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Process is the value of second order interval propositional temporal logic (2ITL here
after). Not only temporal relation-ship among events, but also processes are directly
defined in terms of temporal logic. Since it can express a negation of a process, it covers
different range from process algebra. Process includes finite state machine, fairness, a
scheduling mechanism, inverse specification, and various temporal logic formula. In this
paper we show 2ITL as a subset of interval temporal logic. 2ITL is undecidable, but
through investigations on verification procedures, we find dec1dable subset of ITL. Its
automatic verification is also presented.

1  Interval Temporal Logic as Second Order Temporal
Logic

Interval temporal logic (Ref. [12] ITL here after) is investigated by various researchers, but because
of its undecidability (Ref. [12]), researches are restricted on Local Interval Temporal Logic (Local
ITL here after). In Local ITL, variables represents events depending on a clock period like other
Temporal Logics. On the other hand, variables of full set ITL represent series of events in intervals
of time. We can think the variables represent processes since it includes possibly an infinite stream
of events. This is a new view point of ITL, that is a logic on processes.

In case of classical logic, second order propositional logic is trivial, because the value of the
second order variable is either T or F. There are no differences between second order logic and
normal logic. But in case of temporal logic, value of second order variable is changed from time to
time. It looks like first order logic, but the value of the variable is not a return value of a function,
which is determined by arbitrary nested function calls. First order logic is undecidable because first
order value can be arbitral nested term. But the value of the second order propositional variable is
restricted in the meaning of the temporal logic, which can be a finitely represented state machine.
Like a first order logic on enumerable term, a second order temporal logic can be decidable.

Before discussing on verification, we have to discuss on expressiveness of various temporal logic.
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2 Expressiveness of Various Temporal Logic

After the discovery of a limitation of Linear Time Temporal Logic (LTTL here after. Ref. [13]),
complex hierarchy of temporal logic expressiveness is researched. A big surprise is that LTTL is
less expressive than w-Regular expressions on logic formula. We can prove similar limit on Local
ITL (Appendix). But we find such a limitation is not serious.

The limit is easily solved by adding quantifier or adding closure operation on logics. Quantified
Propositional Temporal Logic has w-Regular model (Ref. [13]). Actually it is quite easy to construct
a representation of arbitrary finite state machine (here after FSM) using quantified variables. We
can use quantified variables for 1-hot encoding of a FSM (Ref. [9]). A closure operator * is also
sufficient to construct a FSM by using well-known algorithm on Regular Expression (Ref. [7]). A
closure operator *P means finite or infinite repetition of a temporal logic formula P. This is easily
demonstrated by an example called evenp.

evenp(p) means p is true on every even clock period. We use small letters p, g, for event
variables. In Regular Expression, (p T)*. It is proved evenp(p) is not expressed in LTTL nor
Local ITL (Appendix). But it is easily expressed by QPTL; ' :

evenp(p) = 3¢,q A0 ((g— O~ A (~¢— O q)Ag— p).
It is also easily expressed by closure. operator * like this;
evenp(p) = *(((p A length(1))&length(1)) V empty).

& is a chop operator which is one clock overlapped concatenation of two intervals. Intervals are
finite or infinite clock period.

empty means the length of the interval is 0.

length(4) length(1) = skip empty
I I A By I I
I | 1 1 | | 1

But on these extensions, verifications on the logic requires exponential computational complexity
on the length of formula. Polynomial order or lower complexity is preferable of course, but recent
researches on BDD based verification (Ref. [2]) show we can still verify useful examples even
in case of exponential computational complexity, if we takes enough effort to keep state space
representation small.

