0000000000
996 0 1997 0 111-124 111

Multi-action m-calculus

Yukihiro ODA Masaki MURAKAMI

Okayama University

E-mail: {oda,murakami}@momo.it.okayama-u.ac.jp

Abstract

We propose a new truly-concurrent semantics for the m-calculus[1]. We extend the
labelled transition system of the w-calculus to use multi-sets of actions as labels. We
call this extension multi-action 7-calculus. The multi-action 7-calculus can describe
concurrent behavior of agents. Strong bisimilarity defined in the multi-action 7-
calculus is closed under input-prefixings and parallel compositions.

1 Introduction

In recent years, studies of process algebra, especially the 7-calculus[1], have a lot of atten-
tion. The 7-calculus is an extension of CCS[2]. Agents of the m-calculus can modify their
linkage structures dynamically via name-passing mechanism. The observation equivalence
is proposed as a semantics, an equivalence relation over the m-calculus agents. This se-
mantics is called interleaving semantics, because this semantics is based on the notion of
interleaving . In the view of the interleaving, concurrent (or parallel) executions are de-
scribed by non-deterministic alternations of sequential executions. For example, agents a|b
and a.b+ b.a are regarded as same. This property is characterized as the expansion law[2].
The expansion law is very convenient to use CCS-like languages as formal specification
languages.

On the other hand, semantics those are not based on the interleaving are proposed.
These semantics are called non-interleaving semantics or truly-concurrent semantics. These
semantics focus the following problems:

e CCS-like languages can describe concurrent systems of agents. But the interleaving
can not describe the concurrent behavior of agents truly. Any concurrent agent is
sequentialized in the interleaving semantics.

e In the m-calculus, the observation equivalence (even strong ground bisimilarity)
is not closed under input prefizings. That is, the expansion law is not correct in
the m-calculus. For example, Tz|y(w) ~ Zz.y(w) + y(w).Tz but z'(y).(Tz|y(w)) #
z'(y).(Tz.y(w) + y(w).Tz). Because the left-side agent can perform a 7 action but
the right-side agent can not. This problem is caused via identification of concurrent
executions and sequential executions without consideration to communication ability
given by name-passing.

112

Location[3][4][5], causality[6][7][8][9], Petri-Net[10], graph rewriting system[11] semantics
are already proposed as truly-concurrent semantics. These semantics improved the con-
currency and the inconvenience involved with the name-passing. But these semantics have
the following problems:

e We must analyze semantics of each agent to capture the concurrent behavior of such
agents. The concurrent behavior of agents should be captured from its semantics
directly. :

e Especially in the location based semantics, the concurrency that is captured by ob-
servation and that is determined by semantics are not equivalent. That is, concurrent
executions of an agent are regarded as sequential executions by semantics. This ruins
congruence of semantics by the similar way to the expansion law.

We discuss these problems again in Section 6.

We propose another truly-concurrent semantics for the 7-calculus to improve the above
two problems. The idea of our new semantics is to re-define the notion of actions using
multi-actions. One multi-action means that two or more actions (or events) are performed

concurrently and observed. For example, we infer a transition a.P|[b.Q|(c+ R)|¢ bl P|Q.
We extend the labelled transition system of the 7-calculus to use multi-actions as labels and
define bisimilarities over the extended m-calculus. We call this extension of the m-calculus
multi-action 7-calculus.

Multi-action approaches are already proposed for non-mobile calculi[12]. But we can
not adopt these works simply for the m-calculus. Because the special treatment for name-
extrusion is required. In the m-calculus, restriction operators, denoted by (vz), also work
as sequentializers by the different way to the CCS. For example, let us consider an agent
p¥ 72.Q1|2(y).Q2|w(y). Intuitively, P performs action w(y), Tz and z(y) concurrently.
Suppose an agent (vz)P. (vz)P reaches deadlock after w(y) in the framework of non-
mobile calculi. Because executions of actions containing name z are prohibited. On the
other hand, in the m-calculus, (vz)P performs action w(y) and Z(z) followed by z(y).
Because T(z) eliminates (vz) from the agent. But z(y) can not be performed before Z(z)
and these two actions are no longer performed concurrently. On the other hand, w(y) and
T(z) are concurrent. We must determine that which actions are concurrently executable
with a name-extrusion, when we use the Open Rule. This requirement of special treatment
is similar to the case of the causality for the m-calculus[6]. We can consider many kinds
of treatments of name-extrusion. Congruence of semantics depends on the choice of the
treatments.

