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Abstract .
The importance of continuation is increasing in computer science. Because continuation is an ab-

straction of single thread, however, we need a substantial extension of continuation in order to directly
manipulate parallelism using continuation.

In this paper, we re-define continuation with anonymous returns and -compositions which make the
algebra of continuations tractable. We give a monad model to a subclass of continuations. Moreover, we
introduce a parallel construct to continuations, i.e., extension with pairing({—,—)). We show that the
synchronization can be represented in this framework. We also give its model in monoidal categories. Fur-
thermore, we discuss a gap between cartesian categories in which value-based model can be constructed,
and monoidal categories in which parallel continuations can be represented.

1 Introduction

The importance of continuation is increasing in computer science. From the viewpoint that continuation is
the abstraction of control, a number of advanced concepts of control flow are expressed by using continuations.
In the study of control, parallelism is today one of the most important problems. Continuation is, however,
essentially an abstraction of single thread control. This means that in order to directly manipulate parallelism,
we need a substantial extension of the concept of continuation.

Today, continuations are applied to a variety of fields in computer science. Theroretical success[4, 7, 8] and
[1, 2]’s practical success of the application of continuation to transforming functional languages(SML) into
conventional (sequential) machine architectures are most notable. It is a natural idea that, to utilize these
successes, we extend continuations to those which can handle parallelism. Previous works of multiprocessing
based on continuations (e.g. [18]) express parallelism as a set of single thread continuations. They do not
directly manipulate parallelism, though their contribution to the implementations of concurrent languages
are remarkable(e.g. [15]).

Continuation can also be a candidate for the framework of the theory of concurrency because it is an
abstraction of control. Existing models of concurrency(CSP[10], CCS[12], Process Algebra[3], Intuitionistic
Linear Logic[16], w-calculus, etc.) are equipped with simplicity in syntax and semantics. However, their
main aim is representing communication, and they are necessarily not computation-oriented. We aim at
extending continuations which is computation-oriented in their nature to those expressive enough to represent
communication. '

In this paper, we introduce a new constructor (—, —)(pairing) into continuations in order to express par-
allelism. First, we re-define conventional continutations for algebraic manipulations. Second, we define an
algebraic construct (—,—) for parallelism, and discuss the algebra of the extended continuations. Further-
more, we classify the hierarchy of extended continuations with {—, —) according to the expressive power of
the algebra of extended continuations.

Also in this paper, we give a categorical framework for interpreting our continuataions, both sequential
and parallel. Monad theorey is intensively used. It is shown that a number of programming language
constructs can be represented as monads[13]. It is well known as Moggi’s Hypothesis[17] that every feature of
a programming language can be modelled by a monad. From this point of view, this paper aims at modelling
parallelism in monad theory. First, a class of sequential continuations which are modelled in monads are
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specified in the similar mannar as in [17], although the expressive power of monad-theoretic continuations
are proved to be rather restricted. Wadler analyzed continuations extended with call/ cc[14, 5], or reset
and shift[4], gave their monad-theoretic interpretation, and showed that the extensions are indispensable
to the monad-theoretic continuations. Our continuations are.also interpreted in monad theory. Our ret and
; constructs are precisely interpreted as a monad theoretic continuations. We give a construct for monad, as
[9)’s representations. Second, we extend our methed for ‘modelling parallel continutations. In modelling our
extended continuations PCONT, we require that the underlying structure must be monoidal, and that (sync
monoidal) monads on monoidal categories ‘are'studied: Theé important.concepts such as synchronization are
represented in monads on monoidal categories. We show that, unlike the sequential continuation, monads
are enough for representing basic concepts of parallel continuations.

The organization of this paper is as follows: Section 2 defines the A-calculus as the base language of this
paper. Section 3 discuss the conventional (sequential) continuations. Section 4 models sequential continua-
tions in monad theory. Section 5 introduces a construct’ into continuations in order to represent parallelism.
In particular, we show that this extended continuations can express synchronization. Section 6 gives a model
of this extended continuationsin monoidal categories. Section 7 is devoted to the discussion about monoidal
categories and cartesian categories from the viewpoint of our modelling of parallelism. Section 8 gives a brief
summary.

