OOoo0O00oOooon ,
996 0 1997 0 5-22 5

Symbolic Alternative Characterizations of Testing
Preorder for Regular Timed Processes

Shoji Yuen Toshiki Sakabe
Yasuyoshi Inagaki
* Information Engineering Depa.rtment
Nagoya University
{yuen,sakabe, inagaki}@nuie.nagoya-u.ac. jp

Abstract

This paper presents testing preorders for real-time communicating processes
with “time-out” as the time constraint primitive where the time domain is the
real numbers. The testing preorders presented here are a natural extension of
De Nicola and Hennessy’s for untimed communicating processes.

We give fully abstract characterizations of the testing preorders in order
to ease a proof by focusing the “essential pattern” of tests to establish the
preorders. Next, by applying Holmer-Larsen-Wang’s “symbolic” method to our
preorders, we give the symbolic alternative characterizations where we treat
time intervals instead of time itself. For the regular class of real-time, since
timeout points are finitely represented, these symbolic characterizations give
a proof technique for the testing preorders. Finally, we illustrate our proof
technique by some examples.

1 Introduction

Recently the communicating process model has been extended so that it can deal
with the “timed” behavior. The communicating process calculi such as CCS[15],
CSP[13] and ACP|2] only deal with the temporal behavior of communication where
only the pattern of events are treated. Although this abstraction is useful and
the calculi have been successfully investigated, it is often important to observe the
timed behavior in the practical point of view. For instance, when modeling a com-
munication protocol, the “time-out” behavior is sometimes essential to show for the
protocol to work correctly. To fulfill this requirement, many extended calculi of real-
time communicating processes have been proposed to deal with the timed beha.v1or
[1][4][7][8][11][16][19][20][23].

We regard the time domain as non-negative real numbers and our calculus is
extended by a “time-out combinator”, that is a binary combinator as an extension
of the choice combinator of CCS. As the semantics for the calculus, we define testing
preorders by extending those for (untimed) CCS by De Nicola and Hennessy[10][18].

We first preset alternative characterizations that are fully abstract to the testing
preorders, focusing the essential event patterns in the same manner as for the un-
timed communicating processes. Alternative characterizations provide very useful
proof technique for testing preorders. But these first characterizations are not quite
adequate since it requires the infinite checking procedure with respect to time. For
this purpose, we next present “symbolic” alternative characterizations that are fully

6

abstract to the first characterizations by abstracting some finite number of time
intervals from the time domain. This abstraction can be finitely possible for the
regular class of real-time communicating processes. These second characterizations
provide a proof technique for the regular class of real-time communicating processes.

The time-out combinator, written by <4, is a binary infix combinator where d is
a non-negative real number. A real-time communicating process P <;Q behaves like
P if P commits any observable event within time d, and behaves like Q) otherwise.
Exactly after time d, the behavior is nondetermlmstlcally either like P or like Q.
Namely, P <4 Q makes a choice after time ¢ and is considered as an extension of
the choice operator of CCS. This kind of time-out combinator is introduced as the
primitive in the literature[8][11] [19] [20] and is shown that the combinator can model
the variety of timed behavior. - :

Following the testing principle[18], a real-tlme commumca,tmg process is seen as a
kind of black box and known only by interacting with synchronous communications.
An examiner of a real-time communicating process, called a “timed test”, is also a
process with time constraints and some successful terminating states. While testing,
the examiner may perform an interaction in an eager way, i.e. an observable event
interacts as soon as it becomes available both for the process and for the exa.mmer
We also assume that the passage of time is identical on both sides.

As are done for the untimed processes, we define the testing preorders L,y
and T, to understand the timed behavior of the process being examined, where
Emay and Conust Characterize the poss1b1hty and the necessity of interaction re-
spectively. In the untimed case, Emay is alternatively characterized by the inclusion
of the languages of events, and C, ;¢ by the possibility and necessity after a se-
quence of events. Also for the real-time communicating processes, we can give such
alternative characterizations where T, ,, is the inclusion of the languages of timed
events and T, .. by the possibility and necessity accompanied time after a sequence
of timed events.