Outline of this paper: We introduce the m-calculus and its bisimilarity in section 2. We
propose the multi-actions and the multi-action m-calculus in section 3. And we propose
strong bisimilarity for the multi-action m-calculus and prove its congruence (outline) in
section 4. We discuss the concurrency via multi-action in section 5. Finally, we compare
multi-action based semantics with other truly-concurrent semantics in section 6.

113

2 m-calculus

In this section, we define the 7-calculus and its (observational) strong ground bisimilarity.
Furthermore, we show an example to demonstrate the problems mentioned in the previous
section. '

DEFINITION 2.1 (Actions) Let A be an infinite set of names. We define a set Act defined
as follows: '

Act 2 {zy, (), Ty, Z(W)le,y € N}U {7}

We let z, y,<- .- range over N and a, b, - - - range over Act. We i,deritify z and T.
When we have no interest in the object-part of an action, we omit it.

DEerFINITION 2.2 (Agents) We define a set P of all terms generated by the following rule:
P:=0|N(N).P|NN.P|7.P|(vN)P.| P+ P|PIP

where N is an element of A/. We call each element of P an agent. We abbreviate
(vz1)(vzs) - - - (v2,) P as (vZ) P with the multi-set Z = {21,22,--,2a}. And we identify P
and (v0)P. , L

We define bn(-), fn(-), n(-), obj(-), sub(-) and structural congruence = in usual way.

REMARK 2.3 Replication, denoted by !P usually, is not considered.

DEFINITION 2.4 (name substitution) A name-substitution is a full function 6 : N' —

N. We write application of a name-substitution # to name = as zf. Let ¢ be the identity

name-substitution and {z'/z} is the same name-substitution to ¢ except z{z'/z} = z'.
We also define application of a name-substitution to agents in usual way.

AssuMPTION 2.5 In order to simplify the following discussion, we assume that any bound
name in an agent is distinct from any free name in such agent. That is, bound names are
renamed fresh names automatically in the agent.

DerINITION 2.6 (Transition System) We define the labelled transition system L =
(P, Act,—) where — C P x Act x P is the relation given by the transitive closure of

114

the following inference rules.

Prefix Input

a.P 5P x(y) P P{z/y}
o PSP
-b,;f—,— Sum- = z¢n(a) Restriction
P+Q = P (vz)P — (vz)P’
P p Q™%Q - i P p 2B Q
7 - ommunication = ose
P|lQ = P'|Q PIQ = (v2)(P'|Q)
P— P w#zx Op_en

(vw)P — Zw), pr

P=Q Q¢ . Q=P Structure PP = P
P3P : P|Q 5 PQ

Parallel

REMARK 2.7 Without AssumpTioN 2.5, the side condition bn(a)Nfn(Q) = @ is needed for
the Parallel Rule.

DEerFINITION 2.8 (strong ground bisimilarity) A symmetric relation R C P x P is a
strong ground bisimulation if and only if for every (P,Q) € R,

P % P' (where bn(a) N fn(P,Q)=0) = 3Q". Q@ > Q' and P"R,Q
DEFINITION 2.9 ~ = (the largest strong ground bisimulation).

ExamMpLE 2.10 Please recall these two agent appeared in the Section 1.

Py performs actions concurrently but Qo performs sequentially. ~ can not distinguish
agents via their concurrent behavior. Because both Py and QO have same interleaved (that
is, sequential) transitions. For instance, =522, Y% 2%, .

Suppose the following two agent z'(y).Fp and z'(y).QO. These two agent no longer

identified by ~. Because we have a transition z’(y).P, =%, 7, but we have 2’ (v)-Qo ==, 7,
always. Thus, ~ is not closed under input-prefixings.