From the view point of automatic verification, closure operator is superior. Because quantifier
generates exponential computation on number of variables, which corresponds number of edge of
states. Even classical propositional quantified logic requires P-space complexity. In case of closure,
it generdtes exponential computation on depth of temporal logic operator, which increases number
of states. It is better than the increase of number of edges.
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3 Expressiveness and Decidability of Interval Temporal
Logic

ITL and LTTL both feature discrete time, but ITL has the end of the time. Unlike LTTL, ITL
has a model on top of Regular expression not on top of w-Regular expression. In another words,
ITL has compact discrete time. It has pros and cons. ITL cannot express fairness like LTTL. For
example‘,' Odp does not means p is true infinitely many times but it means p is true on the end of
the interval. In fact, |

| ' OOP « fin(P)

is a theorem in Local ITL. Here we use capital letter P, Q, R (other than F' and T') for second order
variable or interval variable. Here fin(P) means P is true on the end of the interval and these are
defined in Local ITL using & as follows; ' ‘ :

fin(P) = (T&(empty A P))
aoP = —\(T&—!P)
O P = T&P

The theorem is not trivial but it is easy to prove and it means the lack of fairness in Local ITL. But
this makes a verification procedure easier, because we don’t have to check state loop after tableau
expansion as in Miiler automaton. If we have no false on the leaves of the FSM, the formula is
valid. '

Now we know Local ITL with closure has Regular Expression expressiveness. We also have a
FSM generation algorithm for Local ITL with closure (Ref. [9]). This shows

Theorem 1 Local ITL with closure has ezact Regular Ezpression ezpressiveness.

In case of full ITL, things goes badly. It is quite easy to show ITL can express Context Free
Grammar and Context Dependent Grammar. An interval variable contains a series of states which
is a mapping of event variables. We can use an event variable mapping as a terminal symbol and
an interval variable as a non-terminal symbol in grammar rule. For example,

(] ((P&QQ) — (R&QS))

means a context dependent grammar rule: PQ — RS. Here [2] P means a formula P is true in all
sub-intervals of the interval. It is defined as follows;

(P) = ~(T&-P&T).
This is rarely used in Local ITL specification, but important in 2ITL. Siﬁce satisﬁability problem
on Context Dependent Grammar is undecidable, full ITL is also undecidable. This is another proof
of [12].

Theorem 2 Full ITL is undecidable.

But closer look of this problem gives us another insights. :S. Kimura shows the undecidability
of ITL comes from interval variable itself (Ref. [8], in Japanese). An interval variable can be
instantiated with an arbitrary finite or infinite sequence, which includes a sequence generated by
a context dependent grammar. This is the source of undecidability. We’ll investigate this problem
more closer from the view point of automatic verification.
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Local variables or events are restricted form of interval variable, which has the same value on
empty interval of the beginning of the interval. This restriction makes ITL decidable, it is Local
ITL. Locality of P is characterized by next proposition;

beg(P) < P&T

where beg(P) = ((empty, P)&T). But we can think another restriction on it.

If we restrict interval variables can be instantiated by Regular Expression generated sequence, we
have Regular ITL instead of Local ITL. Unfortunately Regular ITL is still undecidable. Remember
we can express Context Free Grammar (here after CFG) in ITL. We can construct an ITL formula
which checks a CFG is Regular or not. For a given CFG, construct ITL formula, for example,
P A[2]JGrammer(P). If this is satisfiable in Regular ITL, the CFG is Regular. -It is known that
whether an context free grammar is Regular or not is undecidable (Ref.[7]). So there is no procedure
to check whether Regular model for ITL exists or not.

Theorem 3 Regular ITL is undecidable.

In this paper, we'll show some other restrictions which makes ITL decidable. The most simple
one is length restriction. These restrictions defined in terms of tableau expansion. In some sense, it
can be called operational restriction of interval variables. These restrictions are model restrictions.
In case of verification on first order logic, they use incomplete decision procedure. It will not
terminate or terminate but gives incomplete results. Our logic is sound and complete in terms of
automatic verification procedure. But completeness is defined rather ad-hoc way which is defined
in operation in the tableau method.

This is something like a restriction on programming methodology. We can program anything on
Turing Machine, but not all the program is good one. If we use a restricted programming method,
we can extend reliability of the program. The restrictions of mterval variables are thought as such
restrictions. Since it is a restriction on second order variables, the expressiveness of the logic is still
equivalent to Regular Expressions. This corresponds the fact that a programming methodology
does not restrict the power of programming.

4 Spéciﬁcatibn Examples

Since a second order variable represents a mechanism to terminate an interval, it is possible to
think it a fairness.