2 A

Let A be the usual untyped:X-calculus. Let Y be the fixpoint combinator. In fhis péper, we develop our
theoryon'A. = = = L o S :
Deﬁnitibfl 1 A value is defined as a closed normal form in A. The set of values is denoted by VAL.
Definition 2 [Typability] On A, the untyped system, we define the typability relation as follows:

t‘is a term of A t is a closed normal form
t:A t: VAL !
(z:5)
M:T  M:S>T N:S§
')\z.M:S"DT: MN:T
~f:8DS
Yf:5SDS.

: The rﬁle of Y is rather technibal. } v
The types and polynomial terms on A make a category in the sense of [1 1].

Definition 3. Let C be the category defined as:

‘e an object is a type,-and

. e an arrow of @ — b is a.term Az.t to which a type a D b can be assigned.
3 Sequential Continuation
3.1 Definition of Sequential Continuation

Let VAL be defined as before. We first define two constructors for (sequential) continuation. ,
“Definition 4 sSCONT (Structural Sequential CONTinuation) is defined as the domain of A-expressions

,:vi"rith constructs ret(anonymous return) and ;(sequential composition): :

Tet € sSCONT,
 cos1 € sSSCONT (co,c1, € sSCONT),.

" ajc€ sANS(a € SANS,c € sSCONT).
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Definition 5 [Typability]
Type assingment rules are augumented as follows:

ret : sSCONT’
v: VAL
retv : sANS’

¢y : sSSCONT ¢i : sSCONT
co;c1 : sSSCONT ’

a:sANS ¢:sSCONT
a;c:sANS
Definition 6 We denote the continuations and answers which can be constructed using ret and ; with
primitive operators on Int by syntactically-structural. _
In general, sSCONT is weak in its expressive power. We define full SCONT as follows.
Definition 7 [Full SCONT]
SCONT is defined as the domain of A-expressions which are typable as VAL D AN'S with the following
rules which may have some primitive operators of SCONTand ANS.

c:sSCONT
c:SCONT

c:sANS

c: ANS
c:SCONT  v:VAL

cv: ANS

(z: VAL)

T: ANS
Az.r : SCONT
Definition 8 [Reduction]

The reduction rules — of SCONT and ANS are those of ordinary A-calculus with those for new con-
structs. :

co — ¢4

Co;¢ — Cy3¢C

(cosc1)v — cov;q

(ret v);¢ — cv

Definition 9 [Returning]
Let ¢ € SCONT and v € VAL are given. Then c is returning at v if there exists w, € VAL such that
v — ret w,. ' '
Returning property corresponds to the normalizability in the theory of A-calculus.
Note that a returning continuation is normalizing, but that a normalizing term is not necessarily returning.

3.2 Anonymous Return

The conventional definition of continuation implicitly uses the construct ret as the initial continuation at
the evaluation.

In this paper, we explicitly define ret as the anonymous return continuation. The conventlonal continua-
tion which returns to the initial continuaion init of the execution is obtained by replacing ret by nit. The
only difference with the conventional continuation is that in our continuations, the return continuation ret
are explicitly defined and reduction rules over ret are specified. Though the expressive power of our contin-
uations is not richer than that of conventional ones, our definitions of anonymous returns make operations
on continuations (ret and composition) tractable.
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3.3 Basic Properties of SCONT

As a basic property of SCONT, we show that SCONT enjoys the associativity of ;(composition).
Lemma 1 [Associativity] If ¢ is returning at v, the two continuations (co;c¢1);c2 and co;(cr ;c2) reduce to
the same continuation at v. '

Proof » _ ;

Let cov — w,. ((cojc1);c2)v — (coscr)viea — (cov;c1);cz — (Tet wyjcr);c2 — CiWy;c2. On the
other hand, (co;(c1;c2))v — cov;(er;ea) — ret wy;i(ersez) — (cr;c2)wy — Qwy;ce. O

From this lemma, we add the axiom

co;(cr;ea) — (cosci)ica,

and omit parentheses in the composition of ;(sequential composition).