However, when we consider the alternative characterizations as a proof tech-

nique for the testing preorder, these characterizations are inadequate. Since we take
the time domain as the nonnegative real number, we have to consider the infinitely
many timed events to see when the events happen. Again, we consider when are
the “essential timing” to characterize the preorders. Focusing on that the essen-
tial timing is the time-out point that can be known from the syntax of a real-time
communicating process, we will give the finite characterizations for the regular class
of real-time communicating processes. This idea for real-time communicating pro-
cesses is originally presented for bisimulation semantics in [17]. We apply the idea
to the testing semantics and develop the “symbolic” alternative characterizations as
a proof technique.
- The structure of the paper is as follows. In section 2, we define a calculus for
timed processes. In section 3, testing preorders are introduced in a standard manner
and the first type of alternative characterizations is presented. Section 4 presents a
symbolic alternative characterization. In 5, we compare our result with others and
present concluding remarks.

2 Tlmed Process Calculus

Let R+ be the set of positive real numbers and RZ® = R+U{0}. A set of observable
actions is given by Act ranged over by a,b,a;,b;,.... A = {e(c) | c € Rt} is defined

7

as a set of delay labels following [23]. We write .A for Act U A, ranged over by £. A
set of process variables is given by V ranged over by z,v,.... We assume a constant
oo that extends R>?, satisfying the following conditions for all 7 € R2? with respect
to the arithmetic operations:

e r< o
er+o00o=004+7r=00
e 00—T =00

And we write R® for R2%U {00}. A class of timed process e:vpresszons is defined by
the following BNF:

E::=nil|a.E|E1+E2|E1€9E2|E1<ldE2|:l: l rec:z.E

where a € Act, d € R2% and z € V. We write P& for the set of timed process
expressions. All occurrences of x in the context rec:z.E are bound, and free oth-
erwise. For E, F € PE, E[F/z] denotes the timed process expression where all free
occurrences of z in E are simultaneously replaced by F. A timed process expres-
sion is closed if it contains no free occurrence of process variables. Following [17],
we require the action guardedness condition for a timed process expression, that is
defined as follows:

Definition 1 A process variable x is guarded in E if all occurrences of x appear
in the form of a.F which is a subezpression of E. We say E is guarded when all
the process variables appearing in E are guarded in E and z is guarded in F' where
every subezpression of E in the form rec:z.F.

As a basic operational semantics, we define a transition system (P€, —, A) with the
derivation relation —C (PE x PE) U (PE x A x PE) shown in table 1. We denote

E — E'if (E,E') €— and E 5 E' if (E,¢, E') €—.

E is called a regular timed process if it is closed and guarded. The set of regular
timed processes is denoted by P.

From the construction of the SOS rules and the definition of P, we get the
following closure property of the closed timed process.

Lemma 1 If P € P, then {E | P— E}U {E | PSE, ¢ € A} CP.

Henceforth, we focus on the sub-LTS (P, —,.A) to exactly model the timed pro-
cesses. For this sub-LTS, we use the following notation!:

e P — if for some P' P — P'.

o P if for some P’ P-55P.
P—yP' if P(—)*P'.

P—scP' if P(—)* 099 o (w)*P.
P=4P if P o0..-0 3P for ¢; e R2" where 1 <i<mnand d= G
P34P if P=>go 5P,

Inaction «©
nil ——~7, nil
Prefix —_—a -
ek — E a.F -ﬁ) a.E
E-%“ B E — E
Time-out / — ' -
: EquF — E' EqF — E @ F
B e(c) B .
: ifd>c :
EF 29, B F EF — F
External E — E’. F — F
Choice E+F — E +F E+F — E+F
E L FE E % E
E+F = E E+F 5 F
E E(C) El , F G(C) FI
E+F 9, pip
Internal
Choice EoF — E FeoF — F
Recursion
rec:z.E — FE[rec:z.E/z]

Table 1: Operational Semantics by derivations

e S(P)={a € Act | P(—)* o 5}.

The derivation relation have the following basic properties ([7][17][23]):

Lemma 2 1. (tramsition liveness) P — or Pic)» for some c € R+.

2. (time determinacy) PLp and PLpr imply P' = P".

3. (time continuity) For c1,c; € RY, P=, .., P' if and only if P=., P" and
P'"=,,P' for some P". ,
e(c)

4. (mazimal progress) P — implies P +—.