&sP means P is eventually true on fairness S, eventuality-S. Unlike fairness in LTTL, many kinds
of different fairness can be defined in 2ITL. In fact the value of second order variable is different
on each clock period, so it defines different fairness on each clock period. To define clock period
independent fairness, a time constant second order variable is necessary. We discuss it later section.
We can think this is an abstraction of watch dog timer or counter. The mechanism of the timer
can be defined in terms of ITL; '

(S =less(2))

This means S assures an interval which is less than 2 clocks. less(n) operator can be defined

using n-times nested weak next operator; less(?) OQempty. This is a simple watch dog timer
mechanism.
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For another example, using second order variables, we can directly prove axiom schema. Our
verifier is based on model construction, so we can verify some axioms. For example;

(@ (P) — P)) = (& @ (P)) — B (P))).

This is called Z discreteness (Ref. [5]). This is valid in LTTL, but not valid in ITL.
Of course, we can use second order variables to define a process by recursion like process algebra.

(P — ((a AQP) V (bA ~a A empty))

But we have to consider the restrictions of second order variables in these process representations
in case of verification.

If we try to write a practical specification in temporal logic, it is usually non valid formula even if
we quantified all variables. This is because there are hidden assumptions on input variables. These
assumptions can be abstracted using second order variables. Using the result of tableau expansion,
we can analyze the nature of the assumption. In some sense this is kind of reverse specification.

5 Undecidability from a View Point of Tableau Expan-
sion

In this section, we discuss on a tableau method of 2ITL. In Tableau method on discrete temporal
logic, temporal logic terms are decomposed into two parts. One part is depending only on current
clock period and the other part only depends on next or later interval.

Here we show an example of decomposition of a chop operator. Assume P,Q is already de-
composed into empty parts PE,QF, current clock dependent parts PN;, @N; and next interval
dependent parts PX;, QX; in disjunctive normal form.

P = PE AemptyV V' (PN; AQPX,)
Q = QE AemptyV Vi (QN; AQQX;)

Where Q@ is next operator with —empty and it is called strong next. Then P&Q is decomposed in
this way.
" P&Q = (PEAQ)V
VEo(PN; A Q(PX:&Q))

In practical tableau expansion, BDD standard form and deterministic expansion is necessary, but
these are discussed in (Ref. [4, 3, 9]).

In case of second order variable or interval variable, the value of the variable is depend on the
both begin-time and end-time of the interval. Since we are working on propositional case, it looks
like we can replace the value of the variable by T or F. Yes, the value is T' or F, but the value
depends on the interval (Fig. 1). So we cannot replace the second order variable with T or F as
we did in classical logic.

This situation is demonstrated by an example:

[2)(R = length(2))

If we replace R by T or F, this example becomes unsatisfiable. But this is satisfiable if we instan-
tiated R by length(2) or equivalent FSM.
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Seond Order Variable
T T

S

Local Variable, True, False

/ = Rt 1
\ > »-= - — F

Figure 1: Value of second order variable

If we think R as a FSM, tableau expansion should have next form.

R = (empty A Ry) V QR
R, = (empty AR,)VQR,.;

R, is n-th state of R. R, is also a second order variables. R, is independent each other if n is
different. This is because R, has different start point and R has different truth value in different
interval. Using existential quantifier on second order variable, we can write;

R = (emptyAR)V@3S S.

During the tableau expansions, n increases infinitely. Actually n represents the interval length of
R. In case of a formula like OR, infinitely many R, are generated. In this way, undecidability of
full ITL or 2ITL happens in the tableau expansion.

Projection operator and quantifier on second order variables is not considered in this paper.
Since projection operator requires a nest time structure, the time marking of R have to be a nested
markings. It looks like possible to implement it, but we have not yet tested yet.

5.1 Length Restriction and Count Restriction
The simplest stopper of the undecidability is length limit.

R = empty A RO A @Rg
R, = emptyAR,ANQR,ifn<k
R, = beg(R,)ifn >k '

R behaves normal in less than length n interval and after the limit it is fixed to T or F.



