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SURFACES IN MINKOWSI 3-SPACE AND HARMONIC MAPS
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INTRODUCTION

Over the past few years substantial progress has been made in the study of har-
monic maps from a compact Riemann surface into a compact Riemannian symmet-
ric space. In particular, F. E. Burstall, F. Ferus, F. Pedit and U. Pinkall initiated
the theory of finite-type harmonic maps [3], [4]. Viewing maps from a torus as
doubly periodic ones from a whole plane, the above authors have constructed such
harmonic maps from commuting Hamiltonian flows on certain finite dimensional
subspace of a suitable loop algebra [3]. That such a picture obtains has its roots
in the classification of constant mean curvature tori in Euclidean 3-space due to
U. Pinkall and I. Sterling. The link between harmonic maps and the classifica-
tion problem as above is that Gauss maps of constant mean curvature surfaces are
harmonic maps into a 2-sphere. The situation is similar for the study of constant
negative Gaussian curvature surfaces in Euclidean 3-space. M. Melko and I. Ster-
ling have developed a detailed study on such surfaces via the theory of finite-type
harmonic maps which is arranged for maps from a Lorentz surface [8], [9].

On the other hand, the theory of finite-type harmonic maps into a noncompact
Riemannian symmetric space has not been constructed yet .

The purpose of this talk is to construct such theory to noncompact target man-
ifolds of dimension 2. We shall study harmonic maps from a Riemann or Lorentz
surface into a hyperbolic 2-space.

As in the geometry of surfaces in Euclidean 3-space, the harmonicity of the Gauss
map for a spacelike surface in Minkowski 3-space is equivalent to the constancy of
the mean or Gaussian curvature. So we are able to apply our results on harmonic
maps to the geometry of spacelike surfaces. In particular, we can construct such
surfaces which are not graphs.

1. FUNDAMENTAL EQUATIONS OF SPACELIKE SURFACES

We start with some preliminaries on geometry of spacelike surfaces in Minkowski

3-space.
Let E3 be a Minkowski 3-space with Lorentz metric { , ). The metric (, ) is
expressed as ( , ) = —d&? + d€2 + d¢2 in terms of natural coordinates.

Let M be a connected 2-manifold and ¢ : M — E3 | an immersion. The
immersion ¢ is said to be spacelike if the mduced metric of M is positive definite.
Hereafter we may assume that M is an orientable spacelike surface in E3 (immersed
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by ¢). It is worth-while to remark that there exists no closed spacelike surface in
E2. - »

The induced Riemannian metric I of a spacelike surface M determines a con-
formal structure on M. We treat M as a Riemann surface with respect to this
conformal structure and ¢ as a conformal immersion. Let z = x 4 1/—1y be a local
complex coordinate of M. The induced metric I (the first fundamental form) of M
can be written as

(1.1) I = e“dzdz = e“(dz® + dy?).

Now, let N be a local unit normal vector field to M. The vector field N is timelike,
that is, (N, N) = —1 since M is spacelike.
The second fundamental form IT of M is defined by

(1.2) § I = (dg, dN).

The Gaussian curvature K of M is given by

(1.3) - K =-—det(II.T").
The Gauss-Codazzi equation have the following form:

Sy |
(1.4) o W,z §H2eW—2|Q|2e—w

(1.5) | H; =2¢7%Q,, H,=2e"“Q;.

where Q := —(p,,,N), H = —2e7“(p,z, N). It is easy to see that Q¥ = Qdz?
is globally defined 2-differential on M. The differential Q# is called the Hopf
differential of M. ’

The Gauss-Codazzi equations (1.4)—(1.5) actually show somewhat more. In fact,

the equation (1.5) show that the constancy of the mean curvature H is equivalent
to the holomorphicity of the Hopf differential Q#.

Remark. It is easy to deduce that the zero of Q# coincides with an umbilic point.
Hence a spacelike surface is totally umbilic if and only if its Hopf differential Q#
vanishes. A totally umbilic spacelike surface is congruent to an open portion of a
hyperbolic 2-space: ‘

H?*(r)={¢ € E3 | (¢, &) = —r?, & > 0} of radius r > 0.( hence if M is complete,
M is congruent to H?(r)). Note that there is no totally umbilic spacelike surfaces
of (constant) positive curvature.

