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Introduction

Let $M$ be a connected, oriented, noncompact, complete surface in the 3-dimensional
Euclidean space $E^{3}$ . We denote the second fundamental form of $M$ by $B$ , the mean
curavature by $H$ and Gaussian curavature by $K$ .

In this paper, we study the geometry of a surface $M$ which satisfies $\int_{M}|B|dM<$

$\infty$ , where $dM$ is the area element of $M$ . For surfaces which satisfy $\int_{M}|B|^{2}dM<$

$\infty$ , rather than $\int_{M}|B|dM<\infty$ , extensive studies have been made. Since $|B|^{2}=$

$4H^{2}-2K\geq 2|K|$ , the condition $\int_{M}|B|^{2}dM<\infty$ implies $\int_{M}|K|dM<\infty$ . A
theorem by Huber $([\mathrm{H}])$ says that an abstract noncompact complete 2-dimensional
Riemannian manifold satisfying $\int_{M}|K|dM<\infty$ is conformally equivalent to a
compact Riema.n$\mathrm{n}$ surface $\overline{M}$ punctured at a finite number of points $p_{1},$ $\cdots,p_{k}$ . If
$M$ is a minimal surface with $\int_{M}|B|^{2}dM<\infty$ (or equivalently, $| \int_{M}KdM|<\infty$ ),

Osserman showed that the Gauss map $G:Marrow S^{2}$ is continuously extended to a
map from $\overline{M}$ to $S^{2}([\mathrm{O}])$ . White $([\mathrm{W}])$ extended Osserman’s theorem to surfaces
with $\int_{M}|B|^{2}dM<\infty$ and $K\leq 0$ . The continuous extendability of the Gauss
map cannot be derived without the condition $K\leq 0$ , but M\"uller-\v{S}ver\’ak $([\mathrm{M}-\mathrm{S}])$

showed that if $M$ satisfies $\int_{M}|B|^{2}dM<\infty$ , then $M$ is properly immersed.
Let $M$ be a connected, oriented, noncompact, complete, properly immersed

surface which satisfies a pointwise condition $|B(x)|\leq C|x.|-1-\epsilon$ for $x$ in $M$ ,

where $|x.|$ is the Euclidean distance from the origin and $C$ and 6 are positive

constants. In [E], the author showed that for $M$ satisfying this condition we have
$\int_{M}|B|^{2}dM<\infty$ and the Gauss map is continuously extended to a map from $\overline{M}$ .
Basic tools to study those surfaces are given by Kasue and Sugahara in [K] and

[K-S]. In this paper we will study a surface $M$ which satisfies a stronger condition
$|B(x)|\leq C|x|^{-2-}\mathcal{E}$ and show that we have $\int_{M}|B|dM<\infty$ (Theorem 1). We
will also show $\mathrm{t}\dot{\mathrm{h}}$at such a surface has a property that each end has an asymptotic
plane (Theorem 2).
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In general, of course, the condition $\int_{M}|B|dM<\infty$ does not give any pointwise
estimate for $|B|$ . Moreover, since $\int_{M}|B|dM<\infty$ does not necessarily imply
$\int_{\mathrm{A}4}|K|dM<\infty$ , Huber’s theorem cannot be applied for these surfaces and the
geometry or the topology of $M$ near infinity can be very complicated in general.
But if $M$ is a surface of revolution, we can say something about the geometry of
the ends. In Theorem 3, we will show that if $M$ is a surface of revolution and
satisfies $\int_{M}|B|dM<\infty$ , then each end of $M$ has an asymptotic plane. We note
that even when $M$ is a surface of revolution, $\int_{M}|B|dM<\infty$ does not imply that
$|B|$ is uniformly bounded. $’‘$ .

1. Surfaces whose second fundamantal forms decay uniformly

Let $M$ be a connected, oriented, noncompact, complete, properly immersed
surface in $E^{3}$ . For $x$ in $M,$ $|x|$ will denote the Euclidean distance to $x$. from the
origin.

Theorem.1. If there exist positive constants $C$ and $\epsilon$ such that $|B(x)|\leq$

$C|x|-2-\Xi$ for all $x$ in $M$ , then we have $\int_{M}|B|dM<\infty$ .

Proof. Since $M$ is properly immersed and the second fundamental form satisfies
$|B(x)|\leq C|x|^{-2-}\mathcal{E},$ $M(t)=\{x\in M : |x|\geq t\}$ is a union of a finite number of
surfaces $M_{1}(t),$ $\cdots,$ $M_{q}(t)$ , and for $\lambda=1,$ $\cdots,$ $q$ and sufficiently large $t,$ $M_{\lambda}(t)$ is
diffeomorphic to $\partial M_{\lambda}(t)\cross[t, \infty)$ ( $[\mathrm{K}]$ Lemma 2). $\partial M_{\lambda}(t)$ is a closed curve whose
length is less than $C_{\mathrm{I}}\prime t$ , where $C_{1}$ is a constant which does not depend on $t([\mathrm{K}^{-}\mathrm{s}]$

Lemma 6). Let $r:Marrow \mathrm{R}$ be a function on $M$ which is defined by $r(x)=|x,|$

for $x$ in $M$ . Then there exists a positive constant $C_{2}$ such that $|\nabla r|\geq C_{2}\text{ノ}$ if $r$ is
sufficiently large ([K] Lemma 2). Hence, denoting the line elernent of $\partial M_{\lambda}(t)$ by
$ds$ , we have $dM\leq C_{3}drd_{S}$ for some positive constant $C_{3}$ . Now, if $R$ is sufficiently
large, we have

$\int_{M_{\lambda}(R)}|B|dM$ $\leq$ $C_{3} \int_{R}^{\infty}(\int_{\partial M_{x(r}}.)|B|ds)dr$

$\leq$ $C_{3} \int_{R}^{\infty}(c_{r^{-2}\mathrm{L}\mathrm{e}\mathrm{n}}’-\epsilon \mathrm{g}\mathrm{t}\mathrm{h}(\partial M\lambda(r)))dr$

$\leq$ $C_{3} \int_{R}^{\infty}CC1r^{-1-\epsilon}dr$

$<$ $\infty$ .