Example 1 Let

fact = Y (Af.Az.if ¢ =0 then ret 1
else (f(z —1);Av.ret v xx)),

where numerals and if ... then ... else are appropriately defined. Then

fact3 — fact2;\v.ret(v *3)

— factl;dw.ret(w * 2); lv.ret(v * 3)
(w * 2); dv.ret(v * 3)
(w * 2); dv.ret(v * 3)

— retl; w.ret(w * 2);Av.ret(v * 3)

— fact0; Au.ret(u *1); Aw.ret

— retl;lu.ret(ux1);Aw.ret

— ret2;Av.ret(v*3)
—> ret(2*3) = ret6.

We further define the transformation by which we can hide the application of a value to a continuation.

Definition 10 [Representation of Application]
We define the translation (—)° : A — A as:

o (w)°= retv;c® (c: SCONT, v:VAL),
e (cc')° =c°(c')°, other application, 7
o (Az.t)° = Az.t°,
e 1° = t, otherwise.
This transformation is commutative with the reduction in the following sense:

Lemma 2 For two terms m and r, if m — r, m°® — r holds.

Proof

We only prove the case of applications. By the definition of —, retv;c — cv. This means that if
cv — 1, (cv)° — 7 because (cv)® = retv;c —cv — 7. U

From this lemma, we only consider the °-transformed terms.

Proposition 1 Under the °-transforamtion, the law of reduction

(cosc1)v — cov; €1 (Appl)

can be replaced with the associativity law:

co;(criea) — (cosc)sce (Assoc)
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Proof
Under the °-transforamtion, the law (Appl) is transformed to

retv;(cp;c1) — (retv;cp);c.

(Assoc) = (Appl) is now obvious. O . , :

We have already showed that from Lemma 1, (Appl) = (Assoc) makes sense if ¢y is returning. We have
furthermore showed that (Assoc) and (Appl) are equivalent under the condition that ¢y is returning under
the °-transformation. The above discussions imply that the two constructors ret and ; are useful for building
some meaningfull class. . .

From the Lemma 2, by the °-transformation, the application of a value to a continuation can be said
to be structural. Therefore we freely use the applications to continuations in the discussion of syntactic
structurality because it can be removed by °-transformations.

4 Interpretations of SCONT Usihg Monads

In this section, we give a categorical semantics of SCONT.
In presenting monad, We adopt Kleisli’s notation.

Definition 11 [Monad] A monad is defined as
1. a data constructor M,

2. arrows 1), : a — Ma and an operation * which combines two arrows f: a — Mband g : b — Mec
as fxg:a — Mec, and
3. the following laws:
Left Unit nuxk = kv.
Right Unit mxn =m.
Associative mx(kxh) = (mxk)xh.
We moreover require that 7 must be a natural transformation I — M.

Proposition 2 Given c: A — MC, we can construct ¢* : MA — MC such that ¢* - n =c.

Proof
Let ¢* =id(: MA — MA)xc(: A — MC). This satisfies the condition. O
We show some examples of monads.

Example 2 [Identity Monad]
The identity functor makes itself a monad

M) = A
mw = v
mxk k-m.

Example 3 [CPS-Monad]
Let R be an object representing “result” or value. Then the CPS-monad[13] is defined as:

A

RR

Ac.cv

M(A)
nv
mxk = Acm(Av.kve).

In this section, we analyze continuations using monads, and show some theorems as a basis for analyzing
our parallel continuations.

Monad is widely used as one of standard methods for analyzing data constructors(e.g. [13]). In particular,
[17] analyzes continuations using monads. In [17], Wadler defines levels of continuations. The following
definition is the one of meta-level continuation.