Next, we shall define the Gauss map of a spacelike surfaces. Let M be a spacelike
- surface with local unit normal vector field N to M. We choose N a future-pointing -
one (See H. I. Choi and A. Treibergs [5] and B. O’Neill [11]). For each p € M the
point 1(p) of EJ canonically corresponding to the vector N, lies in a unit hyperbolic
2-space since N is timelike. The resulting smooth mapping ¥ : M — H? is called
the Gauss-map of M. The constancy of mean or Gaussian curvature is characterised
by the harmonicity of the Gauss map. ‘
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Proposition 1.1. The Gauss map of a spacelike surface is harmonic if and only
if the mean curvature is constant. .

Proposition 1.2. Let M be a spacelike surface. Assume that the Gaussian curva-
ture K is nowhere zero on M and has a constant sign. then the second fundamental
form II gives M another (semi-) Riemannian metric. With respect to this metric
II, the Gauss map of M is harmonic if and only if K is constant.

It is known that to find spacelike surfaces of constant negative curvature is the
almost same as to find surfaces of constant mean curvature surfaces. So we restrict
our attention to constant mean or positive Gaussian curvature surfaces. On such
surfaces special local coordinates are available.

Proposition 1.3. Let M be a spacelike surface of constant positive curvature 1.
Then there exist local coordinates (u,v) around an arbitrary point of M such that;

(1.6) I = du? + 2 cos ¢dudv + dv?, II = —2sin ¢dudv.

With respect to this coordinate system, the Gauss-Codazzi equation (GC) of the
surface is written as following form:

(1.7) Py = — sin ¢.

The above local coordinates (u, v) are called asymptotic Chebyshev coordinates.
Because the parameter curves of this coordinate system are asymptotic. The func-
tion ¢ in (1.7) is the angle between two asymptotic directions.

Proposition 1.4. Let M be a spacelike surface of constant mean curvature —;—
Then there exist local coordinates (u,v) over a region free of umbilics such that

%dv2).

With respect to this coordinate system, the Gauss-Codazzi equation (GC) of the
surface is written as following form:

(1.8) - I=e“(du® + dv?), IT = e%(cosh %du2 + sinh

('1.9‘) Wy + Wy = sinh w.

It is easy to see that the parameter curves of the above coordinates are princi-
pal, that is, they are lines of curvature. The coordinates described in the above
proposition is called 1sotherma1 principal coordinates or isothermal curvature-line
coordinates. :

To close this section, we shall mention the completeness of spacelike constant

mean curvature surfaces. It is known that every spacelike surface of constant mean
curvature which is complete as a Riemannian 2-manifold with respect to the induced
metric is entire. More precisely, Such a surface is a graph of a function defined on
a whole plane C or a unit open disk D.
(See T.Y. Wan and T.K.-K. Au [13], [14]). Thus we need another method to con-
struct constant mean curvature surfaces which are not graphs. On the contrary,
there are no known result on systematic construction of spacelike surfaces of con-
stant positive Gaussian curvature. -

- -These motivate us to establish the theory of finite-type harmonic maps 1nto
hyperbolic 2-spaces.
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2. THE SPLIT-QUATERNION ALGEBRA

To reformulate the Gauss- Codazzi equations in a form familiar to the theory of
integrable systems, we shall use 2 by 2 matrix-formalism ( [1], [17]).

Our idea for this purpose is to identify the Minkowski 3-space E3 with the
imaginary part Im H' of the split-quaternion algebra H'.

Let us denote the algebra of split-quaternions by H' and its natural basis by
{1, i, j/, kX'}. The multlphcatlon of H’ are defined by as follows:

(2.1) i’ =-ji=K, j¥ = -Kj = —i, Ki=-ik' =,
2=-1j2=k2=1
Hereafter we identify H' with a semi-Euclidean space E:

= (R*(éo, 61,62, 83), —dEg — dff +d&5 + de?).

