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One of the main reasons for developing formats of rules with negative antecedents,
for example the GSOS format, was to enable natural description of process opera-
tors like the sequential composition, priority and broadcast paraUel. We propose an
alternative method for defiming these and similar operators, which does not rely on
$\mathrm{n}4\mathrm{e}\mathrm{s}$ with negative antecedents. Instead, we use ordinary rules but with an order-
ing on them which indicates the order of their application. We show that operators
which are definable by our method preserve a version of weak bisimulation.

1 Introduction

Structured Operational Semantics (SOS) is considered to be the standard
method for defining operational meaning of process operators in an arbitrary
process language. It was originated by Milner for CCS $[1, 2]$ and formalised
by Plotkin [3]. The meaning of each operator on processes is given by a set
of transition rules. Each of the rules describes how the behaviour of a pro-
cess, constructed with the operator and some subprocesses, depends on the
behaviour of these subprocesses. For example, the following is one of the rules
for ffl, the CSP external choice operator,

$Xarrow aX’$

$X$ ffl $Yarrow x\prime a$ .

The rule allows to infer that a process $a.\mathrm{O}$ ffl $b.\mathrm{O}$ may perform action $a$ since its
subprocess $a.\mathrm{O}$ may itself perform $a$ .

Process operators can be classified accordingly to the form of rules defining
their operational meaning. A format of rules is a collection of forms of rules.
We say that an operator is in a certain format if its rules belong to that format.
Most of the popular process operators are in the De Simone format [4].

However, there is a number of process operators which cannot be ade-
quately defined by De Simone rules alone. The most important examples of
these are the sequential composition, priority and broadcast parallel opera-
tors. These operators are usually defined by rules with negative antecedents,
i.e. expressions like $X\neq^{a}*$ . Consider, for example, the rules for the sequential
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composition operator ;

$Xarrow\alpha X’$ $\forall\alpha$ . $X\wedge\alpha$ $Yarrow Y’\beta$

$X;\mathrm{Y}arrow X^{/}\alpha;$ $Y$ $X;Yarrow\rho Y^{J}$ ,

where $\alpha$ and $\beta$ are any visible or silent actions. Given a process $0;a.0$ we can
deduce, using the second rule for $a$ and the fact that $a.0$ can perform $a$ , that
the process itself can perform $a$ .

Transition rules with negative antecedents as means to give operational
semantics to general process operators were originally considered by Bloom,
Istrail and Meyer [5, 6, 7]. They proposed a general format of rules called
the GSOS format. Groote [22] proposed a more general format called the
$ntyfl/nxyfl$ format.

Another issue concerning the formats of transition rules is the use of silent
actions. The original De Simone and GSOS formats treated both silent and
visible actions in the same way, i.e. as visible. This resulted in many difficul-
ties when weak equivalences over De Simone or GSOS process languages were
considered. The problem was studied by Bloom $[8, 9]$ , Vaandrager [10] and the
second author $[11, 12]$ . He proposed the ISOS format, which offers a sound
and intuitive treatment of silent actions as well as use of negative antecedents
and copying.

In this paper we will only consider those formats of rules which treat silent
actions as invisible; for example the formats in [8, 10, 11, 9, 12]. A number
of important results were established for these formats. Firstly, certain weak
equivalences were shown to be preserved by all process operators in these
formats [10, 9, 12]. Secondly, (completed) $\mathrm{t}\mathrm{r}$.ace congruences with respect to
these formats were discovered $[10, 11]$ . Thirdly, algorithms for generating
complete axiomatisations of some weak equivalences were developed [13, 14,
15].

