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NONEXISTENCE OF STABLE INTEGRAL CURRENTS .

QING-MING CHENG* AND KATSUHIRO SHIOHAMA™**
(A & e) (e vk AEtE )
1. INTRODUCTION

In this paper, we discuss the nonexistence of stable integral p-currents in compact
submanifolds of m-dimensional submanifolds in Euclidean spaces R™*! and R™*2.
The existence theorems due to Federer and Fleming in [3] state that for any compact
Riemannian manifold M, any non-trivial integral homology class in H,(M, Z) cor-
responds to a stable integral current, where H,(M, Z) is the pth singular homology
group with integer coefficients. The Federer-Fleming theorem and the calculus of
variations were employed by Lawson and Simons [4] in the study of the topology and
geometry of submanifolds of standard spheres. They proved the following:

Thorem LS1. There are no stable integral p-currents in spheres of dimension m,
where 0 < p < m.

In [4], Lawson and Simons conjectured the follwing:

Conjecture of Lawson and Simons. There are no stable integral p-currents in
any compact, simply-connected Riemannian manifold of dimension m which is 1/4-

pinched, where 0 < p < m.

This conjecture is also open now. It is very well-known that any compact, simply-
connected Riemannian manifold of dimension m which is 1/4-pinched is homeomor-
phic to sphere. On the other hand, any compact connected convex hypersurface in
R™*1! is diffeomorphic to sphere. So we can consider the following problem:

Problem. Do there exist stable integral p-currents in any compact connected convex
hypersurface in R™*1,

For this problem, the first author proved the following in [1]:

Theorem C. Let M be an m-dimensional compact hypersurface with positive Ricci
curvature in R™1. Assume that M does not admit any point xe M at which M has
only two distinct principal curvatures \; and Ao such that

max{/\l y /\0} 2 (3 + 2\/5)111111{/\1, )\0}
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Then for any pe(0,m), there are no stable intenga] p-currents in M and

Hy(M, Z) = 0.

Corollary 1. Let M be an m- dimensiona] compact hypersurface in R™t! with
sectional curvature K(M) > AX?(A > ) \/_ is constant). Then for any pe(0,m),
there are no stable integral p-currents in M and

Hy(M,Z) = 0.
Lawson and Simons [4] also studied the nonexistence of stable integral p-currents
in compact submanifolds of standard spheres S™(c). They showed that

Thorem LS2. Let N be an n-dimensional compact submanifold of S™(c). Then,

for given integer pe(0,n) there is no stable integral p-current in N and Hy(N,Z) =
Hn—p(N,Z) =0 if

D _L2I1R (eiy ea)l* = (B (eir €0), ' (ear a))] < p(n — p)e

1,0

is satisfied for every zeN and any orthonormal basis {eiseq} of ToN, i =1,--- ,p;
a=p+1,---,n. Here h' is the second fundamental form of N in §™(c).

We emphasize that their techniques can be applied in more general settings. This
observation makes it possible to obtain further results on the non-existence of stable
integral currents.

Throughout this paper let N be an n-dimensional compact Riemannian submani-
fold in an m-dimensional Riemannian manifold M which is a submanifold of R™+1
or R™*2. Let h' be the second fundamental form of N in M and {e;,eq} an or-
thonormal basis of the tangent space T, N for a point zeN where 1 < ¢ < p and
P+ 1 < a < n. The purpose of this paper is to prove the following statement (A)
for various ambient submanifolds of Euclidean spaces:

(A) For glven integer pe(0,n) there is no stable integral p—current in N and
Hy(N, Z) = Hu-p(N, Z) = 0.
The same notation and formulas as in [1] and [2] will be used throughout this paper.
We first prove the generalized version of the Lawson-Simons theorem [4] as follows.

