0000000000
996 0 1997 0 222-242 222

The symbohc model-checking methods for
real-time systems

April 22, 1996

Satoshi Yamane
Dept. of Computer Science, Shimane University
1060 Nishikawatu, Matue city, Japan
Email:yamane@cis.shimane-u.ac.jp

It is important to verify timing conditions in real-time systems. The ver-
ification methods such as model checking and language inclusion algorithm,
bisimulation method have been researched. Especially symbolic model check-
ing is promising for verifying a large system. Time models are classified into
discrete time model and dense time model. In discrete time model, symbolic
model checker based on BDD(Binary Decision Diagram) has been developed.
But in dense time model, symbolic model checking based on BDD causes the
state-explosion problem because of generating region graph from specifica-
tion. In this paper, we propose symbolic model checking based on BDD in
dense time model, which do not use region graph. In our proposed symbolic
model checker, we represent state spaces by both BDD and DBM(Difference
Bound Matrices). We have realized effective symbolic model checker based
on BDD in dense time model by proposed method.

Key word real-time systems, verification, BDD, symbolic model checking

1 Introduction

It is important to formally verify whether specification satisfies verification
properties or not in real-time systems, such as operating systems and commu-

nication protocols, logical circuits[1]. In dense time model, formal verification

methods are classified into language inclusion algorithm and model checking
as follows[2].

1. If both specification and verification specification are described by
timed automaton, verification problem reduces to language inclusion
problem in formal language theory[3]. Language inclusion problem
is decided if verification specification language is closed under com-
plementation. Timed automaton is based on the ideas on coupling
w-automaton with timing constraints in dense time domain.

2. If specification is described by timed Kripke structure and verification
specification is described by real-time temporal logic, verification prob-
lem reduces to real-time model checking[4].

In this paper, we focus on model checking ,because many interesting veri-
fication properties are expressive. Especially, we focus on symbolic model -
checking[5] based on BDD(Binary Decision Diagram)[6], bacause we can
avoid the state-explosion problem. '

On the other hand, there are discrete time model and fictitious clock
time model, dense time model[2]. In discrete time model and fictitious clock
time model, symbolic model checking systems such as [7] and [8] have been
developed. But in discrete time model and fictitious clock time model, asyn-
chronous real-time systems can not be specified and verified[9]. In this paper,
we try to specify real-time systems by dense time model and formally verify
specification using model checking, especially symbolic model checking. In
dense time model, symbolic model checkers such as the verifier of multi-clock
automaton[10] and HYTECH][11], KRONOS[12] have been developed. But

there are some problems in these symbolic model checkers as. follows.

1. The verifier of multi-clock automaton requires large verlﬁcatlon cost
because of generating region graph[13].

2. HYTECH is implemented by both symbolic representation and semi-
decision procedure using mathematica. But HYTECH is not implemeted

by BDD.

3. KRONOS is implemented by both symbolic representation and DBM.
But KRONOS is not implemeted by BDD.

223

From 1. and 2., 3., the dense ‘time symbolic model checking based on

BDD without region graph have not yet been developed. For this reason, 1.
and 2., 3. cause the state- explosion problem.
In this paper, we develope symbolic model checking based on BDD. In gen-
eral, symbolic model checking is more effective than model checking because
of image computation and BDD. But in dense time model, it is difficult to
verify systems because of timing constraints. We try to store state transitions
and timing constraints by the form (s, x) where s is a set of states represented
by BDD and x is a set of timing constraints represented by DBM. This form
allows us to verify systems using dense time symbolic model checking. This
form have been proposed for language inclusion algorithm by Dill D. and
Wong-Toi H[14]. They have realized the real-time symbolic verification sys-
tem based on BDD and DBM. We develope our real-time symbolic model
checking based on their ideas. Our approach for verification of real-time
systems is as follows. :

1. System specification, which is described by parallel composition of
timed automata, is automatically transformed into timed Kripke struc-
ture. ‘ : o

2. Dense time symbolic model checking is based on both BDD and DBM.
For DBM, we can avoid the state- explosion problem.

In section 2 real-time specification is introduced. In section 3 real-time
temporal logic is introduced. In section 4 real-time symbolic model check-
ing is introduced. In section 5 examples of formal specification and timing
verification are introduced. In section 6 conclusion is introduced.