The main conceptual contribution of the paper is a new method for defining
process operators, including the sequential composition and priority operators,
by transition rules with $no$ negative antecedents. Our method is based on a
simple idea of ordering the transition rules for each operator. The behaviour
of a process can then be determined by examining the rules of its main oper-
ator, starting with the rules highest in the ordering and then considering the
rules lower in the ordering. As a result, a rule lower in the ordering can only
be applied if none of the rules above it can. Intuitively, this has the effect
of applying a rule with negative antecedents. A simple example is given to
illustrate our method. Consider a priority operator $\theta$ , which gives $a$ a priority
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over $b$ , defined by the following rules.
$Xarrow X^{J}\dot{a}$ $X\wedge a$ $Xarrow X’b$

$\theta(X)arrow a\theta(X’)$ $\theta(X)arrow b\theta(X’)$

We easily deduce $\theta(b.0ffl_{C}.0)arrow b\theta(0)$ . Employing our method we only need the
first rule and a similar rule for $b$ (but with no negative antecedents) together
with an ordering which puts the first rule above the second. Clearly, the first
rule cannot be applied to the process $\theta(b.\mathrm{O} \mathrm{f}\mathrm{f}\mathrm{l} c.\mathrm{O})$ . But, since $b.\mathrm{O}$ ffl $c.\mathrm{o}arrow b0$ ,
$\mathrm{w}_{\vee}\mathrm{e}$ obtain $\theta(b.\mathrm{O} \mathrm{f}\mathrm{f}\mathrm{l} c.\mathrm{o})arrow\theta(0b)$ by the second rule.

The main technical problem we address is how to combine orderings on
rules with the intended use of silent actions. It is known that all ISOS oper-
ators, which include most of popular process operators, preserve a version of
weak bisimulation [12]. However, it is not difficult, as will be shown in the
forthcoming sections, to come up with a positive ISOS operator and a careless
ordering on its rules such that the operator does not preserve weak bisimula-
tion. In order to avoid such operators we propose a number of conditions on
orderings such that if they are satisfied then the defined operator is.guaran.t.eed
to preserve weak bisimulation.

2 Preliminaries

Let Var be a countable set of variables ranged by $X,$ $X_{i},$ $Y,$ $Y_{i},$
$\ldots$ . A signature

$\Sigma$ is a set of pairs $(f, n)$ , where $n\in \mathrm{N}$ is an arity of $f$ . An element $(g, 0)$ of $\Sigma$

is called a constant symbol and it is abbreviated as $g$ . The set of open terms
over $\Sigma$ with variables in $V\subseteq \mathrm{V}\mathrm{a}\mathrm{r}$ , denoted by $\mathrm{T}(\Sigma, V)$ , is ranged by $P,$ $Q,$ $\ldots$ .
The set of closed terms, written as $\mathrm{T}(\Sigma)$ , is ranged by $p,$ $q,$ $\ldots.var(T)$ denotes
the set of variables appearing in a term $T$ . We use $\equiv$ for syntactic equality.
$\Sigma$ context with $n$ holes $C[X_{1}, \ldots , X_{n}]$ is a member of $\mathrm{T}(\Sigma, \{X_{1}, \ldots, X_{n}\})$ .
A proper context is a context where each variable occurs at most once. If
$t_{1},$

$\ldots$ , $t_{n}$ are $\Sigma$ terms then $C[t_{1}, \ldots, t_{n}]$ is a term obtained by substituting
$X_{\dot{i}}$ by $t_{i},$ $1\leq i\leq n$ . An $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\sim \mathrm{o}\mathrm{n}\mathrm{T}(\Sigma)$ is the congruence if for all $\Sigma$

contexts $C[X]$ we have $t\sim t’$ implies $c[t]\sim C[t’]$ . Similarly, an operator $(f, n)$

$\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{s}\sim \mathrm{i}\mathrm{f}$ for all $n$-ary vectors of closed terms $t$ and $t’$ with $t\sim t’$ we have
$f(t)\sim f(t’)$ . A substitution $\rho$ is a mapping from Var to $\mathrm{T}(\Sigma)$ . The substitution
$\rho$ extends to a mapping $\mathrm{T}(\Sigma)arrow \mathrm{T}(\Sigma)$ in a standard way. Act $=$ Vis $\cup\{\tau\}$ ,
ranged by $\alpha,$ $\ldots$ , is a finite set of actions, where Vis is the set of visible actions,
ranged by $a,$ $b,$