168

R, is generated on every clock. But if we have only one R,, we don’t have to use specific n.
Any other number is also ok. We can compact the number sequence by sort and renaming. But
the order of the number have to be preserved. -After renaming, n represents number of R, in a
formula. We can call this restriction count limit. The count limit is useful on a formula like this:

R&T.
In this example, R, increases n by 1. This generates a series like this.
R&T, R &T, Ry&T, ...R,&T

If we think R and R, are equivalent, this example is expanded to itself. Roughly speaking, in count
limit method, we have no limit on one time R-eventuality.

5.2 More Complex Restrictions

But above restrictions does not work well on a formula like T&R that is OR. In this example,
expanded formula has a form after n clocks;

RyVRyV..VR,VT&R.

After R, reaches the limit, it becomes T or F'. In this case, renaming of R, becomes identity
and useless. Looking at the formula carefully, we find every R, exists only once. The meaning of
this formula is not depends on the particular name of R, and R, is independent each other. It is
possible to remove R, from the formula. This is called singleton removal.

Singleton removal is possible and it extends possible meanings of second order variables. But
currently we have rather complex translation of the formula which generates a lot of states. Besides
even after the singleton removal, R still possible to generate increasing complex logical expressions
on a formula with multiple occurrence of R,,. 2ITL is of course undecidable with singleton removal.
Singleton removal is not practical because it generates big state space. In this reason, we don’t
investigate singleton removal further here.

Here we show several restriction methods on decidable 2ITL;

length limit Effects of R has time limit,
count limit Number of R is limited,
singleton removal Number of interrelated R is limited.

These are defined in an operational way in the tableau expansion.

To make 2ITL decidable, finiteness of 2ITL term is necessary. What we need is define finite
classification of subset of R,. Here we introduce some of simple classifications, but there can be
more useful classifications. Lo '

Computational complexity of ZITL venficatlon is determined by the restriction. Local ITL
verification requires exponential complexity of the length of the formula, that mostly comes from
determination of expanded states. In the worst case, all combination of the sub terms have to be
computed. R, terms increase the number the sub term, as result in effect of 2". In our experience,
count limit is slightly faster than length limit.
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6 Execution of 2nd Order Interval Temporal Logic

In the tableau expansion based verification (Ref.[9]), a deterministic FSM is generated. This is a
method of logic synthesis or program generation. In case of Local ITL, all variables are events. An
execution of the FSM is something like flipping traffic rights.

An execution of 2ITL is not so simple. Besides conditions on events variable, it also contains
conditions on second order variables. The conditions depend on the restriction methods.

Length limit is the most simple one. It contains two kind of events on R.

termination R is terminated in T or F in less than length n interval.
time out the limit of R expired and results T or F.

These are marks on the FSM and define FSMs for R on each clock period. It also define a trace of
R in the execution. ' _

In case of count limit, we have to consider renaming of Rn ‘Other situation is similar to the
length limit case. The renaming is assigned to each transition in the generated FSM. Using renaming
information, we can find a FSM definition of R on each clock period.

Since we omit the detail of smgleton removal, we cannot discuss executlon in singleton removal,
here.

7 Time Constant Second Order Variable

In 2ITL, a FSM assigned to a second order variable is varied on the interval. If we assign one fixed -
FSM on the variable, we have time constant second order variable. The effect of the assignment
can be represented using ITL formula, for example,

(R = less(2)).

If there is a model for time constant second order variable, there must be a model for non
time constant variable. For particular execution path, we can easily check if some of R traces are
conflicted. But currently we have no method to find out constant FSM for R.

8 Execution and Verification Examples

In this section, we see actual output of our verifier, which is written in Prolog.

8.1 Example: Length Operator and Second Order Variable |

We can demonstrate the difference of length limit and count limit by using simple example: RA(R =
length(10)). Here we assume limit is 5. length(10) is expressed by nested strong next operator and
this becomes the first state.

state 1 R A QQQQOQQAQQQQempty
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In case of length limit, it is expanded in this way;

state 2: R; A @QQQQQQQ@Qempty
~state 3: Ry A @QQQQQQQempty

state 4: Rz A @QQQQQQQempty

state 5: R4 A @QQQQQempty

state 6: Rs A @Q@QQQempty

state 7: QQ@QQ@QQ@empty

state 8: QQ@QQ@empty

state 9: Q@QQempty

state 10: Qempty

state 11: empty

In state 5, Rg’s truth value is fixed. Rg is false entire formula is false otherwise @@Q@QQ@empty
remains. The resulted state diagram is show in (Fig.2). Using this FSM, we can find executions.
An execution is shown like this.