Definition 12 Let M be a category which models types and terms of A in the sense that there is a structure
preserving functor from C of Definition 3. On M, monad-theoretically, we define:
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continuation is an arrow from an object a to Mb for some a and b, and the domain of
answer is the union of objects Ma for a, an Object.;

We classify continuations using monad theory. We consider a core class of continuations as the one which
can be expressed by using only monads.

Note that clearly we cannot represent the full expressive power of continuations by usmg only monads but
we need extra’ constructors(e g- shift and reset[9], call/cc[14, 5]). -
Definition 13 We denote the contlnuatlons which can be constructed using only 7 and * by semantzcally-
-structural.

We first mterpret SCONT by means of monads.
Definition 14 Given a monad M, we define the interpretation - ]| of SCON Tln the followmg

ANS — Uanb]M
SCONT +— UabGObJ(a_'Mb)

As for terms, we give definitions related with continuations.

[ret] = », . -
[m; k] [ml«{#],
[Az.b] z — [b],

8] = [l

Here, x +— t represents an arrow in M in the form of generalized elements, or equivalently, an arrow in the
polynomial categories[11] in z.

As for terms of A,the interpretation is given in M. Note that when we consider a continuation as a value of
A, we must consider curried terms of continutations. In this case, definitions of abstraction and appllication
must be modified as:

[Az.b] =  curry(z — [b]),
[ab] - uncurry([a])[b],

respectively.
Theorem 1 The interpretation [—] is sound in the sense that if t — s, then [t] = [s].
Proof ‘
We prove the three laws of reductions.
1. As for

co — ¢
o3¢ — C436,
obviously [co;c] = [e1;¢] if [eo] = [ei] -
2. As for the rule:

co;(c1;62) — (cosc1);0e0,

feos(erse)]l = [eol{[ea]e2])
= ([eol*[e1])*[e2] (Associativity)

= [(co5e1);¢2)]-
3. As for

(ret v);¢ — cv,

[(xet v)se] = mlv]{c]
[el[v](Right Unit)

L= |[ch] '



149

The following theorem shows the relation between syntactically-structural terms and, semanticallyjst_ructural_
arrows. ' , '
Proposition 3 A term is syntactically-structural if and only if its interpretation is sema.ntica.lly—s"tructﬁrdl.

Proof ’

Straightforward. O

We have now obtained, categorically, a subclass of continuations:

Structural Continuation<=- Monad

extension extension

An H SCON T <= An Extended Monad?

From this proposition, we use simply “structural” for both syntactica.lly—structura.l ‘terms and semantically-
structural arrows if there is no fear of confusion.

For the analysis of the fullset continuations, the general theory of monads is not enough. We need a specific
monad and a non-monadic arrows. In this sense, the monad theory gwes a core theory of continuations (i.e.
_ the theory of structural contmuatxons) but the fullset continuation in which, for example, call/cc can be
discussed must be studied in a specific monad such as CPS-monad and related arrows[17].

5 A-Calculus and Continuation for Parallel Computing x

In this and the next section, we define PCONT. Parallel continuations with a new constructor (—, —)are
defined. : ‘

51 A~

We extend A and SCON 7 in order to express the parallel computing.
Definition 15 [A%]
A% is the A-calculus with finite products(x). We introduce the constructor (-,-) for the products.
A C A%
(fo,---,tn) €A (t; € AX)
In [11], it is denoted by the A-calculus with (surjective) pairing.

Example 4 The two projection terms are represented as A(ty, t1).to and A(to, t1).t; respectively.

5.2 PCONT

PCONT is defined as the continuations for A*. We add the constructor and rules for the computation of
products.

Definition 16 [PCONT]

SCONT C PCONT,
(Co,-+,Cn) € PCONT (¢; € PCONT),
(COa"'aan>€ANS (aiGAN.S‘),

with the following reduction rules:

co — c:) [ Cp — C'n.
. x-1
RSN gy AR M
: x-2
{retvp,---,retv,) — ret(vo,- - -v,'vn)( )
(x-3)

{co, "+, cn)v — {cou,- - - ).
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The ret is used in the synchronization in the sense that Multlple contmuatlons run in para.llel(x 1), and
returns at the same time(x-2).