$*\cdot.$ , and $\tau$ is a silent, internal action which is not in $\mathrm{V}_{\mathrm{I}}\mathrm{s}$ .
In this paper we only consider weak equivalence on processes. The main

characteristic of weak equivalences is the type of process behaviour which is
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used to determine which processes are related–only visible behaviour is taken
into account. In particular this means that only the visible actions of processes
are recorded and the. silent actions are abstracted away. If one is interested in
using weak equivalences and if one searches for a general format of rules with
a suitable $\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\vee \mathrm{o}\mathrm{f}$ silent actions then, we believe, it is reasonable to have
the following minimal requirement concerning the form of rules: All operators
defined in the format should preserve the chosen weak equivalence.

The first attempt to accommodate silent actions in formats of rules is due
to Bloom [8]. The important idea of silent rules, called there patience rules, was
introduced there but the overa..ll treatment of silent actions was not completely
satisfactory: one could define operators which would count the number of silent
actions processes can perform. Vaandrager in [10] modified the original De
Simone format [4] by using the silent rules and showed that failure equivalence
is preserved by all operators definable in the modified format. Then, the second
author introduced in [11] the ISOS format–a general format of rules with
negative antecedents and a suitable treatment of silent actions. He proved
that ISOS operators preserve a version of weak bisimulation [12] (sometime
called delay bisimulation) and refusal simulation preorder [11]. Also, similar
modifications to those used in the ISOS format and some new ideas were
applied to positive GSOS rules in [9]. As a result a number of formats were
proposed and a number of weak equivalences, including rooted branching and
weak bisimulations, were shown to be preserved by the operators in these
formats. Finally, the second author showed in [15] that testing preorder of De
Nicola&Hennessy [16] is preserved by De Simone (with silent rules) operators.

In this paper we shall consider only those rules which belong to (a slightly
extended) ISOS format as described in $[11, 12]$ . The ISOS rules have two
distinctive forms. We will use the following notational agreement: we write
$Xarrow X\sim\alpha$ instead of $X\wedge\wedge\tau\alpha$ .
Definition 1 An action rule has the following form

$\{X_{i}arrow a_{i}X_{i}’\}_{i\in I}$
$\{X_{j}\overline{\beta_{jkarrow}}X_{j}\}_{jK_{j}}\in J,k\in$

$f(X_{1}, \ldots, X_{n})arrow\alpha C[\mathrm{Y}]$ ,

where $X_{i},$ $X_{i}’$ are all different variables, $I$ and $J\subseteq\{1, \ldots , n\}$ , all $I\backslash _{j}^{J’}$ are finite
subsets of natural numbers and $C[\mathrm{Y}]$ contains at $\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}\wedge$ the variables $Y_{1},$

$\ldots$ , $Y_{n}$ ,
where $Y_{i}=X_{i}’$ if $i\in I$ and $Y_{i}=X_{i}$ otherwise. Note that each $Y_{i}$ may appear
in $C[\mathrm{Y}]$ a number of time or not at all. The notions of the operator of the
rule, the action, positive and negative antecedents and the consequent are as
usual. The action rule is positive if $J=\emptyset$ or, in other words, if it does not have
any negative antecedents. We say that $(f, n)$ tests its m-th argument and the

198



m-th argument for $(f, n)$ is active if there is an action rule for $(f, n)$ with $X_{m}$

in the antecedents. The antecedents and the consequent of a rule $r$ are written
as ante $(r)$ and $conS(r)$ respectively.

