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Surfaces of Finite Total Curvature

Kazuyuki Enomoto
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Introduction

Let M be a connected, oriented, noncompact, complete surface in the 3—dimensional
Euclidean space E3. We denote the second fundamental form of M by B, the mean
curavature by H and Gaussian curavature by K. 7

In this paper, we study the geometry of a surface M which satisfies [ M |BldM <
0o, where dM is the area element of M. For surfaces which satisfy f,,|B[? dM <
oo, rather than [, |B|dM < oo, extensive studies have been made. Since |BJ* =
4H? — 2K > 2|K]|, the condition [, |B|*dM < oo implies [, |K|dM < co. A
theorem by Huber ([H]) says that an abstract noncompact complete 2-dimensional
Riemannian manifold satisfying [,, |K|dM < oo is conformally equivalent to a
compact Riemann surface M punctured at a finite number of points py,- -+, pg. If
M is a minimal surface with [, |BJ* dM < co (or equivalently, l Jy K dM | < 00),
Osserman showed that the Gauss map G : M. — S? is continuously extended to a
map from M to S$? ([O]). White ([W]) extended Osserman’s theorem to surfaces
with [,,|Bl?dM < oo and K < 0. The continuous extendability of the Gauss
map cannot be derived without the condition X < 0, but Miiller-Sverak ([M-S])
showed that if M satisfies [, |B|*dM < oo, then M is properly immersed.

Let M be a connected, oriented, noncompact, complete, properly immersed
surface which satisfies a pointwise condition |B(z)| < Clz|~*7¢ for 2z in M,
where |z| is the Euclidean distance from the origin and C and e are positive
constants. In [E], the author showed that for M satisfying this condition we have
[3s1B|? dM < oo and the Gauss map is continuously extended to a map from M.
Basic tools to study those surfaces are given by Kasue and Sugahara in [K] and
[K-S]. In this paper we will study a surface M which satisfies a stronger condition
|B(x)| < Clz|=27 and show that we have [, |B|dM < co (Theorem 1). We
will also show that such a surface has a property that each end has an asymptotic
plane (Theorem 2).
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In general, of course, the condition [, |B|dM < oo does not give any pointwise
estimate for |B|. Moreover, since [, |B|dM < co does not nécessarily imply
Ju |K|dM < oo, Huber’s theorém cannot be applied for these surfaces and the
geometry or the topology of M near infinity can be very complicated in general.
But if M is a surface of revolution, we can say something about the geometry of
the ends. In Theorem 3, we will show that if M is a surface of revolution and
satisfies [,, |B|dM < co, then each end of M has an asymptotic plane. We note
that even when M is a surface of revolution, [, |B|dM < co does not imply that
| B| is uniformly bounded.

1. Surfaces whose second fundamantal forms decay uniformly

Let M be a connected, oriented, noncompact, complete, properly immersed
surface in E3. For z in M, |z| will denote the Euclidean distance to = from the
origin. | -

Theorem 1. If there exist positive constants C' and € such that |B(z)| <
Clz|~2~¢ for all z in M, then we have f, |B|dM < co.

Proof. Since M is properly immersed and the second fundamental form satisfies
|B(z)| < Clz|™27¢, M(t) = {z € M : |z| > t} is a union of a finite number of
surfaces M;(t),- -, Mq(t), and for A = 1,---,¢ and sufficiently large t , Mx(t) is
diffeomorphic to OM,(t) x [t, 00) ([K] Lemma 2). OM(t) is a closed curve whose
length is less than C;t, where C; is a constant which does not depend on ¢ ([K-S]
Lemma 6). Let r: M — R be a function on M which is defined by r(z) = |z|
for x in M. Then there exists a positive constant Cz such that |Vr| > C; if r is
sufficiently large (|[K] Lemma 2). Hence, denoting the line element of OMx(t) by
ds, we have dM < Cj drds for some positive constant C3. Now, if R is sufficiently
large, we have

/ BldM < 03/ / |B|ds | dr
M, (R) R M, (1) ,

< Cs / (Cr~2"Length(OMx(r))) dr
v R

< Cg/ CCyr—=¢dr
R
< ©0 .

This proves the theorem.
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Theorem 2 If there exist ﬁositive constants C' and ¢ such that |B(a;)l <
C|z|=27¢ for all z in M, then each end of M has an asymptotic plane, i.e., for
each A = 1,---,q there exists a plane Py such that sup inf |z —y]| tends to 0

zEM (1) VEP
as t — 0.

Proof. By Lemma 1.4in [E], our assumption implies that the normal cofnpohent
of the position vector on each end of M tends to a constant vector. To make it more
precise, let x be a point in M(t) and N = N(z) be a unit normal vector of M at
z. Then, as |z| — co, N(z) converges to a constant unit vector Ex and (z, N(z))
converges to a constant a,. Let Py be the plane defined by {y € E® : (y, E)) = ay}.
First we note that yien}g |z — y| = (z, E\) — ax for z in M. By moving the origin

of E3 if necassary, we may assume that ay # 0. Since

Jim (5, 0B)) = Jim (z,(z, N)N)
x|{—00 r|—0o0o

= lllim' (z, N)?

= d,

we see that (z, Ex) — ax tends to 0 as |z| — oco. This shows that each end of M
has an asymptotic plane.

2. Surfaces of revolution

In this section, M will be a surface of revolution in E3 which is defined by
M = {(z,y,z) = (rcos@, rsinb, f(r)) : ro <r < oo, 0<0 <27 }. The norm of
the second fundamental form and the area element of M are given as

|B| — r-1(1+f/2)—3/2(r2f//2 +f/2(1 + fr2)2)1/2

dM = r(1+ )2 drds.

Theorem 3. Let M be a surface of revolution given above. If [ |B|dM < oo,
M

then lim f(r) = C for some constant C, i.e., each end of M has an asymptotic
r— 00
plane.

~ Proof. Since

/IBIdM = /00617“/~27~r 2+ 120 SR
M B o 0 ’ 1+f/2 '
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- 00 el 0 ! /
- ,M/m (ﬂf%{f:}:fz)"’)‘?dr

o 00
2 27r./ |f| dr,
: n

(2]

the condition / |B|dM < co implies that lim f(r) = C for some constant C.
’ M ) r—00

The following example shows that |B| may not be bounded on a surface of

revolution with / |B|dM < oo.
' M

‘Example. Let f(r) be a function whivch has the following property;

,

n for n+#§r§n+n%-
0 for n+-§;§r§n+1

f(r) =<

<n for n+Z<r<nt
\_>_O for all r

Then for n <r <n + 1, we have

n—1 n
Y m <l O-FO<Y o
k=1 k=1

Hence, by a suitable choice for f/(0), we can have f'(r) = O(r~2). If M is a surface
of revolution obtained from f(r), we have

00 (.2 plI2 2 12\2\1/2
/|B|dM - 27r/ A AT
M 0 1+ f2

< 271'/ 7'|f”|dr+27r/ \f'| dr
| 0 0

< ©o.

But | B| is not bounded, since |B|=nifn+ L <r<n+ Z.
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