Length Limit .
: over(r,5) "
empty
F F F F F F F F F
empty empty empty empty empty empty empty . empty not empty
not over(r,5)
Renaming down(r,1)
C C C C O C O O O empt
pty T
F F F F F F F F F
empty empty empty empty empty empty empty empty not empty

not down(r, 1)

Figure 2: FSM for Length Example

| 7- ex(("r,(length(10) = "1))).
0.46299999999999963 sec.

11 states

16 subterms

23 state transitions

counter example:

0:+r"0 false

| ?7- exe.

execution:

:+over(xr,5) 7
: 8
: 9

N U WN RO
o



8: 10
9: 11
10: 0
yes
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“r is the second order variable notation in our verifier. The first number is clock value and
second is the number of state. +over(r,5) means Ry is reached the lmut and fixed to T and this

is a transition condition of the FSM.

In case of count limit, we have renumbering of R,. The FSM and execution is shown below.
+r"1 means R, is T in the empty interval at the clock. This result looks more correct than previous

one.
state 2: R; A @QQ@QQQQQQQempty
state 3: R; A @QQQQQQ@QQempty
state 4: R; A @QQQQ@QQempty
state 5: R; A @QQQQQ@Qempty
state 6: R; A @QQ@Q@QQ@empty
state 7: R; A @QQ@QQempty
state 8: R; A @Q@Qempty
state 9: R; A QQempty
state 10: R; A Qempty
state 11: R; A empty

| ?7- ex(("r,(length(10) = °1r))).

0.5179999999999998 sec.
11 states.

12 subterms

23 state transitions

yes

| 7- exe.
execution:
0: 2

1: 3

2: 4

3: 5

4: 6

b: 7
6: 8

7: 9

8: 10

9: 11

1

0:+r"1 0

In above examples, limit has no effect on verification. We have 5 clock limit on R, but it does
not restrict the length of the interval. The limit restrict the behavior of the variable. The verifier
gives us correct FSM if a formula depends only on the limited behavior of second order variable.
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R A[2)(length(4) = R) is such example. We can write expanded state in a simplified way;

state 2: R A[a](length(4) = R)A
(Ry A[i)(length(3) = Ry)&T)
state 3:. R A[2](length(4) = R)A
(R1 A[i)(length(3) = R1)&T)A
(Ry A[llength(2) = Ra)&cT)
state 4: R A[2](length(4) = R)
(R1 A[il(length(3) = R1)&T)A
(B2 A[J(length(2) = Ra)&T)A
(Rs A[i(length(1) = Ra)&T)
state 5: R A[2](length(4) = R)A
(R1 Ali(length(3) = R
(B2 A[i)(length(2) = 2
(Rs A[i(length(1) =
(Rq A[i)(length(0) =

Here [i]R = ~(~R&T). In this example, [2]is decémposed by [i)
[2]P « O[i]R.
The generated FSM is executed in leng‘th' 4 interval as we expected.

| ?- ex(("r,’[a]l’(length(4) = “1r))).
2.362 sec.

7 states

18 subterms

15 state transitions

yes

| 7- exe.

)&T)A
)&T)A
Ry)&T)A
R )&T)

execution:

0:-r"0 2

1:-r"0-r"1 3
2:-r"0-r"1-r"2 4
3:-r"0-r'1-r°2-r"3 5
4:-r"0-r"1-r°2-r°3+r°4 0
yes

-r°n means R, is F' at the clock period and +r°n means R, is 7.
Of course we can prove a theorem like this; -

R = less(3)) — ((R&R&R) — less(9)).

The length limit is working on each R and a complex term like (R& R& R) can over come the limit
with extra computation. This is because only one R is active at each clock.

| 7- ex((’[a]’("r = less(3)) > ((Cr & "r & r) -> less(9)))).
27.989999999999995 sec.