Let G = {¢ € H' | &€ = 1} be the multiplicative group of timelike unit split-
quaternions. The Lie algebra g of G is the imaginary part Im H' of H'.
The Lie algebra g is naturally identified with a Minkowski 3-space

P = (R%(&1, &, 65), —ded +d€d +de3)

as a metric linear space.
Since H' = C®k'C is a right complex linear space, H' has a matricial expression
in the linear space M2C of all complex 2 by 2 matrices.

s = (5 2)

for any o, B € C. More explicitely, the correspondence

_ S £ RVt 53—\/?152)
(2.2) £=¢&l+&i+ 6 + 6k (53+\/’_-152 b —V-1&

gives a matricial expression of H' in M,C. Under the 1dent1ﬁcat10n (2. 2) the group
G of timelike unit spht—quatermons corresponds to an indefinite special unitary
group:

St = {(§ ) 1 - laf +1F =1}

The semi-Euclidean metric of H' corresponds to the following scalar product on

M,C.
(2.3) | (X, V) = S {ix(XY) — tx(X)tx(Y)}

for all X , Y € M,C. This scalar product { , ) is the Killing form of M2C upto
constant multiple. The metric of G induced by (2.3) is a bi-invariant Lorentz metric
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of constant curvature —1. Hence the Lie group G is identified with an anti de-Sitter
3-space H? of constant curvature —1.

Next, we introduce a Lorentz analogue of the Hopf-fibering. The Ad(G)-orbit of
i € g is a hyperbolic plane:

H? = {¢ € B} | (£,6) = -1, & >0}

The Ad-action of G on H? is transitive and isometric. The isotropy subgroup of G
at iis U(1) = {&1 + &i | €2 + €2 = 1}. The natural projection 7 : G — H?, given
by m(g9) = Ad(g)i for all g € G, defines a principal circle bundle over H2. This
fibering is also called the Hopf-fibering. The isotropy subgroup at i will be denoted
by K. The Lie algebra ¢ of K is spanned by i. The tangent space of H? at the
origin i is given by m = Rj’' & Rk'.

Let 7 be an involution of g defined by 7 = Ad(i). The pair (g, 7) is a orthogonal
symmetric Lie algebra for the Riemannian symmetric space H2 = G/K.

3. THE HARMONIC MAP EQUATION

In this section we shall derive a correspondence between harmonic maps from a
(simply connected) region of a plane to a hyperbolic plane H2 = HZ(1) and certain
kind of flat connections. (so-called zero curvature representation).

We note that since the harmonic map equation is conformally invariant, it suf-
fices, at least locally, to consider harmonic maps from the Euclidean or Lorentz
plane into hyperbolic 2-spaces.

First of all, we shall start with a notational convention.

(3.1) R2 = (R%(z,y), de® + (=1)"dy?), v =0, 1.

(3.2) (u,v) = { (z+v-1y, z—v~1y) v=0

(z+y, z—y) v=1.

Note that dz? + (—1)”dy? = dudv holds for both cases.

Throught this note ©, denotes a simply connected region of R2.
The following well-known result is the starting point of our approach.

Proposition 3.1. A smooth map ¢ : D, — H? C E3 is harmonic if and only if

Yy = P"/J

for some function p on D,,.

Let ¢ : D, — H? be a smooth map and 7 : G — H? C g the Hopf fibering
described as before.

Since the hyperbolic 2-space H? has the absolutely parallelism, any smooth map
9 has a smooth lift ¥ : D, — G unique upto the right K-action. The pulled-back
bundle ¥* G is necessary a trivial bundle ©, x K. So the gauge transformation
group G of ¢* G is identified with C>*(D,, K).



It follows that the mappings ¥ and ¥ are related by
(3.3) gy =Ad(P)i=Tiv L

A smooth lift ¥ of ¢ satisfying (3.3) is said to be a framing of 1. We wish to
describe the harmonicity of ¢/ in terms of a framing.

Let ug be the Maurer-Cartan form of G. Then the pulled—back l-form o =
U*pe = ¥ 1d¥ of ug by ¥ satiesfies

(3.4) da + %[a Aa] =0.