2 Specification method for real-time systems

2.1 Specification by timed Buchi automaton

Each process is specified by timed Buchi automaton[15] and system specifi-
cation is the product automaton of timed Buchi automata. Because timed
Buchi automaton is closed under union and intersection. Timed Kripke struc-
ture is automatically transformed from system specification. '

224

225

Definition 1 (timed Buchi automaton) Timed Buchi automaton is a A=(%, S, Sy, C
where : - : :

1. ¥: a finite set of events
. S : a finite set of states

. So € S : a finite set of start states

. ECSxSxEx29x®(C) : a set of transitions

2
3
4. C : a finite set of clocks
5
6. F C S : accepting states
7

. ®(C) represents timing constraints & of clock C, and is recursively de-
fined by a set X (z € X) of clock variables and a time constant D as
follows.

§ =z < D|D < z|-8]8, A 6,

An edge (s,s',a,)\,8) represents a transition from state s to state 8 on
input symbol a. We represent this transition as follows.

a,\é 4
S —> S

The set A C C gives the clocks to be reset with this transition. A run r of
timed automaton over a word o € ¥.¥ is an accepting run iff inf(r)NF # 0.

Definition 2 (intersection of timed Buchi automata) Consider timed
Buchi automaton Ai=(%,S;, so;, Ci, Ei, F;), 1=1,2, ... ,n. Intersection can be
implemented by a trivial modification of the standard product construction
for Buchi automata as follows.

1. The set of clocks for the product automaton A is UC; .

2. The states of A are of the form (sj1 X Sj2 X X Sjn) ,where each s;; € S;
,and =12, ... ,n, =1, ... ,m .

3. The initial state is of the form (so1 X So2 X X Son), Where each so; € S;
,and1=1,2,...,n.

226

4. The set of transitions consists of Ey X E X ... x E,. The transition of
A is obtained by coupling the transitions of the individual automaton
having the same label. Let {(sji,ski,a, \i,61) € Eilt =1,2,...,n} be a
set of transitions with the same label a. Corresponding to this set, there
is a joint transition of A out of each state of the form (sj1X5j2X....X8jn)
labeled with a. The new state is (Sg1 X Sgg X X Sgn) with j=k+1 mod
n if sp € Fy and j=k otherwise.

5. The set of clocks to be reset with the transition is NAi,and the associated
clock constraint is Aot .

6. The accepting set of A consists of Fy X Fy x ... x F, .

Theorem 1 (closure under intersection) Timed Buchi automaton is closed
under intersection.

(outline of proof)

According to [Definition 2], the class of timed language L(A;) N L(A;) ac-
cepted by timed Buchi automaton A; x A, is generated, where L(A;) is the
class of timed language accepted by timed Buchi automaton A; .

2.2 Generation of timed Kripke structure

It is necessary to generate timed Kripke structure from timed automaton
in order to realize model checking. The generation method is the same as
the reference[16]. A timed Kripke structure T corresponding to a timed
automaton A is defined to be a timed Kripke structure such that there exists
one to one correspondence between the state-input sequences of A and the
paths from one of an initial state. Next, we formally define the generation
method of timed Kripke structure as follows.

~ Definition 3 (timed Kripke structure) T=(5",u', R, 7’) be a timed Kripke
structure. where

1. S’ : a finite set of states

2.4 0§ — 2F assigns to each state the set of atomic propositions true
in that state.

3. R’ : a binary relation on S’ (R C S’ x S") which gives the possible
transitions between states.

4. 7 8" — 20 x ®(C) assigns to each state the set of clocks.

Next, we define operational semantics for a timed Kripke structure T in
terms of a transition system. A timed-state of the system is a pair q=(s7', z1),
i=0, ... ,n, where s} € S’ is a state and z; i1s a vector of clock values.

Definition 4 (semantics of timed Kripke structure) We define opera-
tional semantics for a timed Kripke structure T as follows.