100 states

35 subterms

629 state transitions

valid

yes
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The execution of this formula is not interesting because this is a theorem. It succeeds in any
interval. To see an interesting one;

| 7- ex((’[a]’("r = less(3)) , (("r & "r & "1)))).
2.519999999999996 sec.

15 states

29 subterms

37 state transitions

yes

?7- exe(7).

:+r°0 2

+r°0+r"1 3

:+r0+r~1+r”2 4

:+r°0+r°1+r°2-r°3 5
:+r°0+r"1+r°"2-r"3-r°4 6
:+r~0+r~1+r"2-r"3-r"“4-r"5-over(r,5) 8
t+r°0+r°1+r°2-r~3-r"4-r°5 . 0

yes

DU WN RO —

Clearly “r is T in each interval which length is less than 3 and F otherwise.

As an example of limitation, R A [2](length(10) = R) is unsatisfiable if we have length limit 5
or count limit 5. Since this example contains T& R type expression, there are no big difference
between length limit and count limit.

| 7- ex(("r,’[a]’(1length(10) = “r))).
3.2110000000000003 sec.

7 states

24 subterms

14 state transitions

yes

| ?- exe.

execution:

unsatisfiable

8.2 Example: Z discreteness and Diodorean discreteness

Diodorean discreteness (Ref. [5]) is
EIEN((R — [=R) — R))) — IR — IR
We can easily prove it under the count limit restriction.

7= ex([a]’ ([’ ((Cr=>’[a]’("r))-> “1r)))->'<a>’(’[a]’("r))->’[a]’("1)).
15 states ’

24 subterms

98 state transitions

valid

yes
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In case of Z discreteness;
Gl (& (R) - R) — (¢ (& (R))) — 1 (R)))))-
We have counter example.

7- ex(’[a]’ ((’[a]’ ("r)-> “1))->’<a>’(’[a]’("r))->’[a]’("1)).
30.710000000000008 sec.

23 states

24 subterms

149 state transitions

counter example:

0:+r°0 2

1:4r°0-r°1 false

8.3 Example: Grammar Rules or Recursive Process

A 2ITL formula,
RAE(R — ((a AQR) V (—a A b A empty))))

represents a grammar rule or CCS like process. But we are using discrete time and it use
operator, the verifier generates rather big FSM. ‘ :

| 7- ex(("r,’[a]’(( "r -> ((a,@ “r); ("a,b,empty)))))).
76.817 sec.

128 states

22 subterms

264 state transitions

yes

| ?- exe(5).

:+a-r"0 3

:+a-r~0-r"1 67
:+a-r"0-r~1-r°2 99
:+a-r"0-r"1-r°2-r*3 115
i—a+b+r 0+r"1+r"2+r~"3+r~4 0

B W N - O

yes
| 7- exe(10).

no

+a means a is T and -a means a is F. exe(10) requests at least length 10 example and it has
no solution because of count limit 5. The solution should be a Regular Expression a*b, but we
cannot find out the solution because of the undecidability of 2ITL.

In this example, we can replace [2] by O. This reduce the number of state to 7 but it gives the
same limited execution result.
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9 Comparisons
Several methods has been developed for real-time speciﬁcation..
e Timed automaton (Ref. [1]) |
e Process Algebra (CCS (Ref.[11]) etc.)
e Higher Order Logic (Ref.[6])
e Temporal Logic (Ref.[5])

Timed automaton can be a basic model of real-time specification. Process algebra provides a
program oriented syntax by recursion style. Temporal logic provides natural language like and
declarative syntax of specification. : ‘ ' ‘

Using closure operator and second order variable, temporal logic effectively includes timed au-
tomaton and process algebra. But there are several differences. First, our logic has discrete time
model and based on events, that is, every event is synchromzed with a global clock. Process algebra
has no such global clock. 2ITL itself is not suitable for asynchronous specification but suitable for
synchronous or clocked specification. The second different point is there is no summation + in
2ITL. Disjunction can be used as a summation, but it has no mechanism of commitment. Ot usmg
Prolog jargon we can say, we have no cut in our language.