A silent rule, or $\tau$-rule, for an operator $f$ is any of the following rules for
$1\leq i\leq n$ , hereafter written as $\tau_{f:}$ or simply as $\tau_{i}$ when $f$ is known from the
context,

$X_{i}arrow x_{\dot{i}}\tau/$

$f(x_{1}, \ldots, X_{i}, \ldots, X_{n})arrow f(\tau X_{1}, \ldots, x_{\dot{i}}’, \ldots, Xn)$ .
An action rule is $\tau$-producing if $\alpha=\tau$ , otherwise it is Vis-producing. Let
rules $(f)$ be the set of all action rules and $\tau$-rules with $f(X)$ in the conse-
quent. The $i\mathrm{t}\mathrm{h}$ argument is active in some action rule $r$ if $X_{i}$ appears in the
antecedents of $r$ , and it is active in a set $S\subseteq rules(f)$ if it is active in some
action rule in $S$ . Denote the set of such $i$ by active $(S)$ , and write active $(f)$ in-
stead of active $(ru\iota_{e}S(f))$ . Let $tau(S)$ be $\{i|\tau_{i}\in S\}$ , and write $tau(f)$ instead
of $tau(ruleS(f))$ . A $\tau$-rule $\tau_{i}$ is associated with $f$ if the $i\mathrm{t}\mathrm{h}$ argum-$\mathrm{e}\mathrm{n}\mathrm{t}$ of..f is
active.
Definition 2 With the notations as in the previous definition, a set of rules
$S\subseteq rules(f)$ is in the ISOS format (positive ISOS format) if it satisfies
active $(S)=tau(S)$ (and all its action rules are positive). A process opera-
tor is an ISOS (positive ISOS) operator if the set of its defining rules is in the
ISOS (positive ISOS) format. An ISOS (positive ISOS) process language is a
triple ( $\Sigma$ , AU $\{\tau\},$ $R$), where $\Sigma$ is a finite set of ISOS (positive ISOS) operators,
$\mathrm{A}\subseteq \mathrm{V}_{\mathrm{I}}\mathrm{s}$ , A is finite and $R$ is a finite set of rules for operators in $\Sigma$ .
Most of the operators in commonly used process languages are positive ISOS
except, for example, for the CCS and ACP choice operator $+\mathrm{a}\mathrm{n}\mathrm{d}$ the ACP
left-merge operator. They are not positive ISOS because they do not have
the associated $\tau$-rules. But, there are positive ISOS versions of these operators
which are $\mathrm{a}\mathrm{p}\mathrm{P}^{\Gamma \mathrm{o}\mathrm{p}\mathrm{r}}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}$ for most of the purposes. For example, the CSP external
choice operator ffl is one of the positive ISOS choice $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}.\mathrm{t}\mathrm{o}.\Gamma \mathrm{s}$ . It is defined
by the following rule schema

$Xarrow X’a$ $Yarrow Y’a$

$X$ ffl $Yarrow x’a$ $X$ ffl $Yarrow Y’a$

together with two appropriate $\tau$-rules. Also, the CSP internal choice operator
and the mixed choice defined in [12] are positive ISOS operators.

Given an ISOS process language ( $\Sigma$ , AU $\{\tau\},$ $R$), a fabeled transition system
can be defined in a standard way; the details can be found, for example, in
[5, 17, 7, 12]. A labeled transition system for the above language is a structure
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( $\mathrm{T}(\Sigma)$ , A $\cup\{\tau\},$ $arrow$ ), where $\mathrm{T}(\Sigma)$ is a set of process terms or processes and
$arrow\subseteq \mathrm{T}(\Sigma)\cross \mathrm{A}\cup\{\tau\}\cross(\mathrm{T}(\Sigma)$ is the unique transition relation generated by the
language. We will often call $\mathrm{t}\mathrm{h}|‘ \mathrm{s}$ transition system the basic transition system
for a given language. Expressions of the form $tarrow\alpha t’$ , where $t,$ $t’\in \mathrm{T}(\Sigma)$ and
$\alpha\in$ AU $\{\tau\}$ , are called transitions. They are varied by $T,$ $T’$ . With the notation
as above, we say that $\mathrm{t}_{\Gamma \mathrm{a}\mathrm{n}}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}tarrow t\alpha/\mathrm{i}\mathrm{s}$ valid (holds) $\mathrm{i}\mathrm{n}arrow \mathrm{i}\mathrm{f}(t, \alpha, t’)\inarrow$ .