3 Multi-action w-calculus

In this section, we extend the m-calculus. The extended calculus, multi-action w-calculus,
uses the same syntax to the m-calculus. But its labelled transition system uses multi-actions

115

as labels. A multi-action is a cluster of actions. Intuitively, the multi-action means that
actions in it are performed concurrently and observed. We describe the concurrent behavior
of agents directly using multi—actions.

DEeFINITION 3.1 Let | be an infix 2-ary operator symbol We define a set .A Act| of terms
generated from the rule: -
A = Act I AlA.

We let A, B, --- range over A Act)’
Let =, be the smallest binary relation over A 4 ct| that satisfies the following condltlons

e It is an equivalence relation,
e (A|B)|C =, A|(B|C), and
e A|B =, B|A.
We abbreviate A Act)/=. (‘the quotient set of A 4.4 by =,) as A, and [A]=, as A.

DEFINITION 3.2 We define a binary operator |4 over A U {0}

L[4 B=o,
ABY!I B A=y,
A|B otherwise.

More specifically, the final line means that [A]-,

alBl=, < [A|B]...

DEeFINITION 3.3 Let a,b € Act. a and b are commumcatable if and only if @ = b. Please
note that any bound action and free action are not communicatable.

DEerFINITION 3.4

: T|4(A'XB’) if Ja,b € Act. A =a|A’, B=>b|B' and
AXB % a and b are communicatable ,
A|4B otherwise. ,
{y}wTIE(A,B") if3z,y € N. (A =7Z(y)|A" and B = z(y)|B’) or
TIE(4,B) < (A = z(y)|A’ and B = z(y)|B"),
0 otherwise.

where W is the multi-set union operator. Thus, TIE(A, B) takes two elements of .4 and
returns a multi-set of names.

Intuitively, AXB invokes interactions between communicatable actions in A and B simulta-

neously. TIE(A, B) gives names required to bind after interactions between bound actions
in A and B.

116

ExampPLE 3.5

a(z)[b(w)|cyld X b(w)la(z)ley = 7lrirld
TIE(a(2)|b(w)leyld, b(w)la(z)ley) = {w,z}

LEMMA 3.6 Let Msirong def (AU{0},0,]4). Then, Myirong is a commutative monoid and @

is the unit element of Mstrong-
DEriNITION 3.7 (Multi-action) We call each element of Mong @ multi-action.

We can use any structure as the multi-actions if it follows the definitions. For example, we
can use the multi-set of actions and multi-set union as the multi-actions.
We abbreviate |4 as |. For convenience, we write [];, A; as A1|Ag|---|An.

ExampLE 3.8 {alblc, c|a|b, blalc} is a set of same multi-actions. {alb, alalb, alb|r} ,
{al@, 7, 7|7} and {a|r, a} are sets of different multi-actions.

DEriniTiON 3.9 We define a function fi(-) over multi-actions:

fi(A) def { zy|fi(A") if 3z,y. A = zy|A,

0 otherwise.

fi(A) is the multi-action constructed from free-input actions in A. We also define fo(A) (
extraction of free-output from A), bi(A) (extraction of bound-input from A) and bo(A)
(extraction of bound-output from A). ' Co

We define a function bo2fo(-) as follows:

e | Tylbo2fo(A) if 3z,y. A =T(y)| A,
bo2fo(A) = { A otherwise.

bo2fo(A) is the multi-action obtained by replacing each bound-output T(y) of A with
corresponding free-output Zy.

DeriniTION 3.10 (Multi-action Transition System) We define the labelled transition
system Ly = (P, A,—») where >C P x A x P is the relation given by the transitive closure

117

of the following inference rules.

————— Prefi Input
a.P > P renx z(y).P = P{z/y} P

P4 P P4 P z¢n(A)
— a1 - Sum ’ 2 j
P+Q o P (v2)P = (vz)P'

Restriction
/ AQ !

pinp @i%q

(uTIE(Ap,AQ»(P'lQ')

P w#z wgsub(A)Uobj(fi(A))
(vw)P —— Alx(w — P

Communication

PlQ

S Alzw
PI

Open

P=Q Q5@ Q=P PLP
: i — Structure ———— Parallel
P> P PlQ o P

REMARK 3.11 Without AssumpTioN 2.5, the Communication Rule must have complexed
side conditions. That is, “bound actions of ApXAg come from Ap do not bind any free
name in agent @ and @', and vise versa. Furthermore names in TIE(Ap, Ag) are distinct
from names in ApMAQ”.