In process algebra, all processes are defined by recursions. Propositional temporal logic cannot
describe recursions, but 2ITL can. Chop operator’s role is very important here.” If we use LTTL
and Until operator, even if we use second order variable, recursive process is not expressed. But
recursion is not a perfect because of our second order variable restriction. ;

Corresponding part of verification in process algebra is complex hierarchy of bi- 31mulat10n Slnce
2ITL is logic, failure set and success set is compliment of each other. This corrupts the hierarchy of
bi-simulation, and it is defined as temporal logic relation. If we want to check fine grain difference
among process including ¢ events, discrete time can be used. But it requires extra computation on
the verification. The other important feature in process algebra, restriction or hiding is expressed
by an existential quantifier.

First order logic or higher order logic is also known as powerful tool of spec1ﬁcat10n Z, ML
HOL and other HDL are successful tools. Of course, formal specification itself is very important,
but in these tools not only human aided proof and simulation, automatic verification can be an
important part of these systems.

Our verifier can be use as a Model checker (Ref. [10]) also. Actually, a FSM can be used as a
part of temporal logic formula. There are two ways to express a FSM in our temporal logic. One is
~ to define the FSM as a new temporal logic operator, the other one is to use a temporal logic formula
which represents the FSM. In later case, the translated formula could be big in general, but if the
formula is small, it is superior than former method because the verifier can extract information
from the structure of the formula. Using these FSM in ITL formula, we can perform a model
checking method on the second order interval temporal logic verifier.

10 Future direction

Current method works well on small examples, but we cannot say it is practical. It requires huge
computation to verify second order variable and the expressiveness of the variable is restricted.
This is because we are concentrated on a FSM based automatic verification and easy restriction.
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One possible direction is to construct theorem prover on for example HOL. The other direction is
to find out more practical restrictions. :

We can extends the restrictions in many way. Actually restrictions on real-time process are
easily found in programming technology. An interrupt signal processing or pre-empt processing is
usually time limited. Number of preemptable process are limited also. Under these constraints,
we can prove the reliability of real-time computation. If we find another useful restrictions, it may
become a criteria of verifiable and dependable real-time programming.

The expressiveness of restricted 2ITL is equal to Regular Expression and full 2ITL includes
context dependent grammar. One question is this. Is there any restriction which makes 2ITL
context free grammar expressiveness? ’ ' S
. Extension of this method to projection operator is possible. This is also related to the compu-
tational difficulty of singleton removal.

- Asynchronous events, edge triggered events or dense time are also future research direction.

Appendix: Local ITL is less expressive than Regular Ex-
pressmn |

F1rst we deﬁned Local ITL using mappmg function. We use a mapping function M,, ., (F) to
define the meaning of Local Interval Temporal Logic (Local ITL) on an interval of time. n can be
w in Local ITL. o; means a state of a clock period, which is a mapping of event variable. A state
defines truth value mappings of events. oy..0, represents a finite or infinite interval.

Local Interval Temporal Logic has ‘

Constants T/F, My, o.(T) =T, My, ,.(F) = F
empty M,, ,.(empty) =T if n = 0 otherwise F.

Local variable p, g, 7. M,,.+.(p) = M,,(p) = T/F. The truth value of a local variable is defined
at the first time of the interval. ‘ '

Chop operator In oy..0,, there is a state on such that, M, ,,"(F &Ft) = T if and only if
Myy..0,,(Fy) = T and M, ,n(F,) =

Classical operator Negatlon and disjunction as usual.
Weak Next M,, ., (OP)=T if M,, ,,(P)=T orn=0.

Closure operator This is defined in a recursive way. In o0g..0,, there is a state o, such that,
Mg, o, (*F) =T if and only if M, , (F)=T and M,,, a,,(*F) T.

In this proof we don’t use closure operator. We also omltted Next operator to make the proof
concise. The proof can be extended to include next operator but it may long.

Now we prove Evenp(p) is not expressed in this Local ITL.

We assume a formula P is satisfiable in an infinite interval ao .0,. In case of no next operator
case, satisfiability in a non empty finite interval is sufficient.

Using tableau expansion, there is a finite state machine (here after FSM) derived from P. Each
state marked by logic formula of sub terms of P. The interval is satisfiable by the FSM. If a FSM
can be converted to a form in which at least one state has a next state transition to itself, we call

the FSM has single looped state. Usmg determinization and minization this property can be easily
checked : :



177

Now we are going to prove next theorem.