This identity (3.4) implies the integrability condition for the existence of a smooth
map ¥ : D, — G such that @ = ¥*ug. (Frobenius theorem). By definition, a
is a g-valued 1-form. The g-valued 1-form o has type decomposition along the
decomposition g = £ @ m;

(35) a = qg + o7.

Here ap and a; denotes the £-valued part and m-valued part respectively. Further
ag and «ay are decomposed as follows:

(3.6) @ = ay du+ap dv, oy = o du+ afdv.

Define o' and o by

(3.7) o :=ay+ai, " i=af +af. |

Note that o' du and a” dv are (1,0)-part and (0,1)-part of o respectively if the
index v = 0. By usual computations we get the following proposition.

Proposition 3.2. Let ¢ : D, — H? be a smooth map with a framing ¥. Then v
s harmonic if and only if

(38) d(*a1) + [a() AN *al] =0
for a = ¥~1d¥,

Let A'(D,;g) be the space of all g-valued one-forms and A the affine space of all
connection one-forms on a product bundle ©, x G. The space A is an affine space
associated to the linear space A'(D,;g). We shall choose the trivial flat connection
as the origin of A, then the space A is identified with A(D,;g). Hereafter we shall
identify A with A1(®D,;g) in this way.

Definition 3.3. A connection a € A= A'(®D,;g) is admissible provided that

(AD) dat HlaAa] =0, d(xay)+ [ap A o] =0.

In particular, an admissible connection « is said to be weakly regular if
(o, a}) # 0 and (af, of) # 0 on D,. The space of all admissible connections
on D, is denoted by Ag and corresponding subspace of weakly regular admissible
connections by ‘A;.

It is easily checked that both Ay and A; are invariant under the gauge group
action as well as conformal change of ©,,.

63
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Proposition 3.4.. Let Ho be the space of all harmonic maps from D, to H 2
andH; = {"/) € Ho | (¢u, "/’u) # 0, ("l’m ¢'v> # 0 on Qu} Then there are fol-

lowing bijective correspondeces:

Ho —— Ao/G, Hi+— A1/G.

Here G denotes the gauge transformation group of the bundle *G = ®,x K. These
correspondences are described by a = ¥~1d¥ via a framing ¥ of 9.

We shall call a harmonic map ¥ € H;, a weakly regular harmonic map.

The above proposition describes only a set-theoretical correspondence between
the spaces of harmonic maps and the moduli space of admissible connections.

Remark. Here we shall explam a differential geometric mterpretatmn of the weak-
regularity for harmonic maps.

(1) Euclidean case:

For any weakly regular harmonic map 1 € H;, there exists a spacelike immersion
¢ which is related by (2.9) unique up to translation (See [6], [12]). The weak-
regularity condition is equivalent to the nonexistence of umbilics on ¢. Hence the
weak-regularity guarantees the existence of umbilic free spacelike nonzero constant
mean curvature immersions whose Gauss map is 1 (and hence the existence of
isothermal curvature-line coordmates)

(2) Lorentz case:

A branched spacelike surface ¢ parametrlsed by asymptotic coordmates (u,v)
such that

18up] # 0, 18y¢p] # 0

is called a weakly regular surface. The weak-regularity for harmonic (Gauss) maps
corresponds to the weak-regularity for surfaces.

To close this section, we shall introduce the so-called spectre parameter.

Definition 3.5. Let o € A be a connection. A loop a) of connections through «
is defined by the following rule:

ay = ap+ Ao du+A7taf dv, ) € Si(if v = 0), R*(if v = 1).

The following observation (originally due to Pohlmeyer) is fundamental for our
approach.

Proposition 3.6. A connection o € A is admissible if and only if a loop ay
through o satiesfies :

1
(3.12) day + E[a,\/\aA] =0
for every .

It is clear that each ) is admissible whenever « is, and o generates the same
loop. For every ay satisfyning (3.12), there exists a one-parameter family of smooth
maps ¥ : D, — G depending smoothly on X such that \Il}fld\Il A = a). Throught
this paper, we shall normalise ¥y as ¥(0,0) = 1. Such normalised one-parameter
family of maps ¥, is called an extended framing. To every harmonic maps ¥ :
D, — H?, there is a naturally associated one-parameter family of harmonic maps
{#x} such that 9, = 9 parametrised by A € S*if v =0 and by A € R* if v = 1.
We shall therefore refer to 1) as a loop of harmonic maps (through ).
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4. FORMULAE FOR IMMERSIONS

Every harmonic map 1 : ®, — H? corresponds to a gauge class [a] of admissible
connections. In this section we give a choice of representative in [a] which is suit-

able for our purpose—construction of constant mean or positive Gaussian curvature
surfaces—.