1. The set qo of initial states is the set of all timed-states whose state
component is an initial state in T, and whose clocks values are all equal
to 0, as given by q0={ (sg,0) |sq is the set of initial states }

2. For each transition s; — s;_, , let
R’ = { (82,1‘1‘), (5§+17xi+1) Iwi € ﬂJ (Si) and Tiq1 € Tr, (3;+1), ;3; X '3;'+1 €
R . ,

Next, we define the generation of timed Kripke structure from a timed
automaton.

227

Definition 5 (the generation of timed Kripke structure) Let A=(%;S5,S50,C,E, I

be a timed automaton , and T=(S",y/, R',n") be a timed Kripke structure.
The generation method is as follows. '

1. 8 =F

2. RCExXE

3.y =E—=22=8 2F

4. =E—=2°x®(C)=5" —2°x®(C)

The example of the generation of timed Kripke structure is as shown in
Fig.1.

228

(1)timed automaton

(2)timed Kripke structre

" Fig. 1 Generation method of timed Kripke structure

Next, we explain that this transformation is compatible with the defini-
tion of truth of temporal logic.

Theorem 2 (compatibility) For all timed automaton A and temporal logic
¢ , timed Kripke structures T, it holds that |=4 ¢ iff |=r ¢

(proof) |
From the definition of A, it follows that for each infinite sequence

a1, 1,81

Aoy Do
So a°—$° 0 S1 . -3 S92 a2—}2 2

of transitions of A there is a path (sg, sy,sh,...) of T,
such that

ai,Ai b 7/

S; —F Sip1~ S,
for all
ai, i di

S; =3 Si+1

Conversly, for each infinite sequence (s}, s}, sh,...) of T, there is a path

29,050 a1,A1,81 az,A2.62
Sg — 81 — 859 =37 ..

of A
such

a;,Nid; ’
S iy t}‘ i 8i+1 ~ Si

229

for all s in the first sequence.
Nezxt observe that if

QiyAg

A B
S T s~

then siy1 Fa ¢ iff si' = ¢. Using this observation and the above cor-
respondence between sequences of transitions of A and sequences of states of
T, we can induction over ¢ prove that for all transtions of A and states of

T.

3 Real-time temporal logic

Verification property specification is described in RTCTL(R"‘eal-TimedICTL)
, which expands TCTL(Timed CTL)[13] with next state operator as follows.

Definition 6 (syntax of RTCTL) The formulas ¢ of RTCTL are induc-
tively defined as follows.

¢ = p|=o|p — ¢2|EX~C &) E (051 Une ¢2) |EG . ¢11
1. E : for some sequence of states a formula holds -
2. X : neat states operator | |
3. U : until operator |
4. G : always operator
5. p € (atomic proposition)
6. ¢ € N (natural number)

7. ~ is binary relation <, <,=,>,%>

Informally, E (¢; U<, ¢2) means that for some éequence of states 36, :5'1, ‘3-'2, e
there exits a sequence of states of time length less than C such that ¢, holds
at the last state and ¢; holds at all its intermediate states. -

Definition 7 (syntactic abbreviations for. RTCTL) We can specify all -
the temporal formulas using following syntactic abbreviations.

1. EBF o ¢ = E (trueU. 1)

2. AX e &1 = "E-Xo. &y

9. AG y ¢y = ~EF., ~r

4. Ay Usc d2 = E[-¢pg Une =1 A 2pa] A 2EGo. —¢o

Here we define RTCTL-semantics in order to interpret RTCTL-formula
based on timed Kripke structure as follows.

230

Definition 8 (semantics of RTCTL) For a timed Kripke strucutre T=(S", 1/, R', ©')

, a state s € S}, a sequence of states s, s, ..., s and a RTCTL-formula
@, the satisfaction relation (T, s,) = ¢ is defined inductively as follows.

1. (T,s5) Epiff p €1 (s0).

2. (T,sh) |= ~¢1 iff (T,sh) = ¢y is unsatisfiable.