Lemma 3 [Projection Lemma]
If continuations ¢; € PCONT (i = 0,1) are returning, there exist a projection contmuatlon 7w and 7' such
that {co,c;); (') and co(c1) reduce to the same answers respectively.

Proof

Let 7 and ' be A(to,t1).retto and A(to,t1).rett; respectively. Let c;v — retw}.

Then ({co, ¢1);7)v — (retwy, retw?);m — retwy. On the other hand, ({(co,¢1); 7" )v — (retwg, retw});n’ —
retwy.

O

Because A is extended to A, it is natural to extend the definition of syntactic structurality accordingly.

Definition 17 We extend the definition of syntactic structurality as follows:

1. A term t is also syntactically structural if it is syntactically structural on A* in the sense of Section 3,
2. 7 and w’ are structural.

3. if ¢p,-- -, Cp are structural, then {co,---,c,) is structural.

5.3 Equivalence between PCONTs

Before discussing the expressive power of PCONT, we define a coarse relation on PCONT. |

Definition 18 [Equivalence]
We say that two continuations co and ¢; are product-equivalent and denoted as cp ~ ¢ if for every value
v, ¢o;m(’) and ¢ ;w(’') return the same value respectively.

Optimization is a typical application of our algebra of extended continuations. Program transformation
by algebraic manipulations of continuation is successful in optimizing codes[1]. The product-equivalence is a
candidate for the algebra of optimizing program transformation.

We can easily prove the following basic properties of products.

Lemma 4 Two continuations c;{cp,c;) and {c;cg,c;c1) are product-equivalent if ¢ is returning.
Lemma 5 Two continuations ({co, ¢;);, {co,c1);7’) and (co,c1) are product-equivalent.

Two product-equivalent continuations do not necessarily have same synchronization points, or do not have
the same number of “threads.”

Example 5 Two continuations (co, c1); A(vo,v1)-(dovo, d1v1) and (co;do,c1;d1) are product equivalent.

C1 -1 d1

co Yo do
~

a dy

co do

The parallel continuation represents the heterogeneous parallel computation. The rule (x-1) expresses
that computation proceeds in parallel. On the other hand, the rule (x-2) represents the synchronization of
parallel computations.

5.4 Representation of Synchronous Message Passing in PCONT

The rule (x-2) is interpreted as a barrier synchronization. The continuation {co, - - -, ¢,) returns first when all
¢;’s (i =0,---,n) return. Moreover, we can express the synchronous message passing style communication.
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Example 6 [Synchonous Message Passing] : _
Let cov —> ret(ko) and ¢;v —> ret(w,, ;). Then, synchonous message passing between co and ¢; is
expressed as _
{cos e1)v; A(to, (t1,t2))-(tota, t2)-

Let us observe the reduction of the above term.

({co,c1)v; A(to, (t1,t2))-(tota, t2))
— ret(ko, (v,21)); Ato, (t1,2))-(tot1, t2)
—  (Kowy,0q)

Co Ko

&1 (251

This means that ¢y proceeds computation and returns the value that proceeds computation as the contin-
uation kg , and that ¢; proceeds computation and returns the value that sends value w,, and oy, the rest of
the compuation. Finally, ko proceeds computation with the value w, obtained from cy. That is, the term
represents that an answer(message) from c¢; (=w,) is passed to (the descendant of) cg. '

Definition 19 Let two continuations ¢y and c¢; be given. Then

SMP(cy,c1) = ({co, 1) ; A(to, (1, 12))-(tot1, L))
SMP denotes “the Synchonous Message Passing.”
In fact, v
Corolloary 1 SMP is not syntactically structural.