Theorem 1 (Cheng and Shiohama [2]). Let N be an n-dimensional compact
submanifold of M™ which is an m-dimensional hypersurface of an m+1- dimensional
Euclidean space R™t1. Then the statement (A) is true if

(0) > 211A (eis ea)l* = (B'(ess €3), b'(eas €a))] < 2p(p — n)A(2)?
is satisfied for every xeN and any orthonormal basis {e;,eq} of T,N, i =1,--- ,p;

@ =p+1,---,n. Here h' is the second fundamental form of N in M"‘ and )\(.1:)2 is
the maximum at z of the square of principal curvatures of M™.

Remark 1. If M™ is R™, then A = 0. The condition (0) then becomes
D _2IR (es, ea)l® — (B'(ei, €3), B (eay ea))] < 0.

i,



118

Hence Xin’s result in [5] is a special case of our Theorem 1.

In addition to the assumptions of Theorem 1, if M has nonnegative Ricci curvature,
then a simple computation shows that the sectional curvature of M is non-negative.
In this case we prove

Theorem 2 (Cheng and Shiohama [2]). Let N be an n-dimensional compact
‘submanifold of M™ and M™ an m-dimensional hypersurface with nonnegative Ricci
curvature of an m + 1- dimensional Euclidean space R™*!. Then the statement (A)

holds if

L2l e €a)lF = (B (esse0), K (carea] < 2(p — W2

is satisfied for any xeN and any orthonormal basis {ei,eq} of TN, 1 = 1,--- ,p;
a=p+1,--- ,n. Here h' is the second fundamental form of N in M™, and \(z)? is
the maximum at z of the square of principal curvatures of M™.

As a corollary to Theorem 2 we obtain a slight extension of the Lawson-Simons
theorem for product Riemannian manifolds:

Corollary 2, (Cheng and Shiohama [2]). Let N be an n-dimensional compact
submanifold of RF x S™~%(c). Then the statement (A) is true if

Z[2||h'(6i,6a)ll2 — (h'(ei, ), h'(€ar€a))] < 0

is satisfied for every zeN and any orthonormal basis {e;,eq} of TyN, i =1,--- ,p;
a=p+1,---,n. Here h' is the second fundamental form of N in R¥ x S™~¥(c).

Ezample (cf. Zhang [7]). We consider the ellipsoid

m 2
z
M = {(.?}1, e 7xm-{-l)G:R‘m-'-l;Z:Ez2 + %'1' = 1}
. =1
Let N be a compact submanifold of M. By direct computation, we can prove

that if for every zeN and any orthonormal basis {e;,eq} of TN, i = 1,---,p;
a=p+1a"' y 1,

Z[2||h’(ei, ea)ll” = (B'(ei, €:), h'(ea, €a))] < n(n —p)c

then the statement (A) holds. In this case, A’ is the second fundamental form of N
in M. -

We next discuss the case where M is a Riemannian product manifold: M =
M; x M, and each M; (¢ = 1,2) is an m;-dimensional hypersurface in R™+1 of
positive Ricci curvature.
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Theorem 3 (Cheng and Shiohama [2]). Let N be an n-dimensional compact
submanifold of M = M]™ x M,"?, where M;"*(¢ = 1,2) is an m;-dimensional hy-
persurface with positive Ricci curvature of an m; + 1-dimensional Euclidean space
R™it! Then statement (A) is true if

L2 (e ea)ll2 = (B (esr ), ey eal)] < 20(p = m)(Ma)* + u(z)?)
- 4

is satisfied for every zeN and any orthonormal basis {e;,eq} of TN, i =1,--- ,p;
a=p+1,---,n. Here k' is the second fundamental form of N in M and /\(x)2
and p(z)? are the maximums at z of the square of principal curvatures of M{"* and
M3 respectively. '

With the same notatlon as in Theorem 3, we prove the followmg

Theorem 4 (Cheng and Shiohama [2]). Let M™ (1 = 1, 2) have dlstmct
principal curvatures other than two. Then the statement (A) holds if

Z[2||h'(ei,ea)||2 — (h(ei, ), B (€as €a))] < O

is satisfied for every zeN and any orthonormal basis {e;,eq} of T;N, 1 =1,---,p;
a=p+1,---,n. Here h' is the second fundamental form of N in M.