3. (T,s5) = 1 — b2 iff (T,sp) |= ¢1 1s unsatisfiable or (T,sp) = ¢y .
4

. (T, s5) E EX~c ¢1 iff for some state s} such that (s),s}) € R', s} |= &,
and ~ c is satisfiable with p' (s}).
5. (T,s0) |= E (¢1 Uni ¢2) iff for some sequence of states (s}, s, ...,s"),
Fifi > A (T, s}) = 2\ ~ ¢ is satisfiable with ' (st) AVj[0<j<i—
(T,s%) = &1\ ~ c is satisfiable with p' (s5)]]

6. (T, sp) |E EGac ¢1 iff for some sequence of states (s}, s, ..., s"), Vi[0 <
i = (T, s}) E 1A ~ c is satisfiable with o' (s!)]

(3

4 Verification algorithm for real-time sym-
bolic model checking

In real-time symbolic model checking, for a timed Kripke structure T, we

represent state transitions relation R’ as BDD and a set of states as the form
(st ;) (1t =0,1,...,n), where s; € S’ is a state represented by BDD and «; is

a vector of clock values represented by DBM(differences bounds matrix). In"

order to realize real-time symbolic model checking, we conipute a set of states

that satisfy the formulas by inverse image computation and test whether a
set of states satisfy timing constraints using DBM.

We define real-time symbolic model checking algorithm after defining in-
verse image computation and DBM.

4.1 Inverse image computation

Many of the idea used in symbolic model checking can be explained by con-
sidering the problem of computing reachable state sets, since reachable state
computations are at the heart of model checking[16]. Let s be a set of states
represented by the BDD s} (V). We wish to compute a BDD s} (V') that
represents the states reachable from s by the transitions in the transition
relation R’ :

s; (V) =3V.[si (V) AR (V,V')]

This is called image computation. But in real-time symbolic model checking,

we use inverse image computation. In inverse image computation, we com- .

pute a BDD s (V) that represents the states backward reachable from s by
the transitions in the transition relation R’ :

st (V)=3V'.[s, (V') A R (V, V)].

4.2 DBM(differences bounds matrix)

4.2.1 reachability analysis(test timing constraints)

We can compute a set of states that satisfy the formulas using inverse im-
age computation. But we must test whether a set of states satisfy tim-

ing constraints. We will test timing constra.mts(reachablhty analysis) using

DBM]18,19] as follows.

Definition 9 (DBM(Difference Bounds Matrices))) DBM consists of
the matriz of timer valuations. Timer valuatzons are deﬁned as follows.
Vi,jeC:t;—t; < dj; '

where

1. t; : clock variablev
2. t; : clock variable |
3

. di; : clock constant

231

232

The (i, j)-element of DBM is equal to d;;. A fictitious clock t0 that is al-
ways ezxactly zero is introduced. d;; C{...,~2,-1,0,1,2, ..}U{...,—27,—-17,07,17,27, .. }U
{—o0} U {oo}. The ordering j over the integers is extended to dij by the fol-
lowing law: for any interger a, —oo < a~ <a <(a+1)" < o00. :

Next, we define reachability analysis using DBM.

Definition 10 (reachability analysis) Generate the intersection of canon-.
ical DBMs, check reachability between two states. Here we check whether state
D — D' is possible or not.

(1)Perform canonical DBM by Floyd-Warshall’ algorithm The each
inequality of DBM is of the form t; —t; < d, ;. An alternative formu-
lation of it allows the construction of a constraint graph for a given set
of inequalities. Each variable is represented as a node in the graph, and
an inequality t; —t; < d;; is represented by a directed edge with weight
d;; connecting t; to t; as shown in Fig.2. For this reason, we can get

canonical DBM by Floyd- Warshall’ algorithm[18].
(2)Intersect canonical DBMs intersection DBM = min {d;;, U} where
1. [di;] : canonical DBM of state D
2. [d};] : canonical DBM of state D"
In dense time model, in order to reach D' from D, there is intersection

DBM between D and D'[19)].

(3)Test intersection DBM If there is a riegative-cost cycle in intersection
DBM, it is impossible to reach D' from D. If there is no negative-cost -
cycle in intersection DBM, it is possible to do so.

——
ti)

dtifj
7 b —— <-1-—-—®

Fig. 2 the graph representation of DBM

233

Next, we explain the validity of reachability analysis as follows.