More than three continuations can pass messages. The following example is commonly observed. in the
representation of “delegation.”

Example 7 [Message Passing among more than three Continuations]
Consider the following diagram.

C2

1

Co

Vertical lines represent message passing between co, ¢1, and ¢z and their succedents. Then, it can be
expressed as: :

deleg =
Av.{cov,c1v);
A((to, t1),22)-((tat1, cov);
A((So, 81), 82).((3281, to) N
A((uo, u1), uz).(ugus, So, uo)))-

If the reduction system allows the rule:

t—s
Az.t — Az.s,

the reduction of deleg can be “optimized” to the one that three continuations are activated at the same
time.



152

6 Interpretatlons of ’PC(’)N T by Sync Mon01dal Monads

In this section, we study monads on monoidal categorles as models of parallel continuations. The notations
of this section is based on [6]. '
Definition 20 [Monoidal Category] A monoidal category V= (Vg, ®,I,7,1,a) consists the following data:

1. a cateogry Vo;

2. a functor ® : Vo x Wy — Vo3

3. an object I of V;

4. a natural isomorphism r =714 : AQ T — A;
5. a natural isomorphism £=£4: I @ A — A;

6. a natural isomorphism a = aspc: (A®B)®C — A® (BQ®C),
with the following commutative diagrams:

(A®I)® B AR(I®B)(A®B)®C)®D —=» (A® B)®(C® D) — A® (B® (C® D))

a®1 1®a
r®1 1®¢

A®B , A®(B®C)®D : A®((B®C)® D)

Example 8 [Cartesian Category] ,
If Vo admits finite products, it is a monmdal cateogry V = (W, x,1,7,£,a). We call such a category
cartesian. ‘ '

Definition 21 [Monoidal Functor] _ .
Let two monoidal categories V = (V,®,1I,7,¢,a) and V' = (V§, &', I',7', ¢ ,a’) be given. A monoidal
functor F = (f, f, f°) consists of ‘ : '

1. a functor f: Vo — V§;
2. a natural transformation f = fap : fA® fB — f(A® B);
3. a morphism f°:I' — fI, '

with the following commutative diagrams:

f1®fA-Lf(I®A)k 'fA@fI_Lf(AeaI)
ff®1 fe 1ef° fr
I'o fA—— fA fA®T fA
f(aeBsc) L fae(Bo0)
fl f
f(A® B)® fC fA®f(B®C)
fol | 1®F

(fA® fB)® fC —~ fAQ(fB & fC)
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We sometimes omit a, 7, £ components if the definitions are clear.
Definition 22 We denote the arrow:

f=fap:fA® fB— f(A®B)
by the sync-structure of f. g ' o

Definition 23 [Monoidal Natural Transformation]

Let monoidal functors F = (f, f, 7°),G=(9,9,9°) : V — V' be given. A monoidal natural transformation
v:F — G:V — V' consists of a natural transformation v: f — ¢g: Vo — Vj
satisfying the following two commutative diagrams:

—L .1 fA® fB —+ f(A®B)
) vi  vQu 7
g
gl gA®gB —?JL» 9(A® B),

Definition 24 [Cartesian Funcor and Cartesian Natural Transformation]

A monoidal functor F = (f, f ) between caresian categories is caretesian when f fAXfB — f(AxB)
is an isomorphism.

A monoidal natural transformation is a cartesian natural transformation when it is monoidal between
cartesian functors. :

‘We consider a monad M : ¥V — V where V is a monoidal category.

Traditionally, we take CCM+NNO[11] as a model of A-calculus with pairs and natural numbers. In CCM,
we have a pair(product) of two terms, and, more importantly, projections of two terms. Terms can be
decomposed by using projections.

In modelling parallel continuations, we do not need each component of parallel computations, but we only
need the returried value of the computations as ret-synchronizations. This implies that in modelling the
domain of values, we need a cartesian category, whlle in modelling the domain of contmuatlons we relax the
requirement to a monoidal category.

In the rest of this paper, we study the monad of the following type.