Corollary 3 (Cheng and Shiohama [2]). Let N be an n-dimensional cozhpact
submanifold of M = §™1(¢;) X S™2(cy), where S™(c¢;)(i = 1,2) is an m;-dimensional
sphere of constant curvature c¢;. Then the statement (A) holds if

Z[2||h'(6i,ea,)||2 — (B(ei, €i), h'(€ear€a))] < 0

is satisfied for every zeN and any orthonormal basis {e;,eq} of T;N, 1 =1,---,p;
a=p+1,---,n. Where h' is the second fundamental form of N in M.

Remark 2. When ¢; = ¢ = 1, Corollary 3 reduces to Zhang’s Theorem 2 in [6].

PROOF OF THEOREMS

Let D be the Euclidean flat connection of R™*!. Since N is a submanifold of
M™, N is also a submanifold in R™*!. Let V' and V denote the Levi-Civita connec-
tions of N with respect to M™ and R™*1, respectively. Also let x(T+(R™*1,N)),
x(TH(R™1, M™)) and x(T+(M™,N)) be the respective spaces of normal vector
fields. For any simple p-vector £e AP T, N and for any vector field V tangent to N,
let ¥ be the flow generated by V. Define.

d? || Wy
QE(V) = _—"dt; <l le=o-

Proof of Theorem 1. Since N is a submanifold of M™, it is also a submanifold in
R™!, Let V' and V denote the Levi-Civita connections of N with respect to M™
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and R™*! respectively. The shape operator A, determined by nex(T+(R™1!, N))
1s given by

(1) _AﬂY = (‘DY’?)Ta

where Yex(TN). If nex(T+(M™, N)), then

@ AY = —(Dyn)T = ~(Vyn + h(n,Y))T

- T
=—(Vyn)" =4)Y,

where Yex(TN), V and & are the Levi-Civita connection and the second fundamental
form on M™ with respect to R™*! and A}, is the shape operator determined by

nex(TH(M™, N)). If  is the normal to M™, then
3) AY = (4,Y)7,

where A, is the so-called shape operator determined by nex(TH(R™F1, M™)).

Let (S,€) be an oriented p-rectifiable set. For zeS, we have a tangent p-space
TS C T.N. Choose an orthonormal basis {e;,eq} of Ty N such that {e;} is an
orthonormal basis of TS and { = e; A- - Ae,. Suppose that {n,} is an orthonormal
basis of T;-(R™*!, N). Let A, = A,,. Then {e;,eq4, 7.} is an orthonormal basis of
R™*!. Hence .

(4) trQe = Y Qele) + Y Qe(ea) + Y Qe(ma).

Making use of the proof given for the Theorem appearing in [1], we have

(5) trQe = Z [2<Au(¢j)>ea)2 - <Au(e§r)a ea){Au(e;s), €5)]-

],a’u

At a point zeN, we take an orthonormal basis {11, - ,Nm—n,n} of T-(R™+1 N)
so that {n,} and 7 are the orthonormal bases of T;*(M™, N) and TH(R™+1, M™),
respectively, and ' ' '

(6) Ap(€) =—Xpéy for a=1,--- ,m,

. where {é‘a}vis an orthonormal basis of T,,-M ™ and ;1,, is the so-called shape operator
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determined by nex(T+(R™*!, M™)). From (2), (3) and (5), we obtain
(7) trQe
= Z Z[Q(Av(ej)vea>2 - (Av(ea)a ea)(Av(ej)’ ej)]

v=1 j,«

+ Z Ay(es)s ea — (An(ea), ea)(Ay(e;s), €5)]

= Z 2[2(‘4,1:(6]'),601)2 - (A;(ea)aeaMA'v(ej)’e.f”

v=1 j«a

+Z[2 An(ej)sea)® = (Aq(ea)s ead(Aq(es), ;)]
—Z[znh%e,,ea)nz (h'(easea), k' (€5, €5))]