Of course, the side condition “bn(A)Nfn(Q) = 0” is needed for the Parallel Rule.

ExampLE 3.12 We can obtain a transition a|b(w).P|(vz)(bz|2.Q) _ah_ldg (vz)(P{z/w}|z.Q)
by the following inference: :

bz 0
a0 bw).P 2 P{zjw} bzle—>zQ 2#b 2€0
alp(w).P <22 Pz/w} (v2)(52]2.Q) “ 2.Q
alb(w).P|(v2) (52|2.Q) 25 (vz)(P{z/w}|2.Q).

a|7'|z

On the other hand, we can not obtain a|b(w).P|(vz)(bz|2.Q) ——
‘the transition (vz)(bz|2.Q) ——— b(z i ——— @ is prohibited.

— (vz)(P{z/w}|Q) because

4 Strong Bisimilarity

In this section, we propose strong ground bisimilarity for the multi-action m-calculus and
we show congruent results for this bisimilarity.

118

DEeFINITION 4.1 (strong ground multi-action bisimilarity) A symmetric relation R C
P x P is a strong ground multi-action bisimulation if and only if for every (P, Q) ER,

P2 P' (where bn(4) N fn(P,Q) =0) = 3Q. Q % Q and P'RQ"

DEFINITION 4.2 def (the largest strong ground multi-action bisimulation)-

We also define strong ground mﬁltz’—dction bisimulation up to ¢y in usual way. We can show
that if a relation R is a strong ground multi-action bisimulation up to ¢ then xR oy is a
strong ground multi-action bisimulation.

THEOREM 4.3 ¢ is closed under T-prefixings, output-prefixings, restrictions and sum com-
positions.

THEOREM 4.4 ¢ is closed under parallel compositions.

Discussion 4.5 By the side-conditions of the Open Rule in the DeriniTION 3.10, < is
preserved for parallel compositions. The side-condition w¢sub(A)UJobj(fi(A)) checks each
action’s independency of extruded name w. We can consider many kinds of independency
(or dependency) involved with name-extrusion. For example, link dependency[6], enabling
dependency[6] and object dependency[6][8] are considered. But these dependencies are not
appropriate.

dependency actions depending on Z(a)

link Cink az,a(2),az,a(z)
object Kop; Ta,ya

enabling Cj.. 92,3(2),az,a(2),7e,9(a), ya

multi-action @z,a(z),az,a(z),ya

The link dependency is not appropriate in the sense of the concurrency. Because it allows

L. . o — Z1(2)|z22 . L .
transitions like (vz)(Z1z.2|72(y).F + R) ———. This transition do not satisfy confluence

(see Section 5). Furthermore, such transitions do not contribute to preserve ¢ for parallel
compositions. Because agent (vz)(Z7z.z|72(y).J+ R) always can perform T7(2)|z2(2') with
fresh name 2', o is preserved. The object dependency and the enabling dependency can

. d SR
not make ~ congruence for parallel compositions. For example, let P éf (v2)(T12|722)

and Q & (v2)(F12.732) + (vz)(T22.T12). Both dependencies prohibit agent P to perform
T1(z)|Tzz. Thus, P v Q. But parallel composed agent P|(z1(y)|z2(y)) is not strongly

T|T

bisimilar to Q|(x1(y)|z2(y)). Because Q|(z1(y)|z2(y)) T

DiscussioN 4.6 In the previous Discussion 4.5, we focus the transition P|(x1(y)|z2(v)) 7’1—7)

This transition raise a question whether we should identify 7 and 7|7 in a weak bisimilarity.

119

Let us consider the following systems:

Mem ! Tead v.Mem + write(v).Mem

de —
Ezec™ exec(v).T.write v.Exec

Fetch, % read(v).decode v.Fetch,
Decode; & decode(v).exec v.Decode;
Sys & (v{decode, read})(Fetch,|Decode; [Mem)

Fetchy & read(v).(decode v|Fetch,)
Decode, & decode(v).(ezec v|Decode,)
PLSys (v{decode, read})(Fetchs|Decodes| Mem).