Theorem 3 (the validity of reachability analysis) Ifthere is a negative-
cost cycle in intersection DBM of D and D' , it is impossible to reach D' from

D. .

(proof) | | ,

We call a sequence of clock variables ty,t,,...,t,. The cost of the path in in-

tersection DBM is dyy 1o+dig i3+ . .+dimn. We can define dy g2, diags, - . -, dinnn

as follows. ' ’ ‘

t1—ty < du

to—t3 < dius

th —t1 S dinn
The cost=(t; —t3) + (ta —t3) + ... + (ta —t1) =t — 1,
If there is a negative-cost cycle (t, —t; < 0), it is impossible to reach D’ from

D.

4.2.2 Testing whether a set of states satisfy ~ c in ¢l U.c 2

We must test whether a set of states satisfy ~ cin ¢; U, ¢2. In other words,
we test whether the time elapsed in traversing a sequence between ¢, and ¢,
satisfies ~ c¢. We test it using a clock variable in DBM as follows.

Definition 11 (the computation of the time elapsed in traversing a sequence)
We define the computation of the time elapsed in traversing a sequence be-
tween s; and si (5 < k). We focus on some clock variable x in DBM.

(1)when x is not reset between s’ and s; The timing constraint is «
< dorz>dats and z < h or z > h at s}, ,where d < h. We
compute the time elapsed in traversing a sequence between si and s}, as
follows in Fig.3. "

case t < d.-and x < h : The elapsed time t ist < h-d.

case x > d and x > h : The elapsed time t is t > h-d.

case t < d and x > h : The elapsed time t is t > h.

case > d and z < h : The elapsed time tist < h-d.

o o~

(2)when x is reset between s’ and s Assuming that z is reset at a state
s; (j <l < k). We compute the time elapsed in traversing a sequence
between s and s} and the time elapsed in traversing a sequence between
s; and s, . We compute the elaped times using the same way as (1).
Finally, we add the time elapsed in traversing a sequence between s
and s] and the time elapsed in traversing a sequence between s| and s,

From (1) and (2), we can compute the time elapsed in traversing a se-

quence between s and sj, .
—- —
x ==
- d h -~ d h X
(1)x<=d and x<=h : t<=h - d (2)x>=d and x>=h : t>=h - d
A
[‘ S
. | | = |
I N R
. X
d h X d h
(3)x<=d and x>=h : t>=h (4)x>=d and x<=h : t<=h - d

Fig. 3 the time elapsed in state transitions.

4.3 Real-time symbolic model checking
Finally, we define real-time symbolic model Checking as follows.

Definition 12 (real-time symbblic model checking) The real-time sym-
bolic model checking consists of following procedures.

234

. Firstly, we convert system specification into timed Kripke structure.

. Secondly, we represent state transtions relation R’ as BDD and a set
of states as the form (si,z;) (1 =0,1,...,n) , where s; € S’ is a state
represented by BDD and z; is a vector of clock values represented by
DBM(differences bounds matriz).

. Next, we compute the set of states that satisfy every subformula using
inverse image computation and we test whether the set of states satisfy
timing constraints or not using DBM. We test whether the time elapsed
in traversing a sequence satisfy timing constraints in a formula(for ex-

ample, ~ ¢ in E (¢1 U.. ¢2).

. Finally, after determining the set S of states that satisfy the formula f,

we test whether sjy is a subset of S(that is, whether —sy (V) V S(V) is
the BDD representing true.) If it is, then the tzmed Ixrzpke structure

satisfies f.

Next, we define real-time symbolic model checking algorithm as follows.

Definition 13 (real-time symbolic model checking algorithm) For given
a structure T=(S",y', R',7') and a temporal logic formula f, we determine
whether |=7 f. The algomthm is based on inverse image computation. Firstly,
we compute the set of states that satisfy all subformulas of f of length 1, the
second stage compute the set of states that satisfy all subformulas off of
length 2, and so on. At the end of ith stage, the set of states that satisfy the
set of all subformula of length < i will be computed. To perform computing
the set of states at stage i, the set of states gathered in earlier stages is used.
One can conclude that |=r1 f if the initial state (sp) is a subset of the set of
states. Let ¢ be a subformula of f. We compute the set of states that satisfy
all subformulas ¢ of f of length 1 as follows.