M:YV—YV
with V = (Vy, X, 1), a cartesian cateogry with X, and V' = (V,,®, M1), a monoidal category.
Moreover we require that M = (M, sync™,id) is a monoidal functor, and 77 be a monoidal natural trans-
formation. :
Specifically,
1. M :Vy — Vp, a monad,

2. as M, the sync-structure
» syncMEsync%B:MAQbMB—)M(AxB)
is defined,

3. as M°, id : M1 — M1 is given,

Moreover, we require that 7 preserves the sync structure in the following sense.
Definition 25 [Sync monoidal monad]

Given two monads I : V — V,and M : V — V', and arrows c: A — MC and d: B — M D, an arrow
ced: AXx B— MC ® MD is defined and the followmg diagram commutes:

AxB: 1T

AxB
Na®NB O NaxB |®

 MA® MB — M(Ax B):M
sync



We denote such 1 by sync monoidal monad unit.

Moreover, the following diagram commutes:

AxBMMAxMB

monoidal.

Lemma 6 Givenc: A — MC andd: B — M D, the following diagram commutes:

ideid -

MA® MB

As for funtoriality, we require that (f ® g) - (c e d) = (fc e gd).
Definition 26 If the natural transformation 7 satisfies the conditions above, we say that it is a sync-

d
AxB cX e . MCxMD
nen O id e id
MA® MB MC®MD
ctd*
sync O sync
M(A x B) M(C x D)

(sync- (ced))’
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Let f: A— Band g: A — C be given. We denote by (f,g9) : A — B x C the usual pa.if of arrows.

Let us define the diagonal as follows.

Definition 27 We define diagy : A — M A ® M A by the following diagram:

(id

N

A

,id)

~ diagy

Immediately, we have
Corolloary 2 The following diagram commutes:

A

N

n

the composition:

Gdid)
4 (l,l)AxAn-n
<f,g9>

diaga
—_—

AxA

nemn

MA®MA

\

MA® MA

sync

» 7 M(A x A)
Definition 28 Let f:MA— MBand g: A— MC be given. We denote by < f,g >: A — MB® MC

MA®MA

freg

MB® MC
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It is naturally extended to the case of more than three arrows.

Definition 29 We define the sync monoidal monad on V as the monoidal monad M = (M sync, zd)
Vo, x,1,7,£,a) — (Vo,®, M1,7,£,a) if it has a sync monoidal unit.

The aim in this paper is to construct a model of PCONT. We first give the interpretation [—].
Definition 30 Given a monoidal category V and a sync mon01dal monad M, we deﬁne the interpretation
[—] as follows;

as for domains,

ANS  +— Uscos; Ma
SCONT +— U, peon;(a — Mb)
PCONT +— (6 — Ma;®-- ®Man)

where ag ® - - - a,, is the abbreviation of (ag ® -+ an_1) ® a,, as usual;
and as for the interpretation of terms of PCONT,

va'ia'ol."’a"l eobJ

| |[ret]r .E n

oo = <)o ld > (f,---,9) € PCONT)
ol = { S s (0 EWS)

[e;d] { sync([c])*[d] (c € PCONT)
’ [cI+ld] (c € ANS)

where < tg,---,t, > is the abbreviation of
<< gy ety tn—1 >, 80 >

A problem lies in the interpretation of PCON7T. A term of PCONTsometimes reduces to a term of
SCONT. For example, in (x 2), the LHS is in PCONT, while the RHS is in SCON'T. We implicitly insert
sync, and coerce the “type.”
Theorem 2 Let V be both cartesian and monoidal, and Mbea sync monoidal monad. Then the interpretationf—]
is sound in the sense that if t — s, then [t] = ﬂs]l

Proof

We only prove that the theorem holds in the three rules (x-1,2,3).
(x-1) As for the rule

co — ¢ - cn —
(eor e — by 1)
If [ei] = [¢/](i = 0-- -n), then obviously
<[eo],- s [en] >=< o], -+ Ienl >-
(x-2) As for the rule