If we adopt the view of “r = 7|7”, then system Sys and PLSys are weakly multi-action
bisimilar, furthermore weakly multi-action congruent. Thus whole system Sys|Ezec and
PLSys|Exec are regarded as same. But we consider the system PLSys|Ezec is more
desirable because PLSys is pipe-lined. Sys performs fetch-decode stage sequentially as the
transition ——. On the other hand, PLSys can perform fetch-decode stage concurrently (

or in parallel) as the transition T—l\l:> If we refine an agent via its degree of the concurrency,
then we should distinguish 7 and 7|7.

THEOREM 4.7 ~ is closed under input-prefixings.

Outline of Proof: Let a relation R {((VZ)(PG),(VZ)(Q@))‘P rﬁa.Q}. We show
that R is strong ground multi-action bisimilar up to ~. Consider P§. We prove that

Po %) P = 3Q'. Qo % Q' and P'~ R ~Q'. In the case analysis of A, the most
signiﬁcant case is JA". A = 7|A”". When P8 % P', there always exists a multi-action
A" and a multi-set of names Z that satisfy P %’) P" and (VZ)(P"0) = P'. A’ and Z are
obtained from the inference tree of the transition P6 %} P’ constructively. By the definition
of R, P ~ Q. Thus, there exists Q" that satisfies Q %) Q" and P" o~ Q". By the definition
of R, (vZ)(P"9)R(vZ)(Q"6). On the other hand, for same A, A’ and Z, when Q iM'> Q"
there always exists @' that satisfies Q0 —3) Q' and (vZ)(Q"0) = Q'. = Cry. Therefore,
when P8 % P/, there exists Q' that satisfies Q6 <> Q' and P'ey R @' =

DiscussioN 4.8 If we introduce the notion of multi-action for congruence of (strong)
bisimulation, then it is sufficient to introduce double-actions. A double-action is a multi-
action the length of that is one or two. But double-actions can not describe the concurrency.
For example, suppose priority composition (denoted by >) and the following transition
rule:
PP
PrQ = P'|Q.

Priority

120

In double-action framework, agent a|b|c and (a|b)>c+ (c[b)>a+ (alc)>b are strongly bisimilar
and its bisimilarity is preserved in any context. But the former agent performs a, b,
¢ concurrently and the later agent can not perform those actions concurrently. Similar
example can be shown for weak bisimilarity without priority compositions.

5 Concurrency

The concurrency described via multi-actions is characterized by confluence of transitions.
To show that, we refine the multi-action transition relation —. And we define another
multi-action transition relation —¥ using a notion of confluence. Finally, we obtain that
— =4 '

M M

DEeFINITION 5.1 Let =, be the smallest binary relation over A Act) that satisfies the fol-
lowing conditions '

e A=, B=— A=, B, and
o T1(2)|T22|A =3 T12|72(2)|A.

We can consider A Act) /-, and the operation |4 on this set in the similar way to |4 In
the following, we abbreviate A 4.4/, as A’

LEmMMmA 5.2 Let Msi{fong def (A'U{0},0,|). Then, M;t/fong is a commutative monoid and
(is the unit element.

~ Now, we re-define the transition relation — using Mslt/fong.

DEFINITION 5.3 -} d_i_f.{(P, [A]-,, P") | P .$_> P}

TuporEM 5.4 P 24 pr o p TEECEW, b

REMARK 5.5 Tueorem 5.4 means that —¢ and —> have same computations. And the
‘information “which action extrude the name” in a multi-action are not needed for our
purpose. If these information make some sense, then ~ is not preserved for parallel com-
positions (see Discussion 4.5). Required information for a multi-action are “which names
are extruded”. To emphasis this property, we introduce the notation defined in NotaTion
5.6.

In the following, we use the — as the — .

NoTaTiON 5.6 Let [A]-, be an element of Msit/fong. We denote this element-as (vZ)A’ where
Z = obj(bo(A)) and A’ = bo2fo(A). A (vZ)A is valid if and only if Z Cpr 0bj(fo(A)).

We define another multi-action transition relation —¥ using the confluence of transitions.