+Z (eJ €a) '_(An(ea)veaMAfl(ej)aej)],

®) Z[2<2n<e]~), ea)? = (Ay(ea)s a)(Ane;, ;)]
_2{2[26“6“/\ Z(e 2 Xe Z(e 2.}

where ej = D, €%€a, ea = D, €né,. Since |lej|| = |leal] = 1 and (ej,eq) = 0, we

have
e =1 Yt =1, Nejer =0

Making use of assertion (1) in the following Lemma 1, we get

(9) > _[2(A4(es) ea)® = (An(ea)s ead{An(es), e5)] < 2p(n — p)A%,
. o :

where \? is the maximum of the square of principal curvatures of M™ at the corre-

sponding point. According to (7), (9) and the assumption in Theorem 1, we conclude

trQe o
= Z[znh'(e,-,ea)nZ-— (W (ear €a), b (5 €))]

+le Ane),ca)? — (An(ea), ea)(An(es)ses)]
—Z[zuh%e],ea)n? (k' (e €a)s k' (€5, €5))]

L
+2p(n—pA?<0.
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Hence

trQQs = Z/ ntrQ5 dHP(z) < 0.

This implies that there are no stable integral p-currents in N. By Theorem FF in
[1], we have

Hp(N, Z) = Hn—p(N, Z) = 0.

Lemma 1. Let ay, -+ ,@m,b1, -, by be real numbers sat1sfymg Y ai=3b=
1 and ) ;ajb; = 0. Then we have the following:

(1) For given real numbers A1, Az, Am, ,
2(ZA a3 )2 — ZA a2Z/\ b2 < 2%
(2) For given nonnegative real numbers A1, Ag, - )\m,

2() " Ajajb;)? ZA a Z,\ b <= A2
J

Here )\? is the maximum of A?.
Lemma 1 can be proved by the same method as the lemma in [1].

Proof of Theorem 2. Since M™ is a hypersurface in R™*! with nonnegative Ricci
curvature, we know that M™ is of nonnegative sectional curvature ( see-{1] ). Hence
assertion (2) of Lemma 1 and the same arguments appearing in the proof of Theorem
1 imply that Theorem 2 holds. :

Proof of Corollary 2. Since R*¥ x S™7%(¢) is a hypersurface in R™t! with nonnega-
tive Ricci curvature and there are only two distinct constant principal curvatures 0

and /c, we have

STy (e3)s0)? — (Ag(ea)s ca(Anfes)re)] < 0

Hence

tng
= SR2IIH (e, ea)ll? = (B (carea), B (e ¢))]

7,0

+2[2 a(ei)sea)” = (Ay(ea), ea) (Ay(e;), ;)]
= Z 20 (e ea)ll* = (B (easea)s (e )]

<0.
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Thus : R e
o trQs = 2/ ntrQ¢, dH?(z) < 0.
' n=1Y5n [
We obtain the result that there are no stable integral p-currents in N and
Hy(N,Z) =Hn—p(N,Z) =0.

This proves Corollary 2.

Using proofs similar to that given for Theorem 1, the following Lemma 2 yields
Theorems 3 and 4.

Lemma 2 (Cheng and Shiohama [2]). Let a;, b;, d; and e; be real numbers
(t=1,--- ,mqy;j = 1,--- ,my) satisfying Yo a? +Eje§ = 3.0 +Ejd§ =1 and
>_:aibi + 3 dje; = 0. Then the following holds:

(1) For given positive real numbers \; and pj,
(11) 2[0> " Miaibi)? + O nidie;)*]
i ] _
1
2 2, 2
— Z Aia Z Aib? — Ej:'ujd? zj:“je'? < Z(/\ + p®).

(2) For given positive real numbers \; and u;, where neither the number of
distinct A; nor the number of distinct u; is not two,

(12) 23 Maibi)? + (3 wydje;)?]
i j
=2 hal D NB = usdi Y el <0,
t Fl 7 ]

where A\? and p? are the maximum of \? and 3, respectively.

This Lemma 2 can be proved by making use of the method of Lagrange multipliers
(see [2] for in details).
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