(retwy,---,retv,) — ret(vy, -, vn)’

[(retvo, - - -, retv,)] = sync < nlvo], - - -, nfva] >
because LHS: AN'S.

sync < "III'UO]L te 7"71['0n]] > = 77(']:”0]], Tty I[vn]])
‘ = [ret(vo, -, va)]
(x-3) As for the rule
. (o, +,€n)v — {Cov, - - Cnv).’
[I(cO'va ) C'n'”)]] = < IIC()'U]], ) [[cn”]] >

([col @ --- o feul) - (Po).-- - [oD)

< ﬂc()]]v""‘[cﬂ]] > |I'U]]
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0
The discussion of structurality of SCON- Tls naturally extended to PCONT.. ‘

Proposition 4 A term is syntactically-structural if and only if its interpretation is semantlcally-structural
Proof : -
Stralghtforward O
In particular, the synchronlzatlon is structural in the above sense.

Corolloary 3 SMP(cg,c;) is structural.

Proof

IISMP Co,cl)]l =
(synec- < |Ic01| ][cl]] >)x < uncurry(wo) - 7r10,7r11 >

O
This reflects the fact that message passing is essential in the concurrency.
We have now obtained a parallel version of categorical hierarchy of continuations:

‘Structural Continuation<=>Sync Monoidal Monad

A PCONT <= An Extended Monad?

Note that sync monoidality applies to both the general monad which models sSCONTand the CPS-
_monad which models SCONT, the fullset continuations. In this sense, our discussion of sync monoidality
is orthogonal to the discussion of SCONT’s expressive power. However, to analyze the fullset parallel
continuations, our sync m0n01da.l monad is not enough This situation is parallel to the fullset sequentlal
continuations.

However, our sync monoidal monad can represent the parallelly running continuations and the synchronous
message passing. This is expressive enough for the core theory of parallelism. o

7 Cartesian Monad as a Model of Parallel Continuatio.ns

In this section, we consider the case when a monoidal structure is strengthened to cartesian structure between
cartesian structure and monoidal structure.
Definition 31 We say that a monoidal monad M is cartesian if

M : (Vy, x,id) — (Vo, %, id),
2. M preserves x, and

3. sync is an iso:

MAx MB 22 M(AxB)= MAx MB

Proposition 5 If a sync monoidal monad M is cartesian, we may take feg as f x g.

Proof '

Obvious. O

In a cartesian monad model because sync is iso, the interpretation of parallel continuations given in
Definition 30 is reduced to the interpretation of sequential continuations given in Definition 14 with the
interepretation of pairing of A*.

If the monad is cartesian, every arrow to an object MA x MB (PCONT) is 1somorphlc to an arrow to
M(A x B), which is then in SCONT.

In Section 5, we have showed that the relation ~ can express the computed value, though the parallelism,
synchronization, and other concepts of parallelism cannot be expressed. From the viewpoint of semantics,
this is expressed in that the monoidal structure ® is degenerated to the cartesian structure X. In this sense,
pairing in the domain of values is expressed as X, while pairing in the domain of computations is expressed
as ®. : ' :

Example 9 The CPS-monad is, in general, not carteSIa,n The identity monad is cartesian.
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8 Concluding Remarks

In this paper, we algebraically reformulated sequential continuations with ret, anonymous returns and com-
position. By these constructs, we presented, categorically, a subclass of contmuatlons, and showed that a
core class of continuations are modelled in monads; . : L

Moreover, we defined a parallel construct (—, —) of contmuatxons We represented the synchonous message
passing using this construct. This 1mp11es that (—,—) is expressive enough to represent basic concepts of
parallelism. We also showed that this can be modelled in the sync monoidal monads.

The discussion of this paper implies that in order to study the full strength sequential continuations, we
need a stronger structure than monads as already shown in I 7, but that monads are enough for representing
basic concepts of parallel continuations.
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