5. (strong persistency) Whenever P pr for some c € Rt, PS5 if and only if

P4,

Proof: Induction on the structure of P. _ a
Note that the strong persistency property holds because the time-out operator per-
forms the empty unobservable transition. Thus, if we take the weak transition, the
property does not hold as in[16].

3 Testing Preorders

3.1 Timed tests
We define the class of timed tests as the examiner by' the following BNF:

T ::= nil l a.T I w.T I Ty 94T l T+ T, I TiTs

where a € Act, d € R2° and w ¢ Act. The set of all timed tests is denoted by
T. The operational semantics for the timed tests is given by a transition system
(T,—, AU {w}) where — is defined by table 1 in addition to the following SOS

rule:

'w.Tl’T

A timed test is essentially same as a timed process besides that it has no recursion
power and there is a special action prefix w to indicate the successful termination of
interaction. This means that a process is observed by a finite sequence of observable
actions.

3.2 Interaction System

The interaction system is a composition of a timed process and a timed test. The
interaction between a timed process and a timed test is formally defined as follows:

Definition 2 An interaction system for P and T, written as Z(P,T), is a transition
system (I,—1) where the states T = P x T and the transition relation —;C I X
R2% x T defined by table 2. Following the literature [10], [18], we write P||T for a
state { P,T) € I. We write P||T->1P'||T' when (P||T,c, P'|T") €—1.

10

p &9, e(c) P, e(c) T -fS(P) S(T)
1 N =
P|T i> P’|]T’ |

P—’P' T-‘-;T"

PIT =5 PIT P|T —5; P|T”

pXp, 1% |
0 where a € Act
P|T —; P|T’

Table 2: Interaction System

Definition 3 For an interaction system Z(P,T), a state P||T is successful when-
ever T=. A (possibly infinite) sequence of transitions:

By|To3 1P| Ti B - B P || T ™51
is a computation from Py||Ty if one of the following condz’tz‘ons is satz'sﬁed:
(1) The sequence is finite and the last state is successful , |
(2) The se(juence z;s inﬁnite and Ezcz is infinite. |
A computatzon satzsfymg (1) is called successful.

Note that dlﬂ'erent from the untlmed case, the dead-locked failure does not happen
due to the transition liveness property. We exclude the “Zeno-phenomenon” by
condition (2).

We now establish testing preorders as usual.

Definition 4 Let Pe P and T € T.
1. Pmay T if some computation from P||T is successful.
2. PmustT if every computation from P||T is successful.
Deﬁnition 5 Let & g 7. |
1. P C¢, may @ if for allT € & PmayT implies QmayT
2. P CE Q_szor allT € € Pmust T implies Qmust T'.
3. PCf QifP ., Qand P CE . Q.

- When € =7, we simply write P Emay Q, P Lt Qand P C Q.

1f necessary, we also use this notation for (PE,—,A).

11

3.3 Alternative Characterizations

Here we give the alternative characterizations for the testing preorders defined above.
The characterizations are the direct extensions of those for the untimed communi-
cating processes by reflecting the “essential” pattern of testing.

A finite sequence of pairs (d;, a;) where d; € R* and a; € Act:

(dha’l)(dZ,a?)'“(dn,an)

is called a timed word and a set of timed words is called a timed language. The
empty timed word is denoted by A and the set of all timed word is denoted by
Lact = (RZ% x Act)*. When P23, 0 34, ---0 33, P!, we write P3P’ for a timed
word o = (a1,d1){ag,d2) -+ (an,dy).

First we show that C.,, is characterized by the inclusion relation between
timed languages.

Definition 6 Let P € P. The timed language of P is defined by L(P) = {0 | P=}.

For a timed word o, a timed test To(o) is recursively defined with respect to o as
follows:

To(A) = w.nil
To({(d,a)d’') = mnilqg (a.Ty(o") < nil)
We write Tp = {To(0) | 0 € Lact}-
Lemma 3 P l;ﬁay Q ifand only if P C. 0y Q

Proof: The only-if part is obvious since 7y C 7. For if part, suppose P may T.
Then, there exists a successful computation from P||T. For the computation, there

exists a transition of T' such that T3T"=4T'5. Thus, P may Ty(c). By the as-
sumption, Q@ may Ty(c). Then, QT3 --- 3;Q'||T" and by the transition liveness
property (lemma 2(1)) Q@ may T. m|
Lemma 4 o € L(P) if and only if P may Ty(o).