We will use some standard $\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ : for $(p, a, q)\inarrow$ we write $parrow aq$

and interpret it as process $p$ performs $a$ and in doing so becomes $q$ . The
abbreviations we will use are $parrow a$ for $\exists q\in \mathrm{T}(\Sigma)$ . $parrow aq$ and $p\neq^{a}*\mathrm{f}\mathrm{o}\mathrm{r}\neg\exists q\in$

$\mathrm{T}(\Sigma)\mathcal{T}^{\cdot}parrow qa\tau$ . Also, $p\Rightarrow^{\tau}q$ means $p=q$ or $\exists p_{1},$
$\ldots$ , $p_{n}$ such that $p=p_{1}$ ,

$p_{1}arrow$ . . . $arrow p_{n}$ and $p_{n}=q$ . Using the above we write $p\Rightarrow aq$ to mean
$p\Rightarrow p’\tauarrow qa$ for some $p’$ .

Next, we define a version of weak bisimulation relation which is based on
weak bisimulation (or observation equivalence) $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{d}$ in [18, 19, 12]. This
version is often called delay bisimulation $[20, 21]$ .
Definition 3 Assume the basic $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ systems for a given ISOS process
language with the set of actions A $\cup\{\tau\}$ .

1. A binary relation $R$ on processes is a weak bisimulation if $pRq$ implies,
for all $\alpha\in \mathrm{A}\cup\{\tau\}$ ,

$\forall p’$ . $parrow p’\alpha$ implies ( $\exists q’’$ . $q\Rightarrow\alpha q’$ and $p’Rq’$ ),
$\forall q’$ . $qarrow q’\alpha$ implies ( $\exists p’$ . $p3p’$ and $p’Rq’$ ).

2. $p\approx q$ if there exists a weak bisimulation $R$ such that $pRq$ .

The difference between our definition of weak $\mathrm{b}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ and the standard
notion as defined, for example, in [2] and denoted here by $\approx_{B}$ lies in the
meaning of $p\Rightarrow aq$ : in [2] $p\Rightarrow aq$ means $p\Rightarrow p’\tauarrow aq’\Rightarrow\tau q,$ for some $p’,$ $q’$ . It is
worth noting $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\approx \mathrm{i}\mathrm{s}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{t}\mathrm{l}\mathrm{y}$ finer $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}\approx_{B}$ since the third $\tau$-law $\mathrm{i}_{\mathrm{S}}$ not sound
$\mathrm{f}\mathrm{o}\mathrm{r}\approx.$ One of the reasons for choosing this version of weak bisimulation is that
the standard version is not preserved by many $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{P}^{\mathrm{l}\mathrm{e}}$ positive ISOS operators.
In fact, there are much simpler De Simone operators [15], for $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{e}}}$ action
refinement-like operators, $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$ fail to preserve the standard version.

Finally, we state the congruence result $\mathrm{f}_{\mathrm{o}\mathrm{r}}\approx$ and ISOS operators.
Proposition 4 Let $G=$ ( $\Sigma$ , A $\cup\{\tau\},$ $R$) be any (positive) ISOS process lan-
guage. Then $\approx$ is preserved by all $\Sigma$ operators, that is for all $(f, n)\in\Sigma$ we
have

$\forall 1\leq i\leq n$ . $p_{i}\approx q_{i}$ implies $f(p_{1}, \ldots, p_{n})\approx f(q_{1}, \ldots, q_{n})$ .