1. ¢ € p(atomic proposition)
nothing to do

2. ¢=-¢

return —s¢y (V)

where s¢y (V) means the set of states that satzsfy fogt represented by
BDD

235

236

3. o= = b
return—u sq§1 (V) V s ¢y (V)

4. o=EX .t |
- return functionEX¢; (EX¢1(V),~ c)

JunctionEX ¢, (EX ¢ (V) ,~c).

EX¢y (V)=3V' [(V) A6L (V)] ;

f ~ c is not satisfiable with ¢' (EX &1 (V)) , we compute EX ¢, (V)
" as follows. ' '

EXéy (V):=EXér (V) - EX ¢ (V) ;

We test whether EX ¢, (V) is reachable from ¢1 (V) satisfying timing
constraints ;

If there is the set of states EX¢; (V) ' that does not satisfy timing
~constraints,

we compute EX ¢, (V) as follows.

EX¢y (V) i= EXéy (V) - EXey (V)" ;

return EX ¢, (V) ;

end functionEX ¢y ; -

5. ¢ =E¢ Ud. ¢2
(V=g (V) ;
repeat { -

U(V):= ¢ (V) /\EJV’ [R’(V V') A T(V’)])

If there is the set of states «' (U(V)') that does not satisfy ~ ¢ , we
. compute U(V) as follows.

- U(V):=U(V) - U(V) " ;.

If there is the set of states U(V) " that doe.s not satzsfy tzmmg con-
~ straints, we compute U(V) as follows. ‘
U(V):=U(v) — U(v)’

If U(V) is included in ¢y (V), return ¢; (V);
If U(V) is not included in ¢ (V), T(V):=U(V)+T(V) ;
} | |

6. ¢ = EG.cth
T(V):=¢1 (V) ;
repeat {
U(V):= ¢1 (V) A functionEX ¢y (T(V), ~c¢)5 :
If U(V) is equal to ¢y (V), ¢y (V):=T(V) and return ¢, (V) ;

237
T(V):=U(V) ;

5 The verification system

5.1 Configuration of the verification system

We have developed the veirfication system based on this method using SBDD
library[21] as shown in Fig.4. It runs on SUN4/IP(12MB). The veirfication
system consists of compiler(1kstep) and real-time symbolic model checker(3kstep),
which are implemented in C language.

specnflcatlon venﬁcatlon property specnf catlor;B

r compuler

v
e T——

@ansition represented by BDD and DBM

| real-time symbolic model-checker

S

Qamsf able/unsatlsﬁaD

Fig. 4 Configuration of verification system

5.2 Verification example
5.2.1 Specification

We present here the timed automata for the senders and the receivers of the
CSMA /CD protocol[22]. The specification of sender and receiver is shown in
Fig.5. The sender stays in initial state SO until it receives a message. Then,
it tests the bus to see if it is ready or busy, collision detection. In receiver,

" at initial state RO, it is ready to be in the transmission of a message. If one
of the senders starts sending, the receiver sets to zero the timer y. When y
is less than or equal to 5,the bus is sensed idle for the other sender.

238

sender of ethernet

Fig. 5 specification of ethernet

5.2.2 Verification

We have verified using real-time symbolic model-checker whether verifica-
tion properties by RTCTL are satisfiable in specification. We input timed
automata into compiler by the programming language format as shown in
Fig.6. ' - B : :

System specification ; -
System configuration ;
system = sender * receiver ;
Process specification(sender) ;
State definition part s0,s1,...,87 ;
Event definition part send, tau, ready, cd, busy, begin, end ;
Initial state definition part s0 ;
State transition part
s0 =send, x:=0 =1 ;
st—=td, x:=0 %6;

end;
Process specification(receiver) ;
State definition part RO, R1, ...,R4 ;
Event definition part begin, cd, ready, cd ;
Initial state definition part RO ;
State transition definition part
RO-—=ready, y:=0 H ;
RO =begin, y:=0 R1;
R1-=>begin, y<=5 -R3;

end;