This proves the theorem.
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Theorem 2 If there exist positive constants $C$ and $\epsilon$ such that $|B(x)|\leq$

$C|x|^{-2-}\mathcal{E}$ for all $x$ in $M$ , then each end of $M$ has an asymptotic plane, i.e., for
each $\lambda=1,$ $\cdots,$ $q$ there exists a plane $P_{\lambda}$ such that

$\sup_{x\in M_{\lambda}(t)}\inf_{\in yP_{\lambda}}|x-y|$
tends to $0$

as $tarrow\infty$ .

Proof. By Lemma 1.4 in [E], our assumption implies that the normal component
of the position vector on each end of $M$ tends to a constant vector. To make it more
precise, let $x$ be a point in $M_{\lambda}(t)$ and $N=N(x)$ be a unit normal vector of $M$ at
$x$ . Then, as $|x|arrow\infty,$ $N(x)$ converges to a constant unit vector $E_{\lambda}$ and $\langle x, N(X)\rangle$

converges to a constant $a_{\lambda}$ . Let $P_{\lambda}$ be the plane defined by $\{y\in E^{3} : \langle y, E_{\lambda}\rangle=a_{\lambda}\}$ .
First we note that $\inf_{y\in P_{\lambda}}|x-y|=\langle x, E_{\lambda}\rangle-a_{\lambda}$ for $x$ in $M_{\lambda}$ . By moving the origin
of $E^{3}$ if necassary, we may assume that $a_{\lambda}\neq 0$ . Since

$|x| arrow\lim_{\infty}\langle x, a_{\lambda}E\lambda\rangle$
$=$

$\lim_{|x|arrow\infty}\langle x, \langle x, N\rangle N\rangle$

$=$ $|x| arrow\lim_{\infty}\langle x, N\rangle^{2}$

$=$ $a_{\lambda}^{2}$ ,

we see that $\langle x, E_{\lambda}\rangle-a_{\lambda}$ tends to $0$ as $|x|arrow\infty$ . This shows that each end of $M$

has an asymptotic plane.

2. Surfaces of revolution

In this section, $M$ will be a surface of revolution in $E^{3}$ which is defined by
$M=\{(x., y, z)=(r\cos\theta, r\sin\theta, f(r)) : r_{0}\leq r<\infty, 0\leq\theta<2\pi\}$. The norm of
the second fundamental form and the area element of $M$ are given as

$|B|=r-1(1+f^{\prime 2})-3/2(r2f//2+f’2(1+fr2)^{2})^{1/2}$

$dM=r(1+f^{\prime 2})^{1/2}drd\theta$ .

Theorem 3. Let $M$ be a surface of revolution given above. If $\int_{M}|B|dM<\infty$ ,

then $\lim_{rarrow\infty}f(r)=C$ for some constant $C$ , i.e., each end of $M$ has an asymptotic
plane.

Proof. Since

$\int_{M}|B|dM$ $=$ $\int_{r\mathrm{o}}^{\infty}dr\int_{0}^{2\pi}\frac{(r^{2}f^{\prime\Gamma 2}+f’2(1+f/2)2)^{1/2}}{1+f^{\prime 2}}d\theta$
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$=$ $2 \pi\int_{r_{0}}^{\infty}\frac{(r^{2}f’/2+f/2(1+f\prime 2)2)1/2}{1+f^{\prime 2}}dr$

$\geq$ $2 \pi\int_{f}^{\infty}\mathrm{o}r|f’|d$ ,

the condition $\int_{M}$

.

$|B|dM<\infty$ implies that $\lim_{farrow\infty}f(r)=C$ for some constant $C$ .

The following example shows that $|B|$ may not be bounded on a surface of

revolution with $\int_{M}|B|dM<\infty$ .

Example. Let $f(r)$ be a function which has the following property;

$f”(r)=$
Then for $n\leq r<n+1$ , we have

$. \sum_{k=1}^{n}-1\frac{1}{k^{3}}<f’(r)-fJ(\mathrm{o})<\sum_{1k=}n\frac{2}{k^{3}}$.

Hence, by a suitable choice for $f’(0)$ , we can have $f’(r)=O(r^{-2})$ . If $M$ is a surface
of revolution obtained from $f(r)$ , we have

$\int_{M}|B|dM$ $=$ $2 \pi\int_{0}^{\infty}\frac{(r^{2}f^{\prime/2}+f’2(1+f/2)2)^{1/}2}{1+f^{\prime 2}}dr$

$\leq$ $2 \pi.\int 0r|f’/|dr\infty+2\pi\int_{0}^{\infty}|f^{J}|dr$

$<$ $\infty$ .

But $|B|$ is not bounded, since $|B|\approx n$ if $n+ \overline{n}^{T}1\leq r\leq n+\frac{2}{n^{4}}$ .
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