Theorem 4 If Local ITL formula P is satisfiable in an infinite z’nterval, the derived FSM from P
has single looped state in the satisfiable interval state.

For example, p&q and —(p&q) generates FSM in Fig 3. The marked state has a transition to
itself, and the state is in a satisfiable path. These two FSM has the same form because we use
deterministic FSM. In other words, single looped state is preserved in negation. In a special case, F'
has a single looped state but it has no single looped state on a satisfiable interval. It is also easy to
see that single looped state is preserved in chop operator. But a simple formula (empty & empty)
does not have single looped states, because it has no out going transitions.

empty, not q

empty, not q
notp
T Pq F
p&q not empty, not p &q )
g
not empty, not empty, not<>q
p.notq . psnot q
single l(;bp single I:f)p
Figure 3: Single Looped State
Proof

First we define polarity. Polarity has a value T or F. Here we use an inductive definition on sub
terms of P in top-down. We use P,, P, for sub terms of P.

Initial Case P’s pola,rlty isT.
Negation Case P has a form —-P,. The polarity of sub terms P, is negatmn of P.
Otherwise Polarity of sub terms has the same polarlty, of parent term.

Next, we want to prove this. If a formula does not have single looped states, there are positive
polanzed empty in all positive polarized disjunction leaves, negative polarized conjunction leaves
and chop leaves. It is proved by another bottom up induction on ITL formula.

Initial Case If P is local variable, T or F', it has a single looped state. .

Initial Empty Case Positive polarized empty does not have single looped states. Negative po-
larized empty has a single looped state.

Chop Case P has a form P,&P,. If either P, or P, has the a single looped state, P has a single
looped state.

Negation Case P has a form —P,. If P, has a single looped state, P has a single looped state.
Recall F' has a single looped state and the shape of deterministic FSM is preserved in negation.

Disjunction Case P has a form P, V P,. If polarity of P is positive and if either P, or P, has a
single looped state, P has a single looped state. If polarity of P is negative and if both P,
and P, has a single looped state, P has a single looped state.
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Conjunction Case P has a form P, A P,. If polarity of P is positive and if both P, and P; has a
single looped state, P has a single looped state. If polarity of P is negative and if either P,
or P, has a single looped state, P has a single looped state.

These are easily verified by the semantics of operators and characteristics of deterministic FSM.
Roughly saying, the basic case shows we have no single looped states if and only if we have positive
emptyin it, and other induction cases show it is preserved in all Local ITL operators (except closure
or next). _ ,

Assume P does not have a single looped state in each state of the infinite satisfiable interval.
Then in all positive polarized disjunction leaves, negative polarized conjunction leaves and chop
leaves, all the sub terms have positive polarized empty. This means P is only satisfiable in an
empty interval. It contradicts the assumption that P is satisfiable in an infinite interval. End
Proof ' ' '

Evenp(p) means p is true at every even clock period. The FSM for Even(p) is easy as in Fig. 4
and it does not have single looped state in the satisfiable interval. (But it has a single loop state
on the unsatisfiable interval because it contains F' leaf) So we cannot express Evenp(p) in Local
ITL, which is easily written in Regular Expression or QPTL.

T

p
~ Figure 4: FSM of Evenp

The extension of the proof for including next operator is possible but not so easy. It requires
careful handling of empty and next interaction. We can express Evenp(p) for a fixed finite interval
using next operator, but in case of infinite intervals, there is a sub interval which is generated by
non next restricted way. The sub interval has single looped state.

It is easy to show that a closure operator does not keep the single looped state. If we have
a quantifier, the form of FSM changes drastically by quantifier and we cannot extend the proof.
Since Evenp(p) is easily written with a closure or a quantifier, Even(p) can be used as a counter
example. :
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Appendix: List of Definitions -

fin(P) = (T&(empty A P))
beg(P) = ((empty A P)&T)
QP = -empty AQP

o P = T&P

<>SP = S&P

oP = -(T&-P)

® P = T&P&T

P = o(T&-P&T)
less(2) = (OQempty
length(2) = QQempty

o P = P&T

P = —(-P&T)
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