121

DEerFiNITION 5.7 (link independency predicate) We define a binary predicate » over
A'. Let (l/Zl)Al, (VZQ)A2 € .A’.

(VZ) AL & (vZ2) Az <= obj(fo((vZ1)Ar))NZz = 0
where (vZ;)A; and (vZ;) A, are valid.

ExaMpLE 5.8 (v2)(T1z|T32|T3y) » Tiy|T2z. And (vz, 2)(Ti2|Z3z2|T3y) » (v2)(Try|T2z).
But (vz, 2)(T12|722|T3y) ¥ (v2,9)(T1y[T22)- |

DeriniTION 5.9 (Confluence) Let A;, A; be multi-actions, P, P' be agents and Z be a
multi-set of names. A; —pp z A3 if and only if the following condition is satisfied: ‘

FOI‘ every Z11,Z12,Z21,Z22, those satisfy Z11I212 = Z21|Z22 = Z, (I/Zu)Al >
(vZ12) Az and (vZy1) Az » (VZ92) Ay, the following diagram is commuted.

C[Py, P,)
(l/Zu)Al (VZZI)A2
Gi[P;, Pz]‘ Co[Py, B3]
(VZ12)A2 (VZ22)A1
C'lP, Py
where C, C’, C; and C, are two-hole contexts. The transition C[P;, Py] (VZ;)AI

: .\ Zi)A
C1[P{, P;] must be caused by the internal transition P, —(—V—E)—1> P/, where 7},

is a (multi-set) subset of Z;;. The other transitions must be also restricted to
transitions caused by P, or P.

DEFINITION 5.10

N ' if (vZ)A=a

(vZ)A ") def
M P { for any A;|A2 = A. A1 —pp z Az, otherwise

THEOREM 5.11 — = Vi’.

REMARK 5.12 By THEOREM 5.11, P %“’) PP=— P ﬁ P and P —3}—&) This is similar

to the expansion law. But please note that P %)—:;) P’ and P ﬁ 4= P i}\l:—)) P'. The

confluence defined by DeriniTION 5.9 requires some kind of locations to be preserved.

6 Comparing with other approaches

In this section, we compare the multi-action approach with other approaches, location|[3][4][5]
and causality[6][7][8][9]. For other approaches, for instance, Petri-Net[10] and graph-rewriting[11],
we can adopt the same discussion to the causality.

We mention the recent truly-concurrent congruence result[9).

122

6.1 Versus Locations

One agent is made by parallel composition of some sub-agents. A location is the information
which sub-agents an action occurred at. That is, the location is the “birthplace” of the
action. The location and location based semantics (location bisimulation) are proposed
to distinguish agents via the spatial distribution essentially. 4

On the other hand, actions whose locations are not related each other have possibility to
be performed concurrently. Thus, we can consider to describe the concurrent behavior of
agents via locations. But such actions can not be performed concurrently in general. Let
us see this example: '

The location bisimulation distinguishes P; and @);. Because @; has a computation Q; %:))—E)

i
0, but P; does not. P; has a computation P; —ml(oi))lo—zz 0 only. In the sense of the concurrency

via locations, we can explain that “P, and @, are distinguished because @; can perform
action T(z) and Z concurrently (the locations of these actions are not related) but P;
performs these actions sequentially (the location Iy is the prefix of lyl;)”. But, in fact,
both P; and Q; perform Z(z) and Z sequentially. We have no need to distinguish P, and
(1. Another example is shown:

P, % ap |

Q: Y (ve)(azch) + (vo)(b.cle.a)
The location bisimulation identifies P, and @, because both of these agents can perform
action a and b concurrently. But, in fact, Q2 can not perform these actions concurrently.
We should distinguish these agents. This miss-identification is more serious than the pre-
vious example. Because agent z(b).P, and z(b).Q» are no longer identified by the location
bisimulation. This shows that the location bisimulation is not closed under (input) pre-
fixings.

In the multi-action bisimulation, these problems do not occur. The multi-action bisim-
ulation identifies P; and @;. Because both of these agent can only perform —EI(WL))% These
are sequential agents. On the other hand, agents P, and Q- are distinguished. Because P,
can perform alb but Q- can not. That is, P, is a concurrent agent but Q- is a sequential
agent.