The proof is similar to that of Theorem 9.5.1 in [12], thus it is omitted.
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3 Ordering on Rules

The antecedents of ISOS rules, unlike those of positive ISOS rules, refer to both
the positive and negative behaviour of subprocesses. We will use a priority
ordering on positive ISOS rules in order to achieve the effect of rules with
negative antecedents. The ordering specifies the $.0$r.der in which the rules are
to be applied when deriving transitions of terms.
Example 5 Consider an operator $f$ such that $f(p)$ behaves like $p$ except that
whenever $p$ cannot perform $b$ then $f(p)$ can perform a new action $\tilde{b}$ . Operator
$f$ can be defined by the following ISOS rules.

$\tau b$

$Xarrow X’\alpha$ $X\wedgearrow$

$f(X)arrow\alpha f(X’)$ $f(X)arrow\overline{b}f(X)$

But, $f$ can also be defined as follows, for $\alpha\neq b$ ,

$Xarrow x’\alpha$ $Xarrow X’\tau$

$\overline{f(X)\alphaarrow f(x’)}r_{1}$ $\overline{f(X)\tauarrow f(x’)}\tau_{1}$

$Xarrow x’b$
. .

$r_{2}$
$f(X)arrow\overline{b}f(X)$

$r_{3}$

$f(X)arrow f(x’)b$

with the ordering $r_{3}<\tau_{1},$ $r_{3}<r_{2}$ . We notice that, using ISOS rules, $f(p)arrow\overline{b}$ if
$\tau b$

and only if $p\neq*arrow$ . Applying the positive ISOS rules with the above ordering
we can deduce $f(p)arrow\tilde{b}$ only if rules $\tau_{1}$ and $r_{2}$ cannot be applied for $f(p)$ : that
is when $p\wedge \mathcal{T}$ and $p\wedge b$ .

Let $<_{f}$ be a relation on rules $(f)$ . $r<_{f}r’$ means that $r$ has a lower priority
than $r’$ (and $r’$ has a higher priority than $r$ ) when deriving the transitions of
$f(p)$ , any $p$ . By this we mean that a rule can only be applied when no rules with
higher priority can be applied. We do not assume irreflexivity or transitivity
of the relation $<_{f}$ . Given positive ISOS language $G<c$ , or simply $<$ if $G$ is
clear from the context, is $\bigcup_{f\in\Sigma_{G}}<_{j}$ .
Definition 6 An ordered process language is a pair $(G, <)$ , where $G$ is a
positive ISOS process language and $<\mathrm{i}\mathrm{s}$ the ordering on its rules as described
above.
Next, we describe how to associate a transition relation with $(G, <)$ . Our
method is $\mathrm{b}\mathrm{a}s$ ed on that originated in [22]. We will need a function $d:\mathrm{T}(\Sigma)arrow$
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$\mathrm{N}$ to specify the depth of operator names in a ground term over a signature
$\Sigma$ . Function $d$ is defined inductively:

$\bullet$ $d(t)=0$ if $t$ is a constant,

$\bullet$ $d(g(t_{1}, \ldots , t_{f}))=1+\max\{d(t_{i})|1\leq i\leq r\}$ .

The extension of $d$ to transitions is defined as expected: $d(tarrow*t’)=d(t)$ .
Also, the following will be useful: higher$(r)=\{r’\in rules(f)|r<_{f}r’\}$ , and
correspondingly lower$(r)$ .

Definition 7 Given $(G, <)$ we associate a transition relation, $arrow\subseteq \mathrm{T}(\Sigma)\cross$

$\mathrm{A}\cup\{\tau\}\cross \mathrm{T}(\Sigma)$ , defined as follows: $arrow=\bigcup_{l<\omega}$
$arrow^{l}$ , where transition relations

$arrow^{l}\subseteq \mathrm{T}(\Sigma)\cross \mathrm{A}\cup\{\tau\}\cross \mathrm{T}(\Sigma)$ are:

$T\inarrow l$ iff $d(T)=l$ & $\exists r\in R,$ $\rho$ : $Varrow \mathrm{T}(\Sigma)$ . $[\rho(ConS(r))=T$

&\rho (ante $(r)$ ) $\in\bigcup_{k<l}arrow k$

$\ \forall r’\in higher(r)$ . $\rho(ante(r);)\not\in\bigcup_{k<l}arrow k]$ .