First, we consider the Lorentz case. (v = 1).

- Let a be a weakly regular admissible connection, then we can choose a global
conformal change of coordinates such that

(01, 0q) = (o7, of) =1/4
Under the reparametrisation according to (4.1), any weakly regular connection may
be brought to the following canonical form:

Proposition 4.1. Every weakly regular admissible connection is gauge transformed
into the following form:

1 1 ;
(4.2) o' = —=(0,4)i+ —e B K,
4 2
1 1 ¢,
o = 1 (Gu)i - §e%1 K.
Here ¢ is a smooth function on D, satisfying

(4.3) fuo +sing=0.
A weakly regular connection in a form (4.2) is called a Sine-Gordon connection.

Corollary 4.2. Let ¢ be a Sine-Gordon field on ©,, that is, a solution of (4.3) on
D1. then the equation (4.4) defines a weakly regular admissible connection.

This corolllary says that there exists a bijective correspondence between Sine-
Gordon fields and normalised admissible connections.

Next we shall present a (Sym-type) representation formula for a spacelike surface
of constant Gaussian curvature 1. Let a be a Sine-Gordon connection, oz = Oyt
its loop, and U) : D X R — G, the extended framing for a(;). Then we define a
one-parameter family of smmoth maps into E2 by

E‘I’(t) I\

(4.4:) QO(t) = 28t ()
By a straightforward computation, we get the following

Proposition 4.3 (Sym-type formula). Let ¢ : ©; — H? be a weakly regular
harmonic map and ¥(t) as defined by (4.4). Then ®(t) describes a loop of weakly
regular spacelike constant Gaussian curvature 1 surfaces. The first and second
fundamental forms of each P(t) are as follows :

(4.5) Ity = A2du® + 2 cos pdudv + A~ 2dv?,
(4.6) Iy = IT = —2sin ¢dudv,
where A = Le'. The local coordinates (u,v) is asymptotic coordinates of each

¢y In particular (u,v) is Chevyshev for t = 0. The surface () is branched
at the points such that ¢(u,v) € nZ. The Gauss mapping of each () 18 Py =
Ad(¥y)) i. Furthermore the principal directions of @) are given by Ad(¥(y)) §'
and Ad(¥4)) k'.
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Proposition 4.4. Every weakly regular admissible connection over ® = Dy is
gauge transformed into the following form:

/o

. 1 w, W,
(Ow) i+ 4(cosh 5 + sinh 2k ),

o V=1

:T

Here w is a smooth function on ® satisfying

.1 w.,, L, Wy,
(Ozw) i+ 4(cosh 59 sinh 2k).

_
(4.8) , wez = sinh w.

We shall call a weakly regular connection in a form (4.7), a Sinh-Laplace con-
nection.

Corollary 4.5. Let w be a Sinh-Laplace field on D, that is, a solution of (4.8).
Then the equation (4.7) defines a weakly regular connection.

As Corollary 4.2, There exists a bijective correspondence between Sinh-Laplace
fields and normalised admissible connections.

Proposition 4.6 (Bobenko-type formula). Let v : ® — H? be a weakly regular
harmonic map and ¥ ;) := ¥ 5 /=3, : D X S — @G, the extended framing of . Then

0 _ .
(4.9) e = 21 Y - iy} +va), Yo =Ad(T) i

describes a loop of spacelike umbilic free constant mean curvature 1/2 immersions.
The first and second fundamental forms of each @(4) are

(4.10) I(t) =1 = e“dz2dz,

Iy = %(e“’ + cos(2t))dz? — sin(2t)dxdy + %(e“’ - cos(2t))dy2.