6.2 Versus Causality

Causality is a set of dependencies between transitions. The causality is denoted by a la-
belled tree or a partial order introduced over transitions. By causality based semantics, we
consider that transitions those have no dependencies each other can be performed concur-
rently. For the agents appeared in Section 6.1, we can extract the following causalities (

123

dependencies) and concurrency.

agent transitions ~ dependencies concurrency °
R NN T(2) Tz -
Q1 @ 26, z, T(2)CEz -
P, P 2.5 or P, LNLN identity o axb

Q: Q5D orQ % aCborbCa .-

(where a dependency is denoted as a partial order over transitions and each transition is
displayed by whose labels. a =< b means that the transition labelled a and-the transition
labelled b is concurrent. The dependencies of @; and @, occur because restriction (vz) or
prefix ¢,¢ work as sequentializers.) Like this, the concurrency based on the causality is
same to the concurrency based on multi-actions. We can use both semantics to capture
the concurrent behavior of agents. But the causality requires analysis of dependencies of
agents to do that. On the other hand, multi-actions can treat that directly. For example,

let us suppose agent R wf (a.b)|(c.d). We can extract the dependencies and concurrency
from transitions of R.

agent dependencies concurrency

(ab)|(cd) aCbh, cCd axc axd bxc bxd

The analysis of semantics is required to capture the following concurrent behavior of R:

b d ble d d b
R 58,4, Ri>£>—>, Réi>—>,,---.

This analysis is not easy. On the other hand, multi-actions collect these transitions directly.

6.3 Versus Other Truly-Concurrent Congruence Relation

In the recent paper|[9)], it is shown that the weak causality semantics (weak causal bisim-
ulation) is a congruence relation in the m-calculus with the slight syntactic restriction.

We can define weak ground multi-action bisimilarity by employing 7 as the unit element
Of Mitrong, instead of @. We call this commutative monoid My..x. We can also define weak
multi-action congruence.

7 Conclusion

We extended m-calculus to use the multi-actions as labels. The multi-action w-calculus
can describe the concurrent behavior of agents and its transitions are characterized by
confluence. We proposed a new truly-concurrent semantics for m-calculus, strong bisim-
ilarity defined over multi-action w-calculus. Strong bisimilarity defined over multi-action
m-calculus is closed under input-prefixings and parallel compositions.

In the future works, we propose the weak multi-action bisimilarity and congruence.

124

References

[1] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,
Parts I and II. Information and Computation, 100:1-77, 1992.

[2] Robin Milner. Communication and Concurency. Prentice Hall, 1989.

[3] G. Boudol, I. Castellani, Matthew Hennessy, and A. Kiehn. A Theory of Processes
with Localities (Extended Abstract). In Proc. of 3rd CONCUR, volume 630 of LNCS.
Springer-Verlag, 1992. ’

[4] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theoretical
Computer Science, 114:31-61, 1993.

[5] Davide Sangiorgi. Locality and True-concurrency in calculi for mobile processes. In
Proc. of TACS, volume 789 of LNCS. Springer-Verlag, 1994.

[6] Pierpaolo Degano and Corrado Priami. Causality for Mobile Processes. In Proc. of
ICALP, 1995.

[7] Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the
m-calculus. ECS-LFCS-94 297, Univ. of Edinburgh, 1994.

[8] Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the
m-calculus. In Proc. of 12th STACS, volume 900 of LNCS. Springer-Verlag, 1995.

[9] Michele Boreale and Davide Sangiorgi. Some Congruence Properties for m-calculus
Bisimilarities. Technical Report RR-2870, INRIA, Sophia-Antipolis, 1996.

[10] Nadia Busi and Roberto Gorrieri. A Petri Net Semantics for w-calculus. In Proc. of
6th CONCUR, volume 962 of LNCS. Springer-Verlag, 1995.

[11] Ugo Montanari and Marco Pistore. Concurrent Semantics for the m-calculus. In Proc.
of MFPS, volume ENCS 1. Elsevier, 1995.

[12] J.C.M. Baeten and J.A. Bergstra. Non Interleaving Process Algebra. In Proc. of 4th
CONCUR, volume 715 of LNCS. Springer-Verlag, 1993.

