geodesic complex hypersurface of a complex projective space $\mathbb{C}P^{n-1} \cong G_1(\mathbb{C}^n) \cong G_{n-1}(\mathbb{C}^n)$. \square

Proof of Theorem B. Let's assume that M is a compact connected Kähler hypersurface of $G_2(\mathbb{C}^n)$ satisfying the condition $J\xi \perp \mathfrak{J}\xi$. Since both of the complex structure and the quaternionic Kähler structure are \tilde{G} -invariant, we obtain, at the origin A_o ,

(5.16)
$$J\begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix} \perp J_i \begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix}, \quad i = 1, 2, 3,$$

where J_1 , J_2 and J_3 are a canonical basis of \mathfrak{J}_o defined in the section 2. Set

$$v_A = (v_A' \ v_A''), \ v_A', v_A'' \in M_{n-2,1}(\mathbb{C}) \cong \mathbb{C}^{n-2}.$$

Using (2.6) and (2.7), (5.16) implies that $|v_A'| = |v_A''|$ and $v_A' \perp v_A''$. Combing them with $tr \ v_A^* v_A = 1$, we obtain $|v_A'| = |v_A''| = \frac{1}{\sqrt{2}}$, so that

$$(5.17) v_A^* v_A = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Together with (5.17), (5.12) implies

$$(H_A, H_A) = \frac{c}{2(2n-5)} \left\{ n - \frac{n-1}{2n-5} \right\}.$$

Therefore, form Lemma 5.1, we obtain

$$\lambda_1 \le c \left(n - \frac{n-1}{2n-5} \right).$$

Let's assume that this equality holds. Then, the equality conditions of Lemma 5.1 holds.

Computing dimensions of manifolds in (5.6), we have

(5.18)
$$2n - 5 \leq \sum_{i=1}^{m} r_i (k_i - r_i).$$

From $\sum_{i=1}^{m} r_i = 2$ and $r_1 \ge r_2 \ge \cdots \ge r_m$, the following two cases occur:

Case I:
$$r_1 = r_2 = 1$$
, $r_3 = \cdots = r_m = 0$,

Case II:
$$r_1 = 2$$
, $r_2 = \cdots = r_m = 0$.

In Case I, (5.18) implies $2n-5 \le k_1+k_2-2 \le n-2$, so $n \le 3$. This is contradiction.

Therefore, Case II occurs. Then, (5.18) implies $2n - 5 \le 2(k_1 - 2)$, so that we have $n = k_1$, m = 1, $k_2 = \cdots = k_m = 0$. (5.5) and (5.9) imply

$$\frac{1}{R^2} (c_1 I - A) = \frac{c}{2(2n-5)} \left\{ (2I - nA) - \frac{4}{c} (\Psi_* \xi)^2 (I - 2A) \right\}.$$

After translating by g_A , together with (5.11) and (5.17), we obtain

$$\begin{split} &\frac{1}{R^2}(c_1-1) = &\frac{c}{2(2n-5)} \left\{ 2 - n + \frac{1}{2} \right\}, \\ &\frac{1}{R^2}c_1I_{n-2} = &\frac{c}{2(2n-5)} \left\{ 2I_{n-2} - v_A v_A^* \right\}. \end{split}$$

The second equation implies

(5.19)
$$v_A v_A^* = dI_{n-2}, \quad d = 2 - \frac{2(2n-5)}{c} \frac{c_1}{R^2}.$$

From (5.17), we have

$$d\,v_A = dI_{n-2}v_A = (v_A v_A^*)v_A = v_A(v_A^* v_A) = \frac{1}{2}v_A,$$

so that $d = \frac{1}{2}$. Consequently, taking traces of both sides of (5.19), we obtain n = 4.

Therefore, from Proposition 4.4, M is congruent to Q^3 . \square

REFERENCES

- [1] J-P. Bourguignon, P. Li and S. T. Yau, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv. 69 (1994), 199-207.
- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
- [3] B. Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces, I, Duke Math. J. 44 (1977), 745-755.
- [4] B. Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J. 45 (1978), 405-425.

- [5] S. Ihara, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan 19 (1967), 261-302.
- [6] K. Konno, Homogeneous hypersurfaces in Kähler C-spaces with $b_2 = 1$, J. Math. Soc. Japan 40 (1988), 687-703.
- [7] Y. Miyata, On an upper bound for the first eigenvalue of Kähler submanifolds of $\mathbb{C}P^n$, Bulletin of the Liberal Arts & Science Course 21 (1993), Nihon University School of Medicine, 13-23.
- [8] Y. Miyata, Spectral geometry of Kähler hypersurfaces in a complex Grassmann manifold (to appear).
- [9] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Sem. in Differential Geom., Kyoto, Japan (1965), 101-114.
- [10] A. Ros, On spectral geometry of Kaehler submanifolds, J. Math. Soc. Japan 36 (1984), 433-448.
- [11] I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425-461.
- [12] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
- [13] M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japan.J. Math. 4 (1978), 171-219.
- [14] M. Takeuchi, Modern Spherical Functions, Translations of Mathematical Monographs, vol. 135, Amer. Math. Soc., 1994.