The local coordinate system (z,y) defined by z = ¢ + +/—1y is an isothermal coor-
dinate system of each @yy. In particular (x,y) is principal for t = 0. The Gauss
mapping of each ¢z is P(y)- '

Remark. Recently, T. Taniguchi [12] has obtained a Bobenko-type formula for
spacelike constant mean curvature surfaces. His formula is slightly different from

ours (4.9). Our formula describes a loop of such surfaces.(Compare Example 2.3 in
[6] and Example 4.6 in [12]).
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5. HARMONIC MAPS OF FINITE-TYPE

In Section 3, we have introduced the spectre parameter for connection one forms.
And we presented the so-called zero-curvature representation for the harmonic map
equation (Proposition 3.6). A loop of admissible connections takes value in an
appropriate twisted loop algebra. In this section we shall only describe the Lorentz
case for simplicity. First of all, we shall explain the following materials we need.

Let §€ := g€\ A7 = {€0) = Y A%, | &2 € g€} be the linear space of

a—=—m
all Laurent polynomials with cofficients in the complexification g€ of g. We can
naturally extend the bracket [, | of g to g€ as follows:

€O, n0] = D &A%Y mA =D > [€a, miAvt.
a b a b

With respect to this bracket, §€ forms an infinite dimensional Lie algebra. Also
the involution 7 of g is naturally extend to g©.

TO)A) =7(Q_ &) =D (&) (-1)"2"

a

The extended involution 7 gives the eigenspace decomposition of §€. We denote
§S, the (+1)-eigenspace of g€. The Lie algebra §€ is called the twisted polynomial

loop algebra of g€. The twisted polynomial loop algebra g€ is explicitely given
by ‘

(5.1) | s = {0 = Zfa)\a | &1 € €€, &1 € mCY

In order to solve the zero curvature equation (3.12), we need to restrict ourselves
to suitable real forms of §€. We define the conjugation operator ¢ as follows:

(5.2) (E)(N) = E(N).
It is easy to see that £()\) € g€ is invariant under the involution ¢ if and only if
A e R

We denote g, the real form of g€ corresponding to the conjugation ¢. This real
form is explicitely given by:

(5.3) B ={60) =Y & R* > g | Eu €, Eayr €m).

To get a loop of harmonic maps from D, into H?, we have to solve the zero-curvature
equation (3.6) over the real form g, as above.
We restrict our interest to the following finite dimensional linear subspace
ANg of g,. .

' N
(5.4) AVg={tN) = ) &I e}

a=—N
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Now we shall introduce the Lax operators L'y, L of ANg.

(6:5)  IN©OO) = 3év-1 + 2w, LEOM) = ~2tin — A,

Evidentrly, the Lax operators LYy, LY breserve ANgif N is odd.

Further, we shall introduce the notion of normal admissible loop.

Definition 5.1. An element {()\) € §, is a normal admissible loop if £(\) € ANg
for odd N and satisfy the following condition.

1 1
— . _pWo ! — __p—wo !
f—N_ 5¢ k', ¢n 5€ k

The following is our main result.

Theorem 5.2. Let £(\) € ANg be a normal admissible loop. Then the following
Laz equations have a unique smooth solution x* over a region of R2.

9 A [ LA / A d A [ A n A
35X =" IvOAN, 5ox* =D, Ly(x)]-
Furthermore, the loop a) defined by
N A " A
ay = Ly(x") du+ Ly (x") dv

s a loop of Sine-Gordon connections.

Sketch of the proof. Define the vector fields Q'y and Q' on ANg by
N N T

Q) =(A), Lyl Qu®(X) = [n(N), Liyn()].

Direct calculations show that the vector fields Q' and Q' are commutes. Since
Qv and Q' are vector fields defined on a finite dimensional linear space ANg, there
exist local flows Fy and Fy of Q)y and Q' respectively. By the commutativity of
Qv and Q'y, we can define the following smooth map x*

X (w,v) = Fiy(u) 0 Fiy(v).

This mapping x* is a desired one. O

We call a harmonic map constructed by the solution x*, a harmonic map of
finite type. Using a finite-type harmonic map ) constructed by the solution x>,
we can construct a loop of spacelike constant positive curvature surfaces which are
not graphs. -
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