Fig. 6 Example of input format into compiler

The verification properties are (1)EF send and (2)EF(send V E (ready U
<5 end)), (3)EF(send VE(ready U <0 end)), (4)EG(send V ready A begin)
as shown in Table 1. In order to compare real-time symbolic model-cheker
and real-time model-checker, we have verified using real-time model-checker
whether verification properties by RTCTL are satisfiable in specification. We
have already reported real-time model-checker [4]. When we have verified it
using real-time model-checker, we cannot verify 5665 states because of being
not enough memory. But we can verify more than 14588 states using real-
time symbolic model-checker. For this, we can avoid the state-explosion
problem.. We can show symbolic model-checking fro dense time real-time
systems is effective. '

239

Table 1 evaluation of verification costs

verification specification

true/| specification
false pec

symbolic mo&e—checking

model-checking

states transitions| memory CPU time memory CPU time
122 338 311kb 0.1sec 94kb 1.0sec
870 3801 348kb 8.9sec 337kb 10.3sec
EF send true| 1213 5472 408kb 28.7sec 382kb 18.9sec
g% e mns | 6 b
.9sec
14588 87724 | 463kb 2736.256C moy anoudh memory
122 338 - | 335kb 0:5sec 96kb 1.0sec
870 3801 350kb 16.5sec’ 301kb 10.1sec
1213 5472 406kb 52.5sec 367kb 19.0sec
EF(send \E(ready U<=5 end)) |true | 2792 14627 | 444kb 170.6sec 491kb 101.8sec
‘| 6665 32445 454kb 924.5sec not enough memory
14588 87724 457kb 3341.5sec ot enough memory
122 338 303kb 1.3sec 93kb 1.1sec
{13 5472 | 3000 987es | oor 19amec
\ . . .25€C 369kb 19.1sec
EF(send VE{begin U<=10 end)) | e gggg :134627 4ggtg 3;?2753;?60 369kb 100.8sec
2445 | 4 1828.3sec t h
14588 87724 456kb- 7154.8sec ﬁgtgggﬂ%hmm%%
122 338 320kb 0.1sec 96kb 1.1sec
o g e sem sl e
i Ssec 380kb 19.1sec
EG(send \/ready /begin) false 2792 14627 | 3BTk 47 Tsec 477kb 101.sec
5 4 220.5sec
1458887724 | 450kb 1064.8sec A9} SRQUGh mema

6 Conclusion

In this paper, we have proposed real-time symbolic model checking method
based on both BDD and DBM. We have developed the verification system
and shown it effective by the CSMA/CD protocol. We can avoid the state-
explosion problem. But we cannot verify 1020 states such as [5]. This shows
the verification system for dense time systems is high cost. But the dense
time has a desirable feature for representing two causally independent events
in asynchronous real-time systems. In order to verify very large systems, we

are developing the compositional verification system such as [5].

7 References

References

[1} Kavi K.M.:Real-time -Systems,b Abstraction, Languages and Design

Methodologies, P.660,JEEE Computer Society (1992)

240

[5]
[6]

9
[10]
[11]

[12]

[13]

Alur R. Henzinger H.A.:”Logics and Models of Real Time:A Sur-
vey” ,LNCS 600,pp.74-106(1992)

Yamane S.:”Formal timing verification techniques for distributed sys-
tem”,5th IEEE CS Workshop on Future Trends of Distributed Comput-
ing Systems(FTDCS 95),pp- 454-460, IEEE Computer So<31ety(1995)

Yamane S.:” Verification system for real-time specification based on ex-
tended real-time logic”,International Workshop on Real-Time Comput-

ing Systems and Applications(RTCSA),pp.192-196, JEEE Computer So-,

ciety(1995)

McMillan K.L.:Symbolic Model Checking,Kluwer,P.194(1993)

‘Bryant R.E..”Graph-Based Algorithms for Boolean Function Ma-
nipulation” JEEE Transactions on Computers, Vol.C-35,No.8,pp.677-

691(1986)

Campos S.V. Clarke E.M.:” Real-time symbolic model checking for dis-
crete timemodels” ,Proc. first AMAST Inter. W01kshop in Real-time
systems,pp.129-145,World Scientific(1994)