Similarly as in [22] it is easy to show that the transition $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}arrow \mathrm{a}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$

with a given $(G, <)$ agrees with it. Intuitively, it means that all transitions in
$arrow \mathrm{a}\mathrm{r}\mathrm{e}$ derivable by rules of $G$ under the ordering $<$ . In general, there may be
a number of transition relations which agree with $(G, <)$ . But, we claim that
the transition relation associated with $(G, <)$ is the unique transition relation
which agrees with $(G, <)$ . The definitions of the basic and derived transition
systems for $(G, <)$ are then straightforward.

4 Ordered Rules with Silent Actions

One may wonder if all process operators which are defined by ordered positive
ISOS rules preserve our version of weak bisimulation. The answer is negative.
We will give a number of examples to prove our claim. Moreover, these exam-
ples will help us to find a number of conditions such that all operators, which
can be defined by rules satisfying these conditions, $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\Gamma \mathrm{v}\mathrm{e}\approx$ .
$\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ : In order to shorten the presentation of the forthcoming condi-
tions we will leave out the outermost universal quantifiers binding $f\in\Sigma$ and
$r\in rules(f)$ . Also, all the rules mentioned in the conditions, i.e. $\tau_{i},$ $r$ and $r’$ ,
are understood to belong to rules $(f)$ .
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Consider an interleaving parallel operator $||$ defined as follows:

$Xarrow x’a$ $Xarrow x’\tau$

$r_{a*}$ $\tau_{1}$

$X||Yarrow \mathrm{x}^{J}a||Y$ $X||Yarrow X^{J}\tau||Y$

$Yarrow Y’a$ $Yarrow Y’\mathcal{T}$

$r_{*a}$ $\tau_{2}$

$X||Y\underline{\backslash }Xa||Y’$ $X||Yarrow X\mathcal{T}||Y’$

The names of rules and rule schemas accompany them on the right., The
ordering is $r_{a*}>\tau_{2}$ . Now we have $b\approx\tau b$ and $a||b\Rightarrow^{b}$ , but $a||\tau b\Rightarrow b$ .

Thus, we need to find a conditions on the ordering relation which would
not allow the above ordering. The first condition might be as follows.

if $r$ is a $\tau$-rule then higher$(r)=\emptyset$

The intuition is that $\tau$-rules should not have lower priority. But, although the
condition is quite natural it is also restrictive. For example, let $f$ be a binary
operator. When deriving the behaviour of $f(p, q)$ one may want to give priority
to the first subprocess (like with the sequential composition operator). This
may result in some rules associated with the first subprocess being above $\tau_{2}$ .
We can allow such orderings provided that all the rules, which are above $\tau_{2}$ ,
are above all the rules with active second argument. This can be written as
follows.

if $r\in higher(\mathcal{T})\dot{i}$ then $l_{owe}r(\tau_{i})=\emptyset$ and
$\forall r’$ . if $i\in active(r’)$ then $r\in higher(r’)$ (1)

The condition implies $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\sim$ no action rule can be above any of its $\tau$-rules.
There are operators, definable by $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\prime \mathrm{i}\mathrm{V}\mathrm{e}$ ISOS rules satisfying condition

(1), which do not preserve weak bisimulation. Consider the priority operator
$\theta$ which gives $d$ priority over $b$ . It is defined by the following rule schema, for
$\alpha\in\{b, d, \tau\}$ , ..

$Xarrow X^{J}\alpha$

$\theta(X)arrow\theta(x’)\alpha$ .

The action rules are denoted by $r_{b}$ and $r_{d}$ , and the $\tau$-rule is $\tau_{1}$ . Suppose
$r_{d}>r_{b}$ . Let $p=b||\tau d$ and $q=b||d$ , where $||$ is the usu.a1 interleaved parallel

composition operator. Then, $p\approx q$ and $\theta(p)\Rightarrow^{b}$ , but $\theta(q)\Rightarrow b$ . To repair this
we additionally require $\tau_{1}>r_{b}$ .
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This example leads to the following condition.

if $i\in active(higher(r))$ then $\tau_{i}\in higher(r)$ (2)

The intuition here is that in order to apply the rule $r$ we need to make sure
that no other rules with higher priority (and thus their $\tau$-rules) can be applied.

Next, we claim our main result.
Theorem 8 Let $(G, <)$ be an ordered process language, where $G=(\Sigma,$ $\mathrm{A}\cup$

$\{\tau\},$ $R)$ is any positive ISOS process language and the ordering $<$ satisfies
conditions (1) and (2). Then $\approx$ defined over the derived transition system for
$(G, <)$ is preserved by all $\Sigma$ operators.
The $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}_{\vee}\mathrm{m}$ is proved similarly as, for example, in [1.7, 6, 12]. Due to the lack
of space the proof is omitted.

5 Applications

Sequential composition is often defined by rules with negative antecedents
as, for example in $[5, 7]$ . However, it can be defined by the following ordered
rule schemas, where $a,$ $b\in \mathrm{A}$ :

$Xarrow X’a$ $\mathrm{Y}arrow Y’b$

$r_{a*}$

.

$r_{*b}$

$X;\mathrm{Y}arrow X;\mathrm{Y}a$’
$X;Yarrow \mathrm{Y}’b$

together with the appropriate $\tau$-rules $\tau_{1}$ and $\tau_{2}$ . The ordering on the rules
satisfies $r_{a*}>r_{*b},$ $\tau_{2}$ for all $a,$

$b$ and the conditions (1) and (2).
$\mathrm{P}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}$ are employed in process languages to represent such phenomena

as time-outs and interrupts. For a given partial order $<\mathrm{o}\mathrm{n}$ visible actions $\theta(X)$

is a restriction of $X$ such that action $a$ can only happen only if no $b>a$ is
possible. This can be defined operationally by the first of the following rules.

$Xarrow X’\alpha$ $X\wedge\beta(\forall\beta>\alpha)$ $Xarrow X’a$

$r_{a}$

$\theta(X)arrow\alpha\theta(X’)$ $\theta(X)arrow a\theta(X’)$

However, $\theta$ can be defined by a set of ordered positive ISOS rules, like the
second rule above for each $a\in$ A and the $\tau$-rule $\tau_{1}$ . The ordering requires
$r_{a}<r_{b}$ whenever $a<b$ , and $\tau_{1}>r_{b}$ whenever there exist an action rule
$r_{a}$ such that $r_{a}\in higher(r_{b})$ . In [23], the first author surveyed a number of
approaches to priorities in process algebras. He showed how these approaches
might be fitted into a common operational framework based on ordered rules.

204



The broadcast parallel operator $||$ can be defined by the following posi-
tive ISOS rules

$Xarrow X’a$ $Yarrow Y’a$ $Xarrow X’a$ $Yarrow Y’a$

$X||Yarrow Xl|a|Y’$ $X||Yarrow Xa’||Y$ $X||Yarrow x|a|Y’$ ,

denoted by $r_{aa},$ $r_{a*}$ and $r_{*a}$ respectively, with the ordering $r_{aa}>r_{a*},$ $r_{*a}$ .

6 $\mathrm{C}_{\mathrm{o}\mathrm{n}}\mathrm{C}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$

We have introduced a new method for operationally defining arbitrary pro-
cess operators which are normally defined by transition rules with negative
antecedents. Our method relies on rules without negative antecedents but we
equip the rules with an ordering. It specifies the order in which the rules are
applied when deriving transitions of process terms. We have also proposed two
conditions on rule orderings which guarantee that all operators definable by
rules satisfying these conditions preserve weak bisimulation.
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