Yang J. Mok A.K. Wang F.:”Symbolic model checking for event-driven
real-timesystems” ,Proc. r’eal—timé systems symposium,pp.23-32(1993)

Alur R.:Techniques for automatic verification of real—tlme systems,Phd
thesis,Stanford university(1991)

Wang F. Mok AK. Emerson E.A..” Symbohc model checklng for dis-
tributed real-time systems”,LNCS 670,pp.632-651(1993)

Alur R. Henzinger T.A. Pei-Hsin Ho:” Automatic symbolic verification of
embedded systems Proc. real-time systems symposium,pp. 2 11(1993)

Henzinger T.A. Nicollin X. Sifakis J. Yovine S.:”Symbolic model
checking for real-time systems”,IEEE symp. on Logic in Computer
Science,pp.394-406(1992)

Alur R. Courcoubetis C. Dill D.:”"Model-Checking for Real-Time Sys-
tems” ,Proc. 5th IEEE Logic in Computer Science,pp.414-425(1990)

241

(14] Dill D: Wong-Toi H.:” Verification of real-time systems by successive over
and under approximation” , LNCS939,pp.409-422(1995)

[15] Alur R. Dill D. :”The Theory of Timed Automata”,LNCS 600,pp.45-
73(1992) - :

[16] Hiraishi H.:”Design verification of sequential machines based on ¢ -free
regular temporal logic”,Computer hardware description languages and
their applications” ,pp.249-263,Elsevier science publishers(1990)

[17] Burch J.R. Clarke E.M. Long D.E. Mcmillan K.L. Dill D. :”Symbolic
Model Checking for Sequential Circuit Verification”, IEEE Trans. CAD
of 1CS,Vol.13,N0.4, pp.401-424(1994.4)

[18] Dill D.:” Timing assumptions and verification of finite-state concurrent.

“systems” ,LNCS 407,pp.197-212(1989)

[19] Alur R. Courcoubetis C. Dill D. Halbwachs N. Wong-Toi H.:”An Im-
plementation of Three Algorithms for Timing Verification Based on
Automata Emptiness”,Proc. Real-Time Systems Symposium,pp.157-
166(1992) :

[20] Emerson E.A.:”Temporal and modal logic”, Handbook of Theoretical
Computer Science,Vol.B,pp.997-1072(1990) v '

[21] Minato S. Ishiura N. Yajima S.:”Shared Binary Decision Diagram with
Attributed Edges for Efficient Boolean Function Manipulation”,Proc.
27th Design Automation Conference,pp.52-57(1990)

[22] IEEE ANSI/IEEE 802.3, ISO/DIS 8802/3. IEEE Computer Society
Press(1985)

[23] Nicollin X. Sifakis J. Yovine S. :” Compiling real-time specifications into
extended automata” IEEE trans. on SE,Vol.18,No.9,pp.794-804(1992)

242

243

| Preface

This volume contains the proceedings of the RIMS Workshop in Computing
titled Concurrency Theory and Applications ’96 which took place at Kyoto
University in July 1996. The aim of the workshop was to bring together
researchers and practitioners interested in concurrency in order to discuss
recent developments and trends in concurrency theory, exchange experiences
and opinions on applications of concurrency and to establish research con-
tacts.

In response to the call for papers, fifteen papers were accepted to be pre-
sented at the workshop and to appear in the proceedings. Also, four speakers
from abroad were invited: Professor Matthew Hennessy of the University
of Sussex, UK, Professor Scott Smolka of SUNY at Stony Brook, USA, Dr
Huimin Lin of the Chinese Academy of Sciences, Beijing, China and Dr
Mark Harman of the University of North London, UK.

The papers appearing in this volume span a wide range of topics, including
timed and classical process algebras and their applications, semantics for
CML, semantics and types for the w-calculus, model checking and descrip-
tion of real time and multimedia systems, program slicing and temporal
logic.

I would like to thank all those who presented their research at the workshop
as well as those who only attended it. Moreover, I particularly wish to thank
Yasuhiko Minamide, Shoji Yuen and Susumu Nishimura for an invaluable
help throughout the preparation and organisation of the workshop.

Irek Ulidowski