Theorem 1 P C, .. Q if and only if L(P) C L(Q).

=may

Proof: The theorem follows from lemma 3 and 4. m|
Next we show an alternative characterization of the must preorder.

Definition 7 P < must @ if the following holds:

For o € L(Q) and c € R2%, Q3 0=.Q’ implies S(P') C S(Q') for some
P' such that P= o =.P'. '

Let v € Rt, 0 € L4 and a € Act. For a finite subset of Act, A = {a3,...,a,} and
d € R?Y, timed tests T7 (0, a,d) and T} (0, A, d) are recursively defined as follows:
T) (A a,d) = nil 44 (a.nil <, w.nil)
17 ((d1,a1)0,a,d) = nil<y, (a1.77 (0, a, d) <, w.nil)
T7 (A A,d) = nil<g ((e1.w.nil + - - + ap.w.nil) <, nil)
A= {al,ag,...,an}
Ty ((d1,a1)0,A,d) = nil<y (a1.T7 (0, A, d) < nil)

12

We write 7o(y) = {T} (0, a,d), T3 (0, A,d) | 0 € L act, finiteA C Act,a € Act,d €
R>0}

We shall show T () is essential to verify T, .o if v is small enough to distinguish
processes.

Lemma 5 For v € Rt, P CE0) Q implies L(Q) C L(P).

Proof: By induction on the length of o, it is shown that P mpst T} (o, a, d) if and
only if o(d,a) € L(P).

Let 0 = 0'(d,a) € L(Q). Then, for all v € R*, Q mjst T{(o,a,d). By the
assumption P mpstT} (o,a,d). Thus, o € L(P). , O

Lemma 6 For v € R, P Eﬁ‘(ll)t Q implies P <must Q-

Proof: Suppose for all v € Rt, P Eﬁl(;_g; Q and P €K must Q. Let Q=> o =>dQ'
then P=> o =4P' for some P’ such that S(P') S(Q’).

Take a such that ¢ € S(P') and a ¢ S(Q'). Then, either Q' /4, or Q'->. for some
c € R*. For the former case, for all v € RY, T} (0,{a}, d) and Pmust T} (o, {a},d).
For the latter case, take the least ¢’ for such c. Then, for v < ¢, Q mpstT] (o, {a}, d)

and P must T, (a, {a}, d) This complete the proof since a contradlctlon is derived
for both cases. _ o

Lemma 7 P < must Q@ implies P C ¢ Q-

Proof: Suppose P <K must @ and we show that Q must T implies P must T for
all T € 7. Let Q mpst T, then there exists an infinite computation from Q||T

such that Q”TE)IQluTlgj “ee c—");QnHTnc"—JKII --- where n is such that for allm > n

S(Tm-1) = S(Tn), S(Qwm) N S(T) = 0 and T, ;Z) Such n exists since a timed
test is finite. Thus, for some o € L4 and d, Q= 0 =4Q,. By the definition of
< must, there exists P such that P=>) =>de and S(P;) C S(Qn)- Thus, there

exists a sequence of transition: P |IT—> I- —"> 1Px||Tn. And T, will not change in the
following transitions since S(FP;) C S(Qn) This concludes P muastT. m]

Theorem 2 P C_ .. Q if and only if P K must Q-

Proof: For “only-if” part, P C Q implies P = Q for all v since T,.(y) C 7.

—=must

By lemma 6, P <must Q- “if” part is lemma 7. O
From theorem 1, theorem 2 and lemma 5, we obtain the following characteriza-
tion for the testing preorder.

Corollary 1 P C Q if and only if L(P) = L(Q) and P <must Q-

For the alternative characterizations shown above, we have the following useful
lemma to prove the preorders for regular timed processes.

Lemma 8 Letrec:z.E,P € P. Then,
1. L(E[P/z]) C L(P) implies L(rec:z.E) C L(P)
2. E[P/z] <must P implies rec:z.E € must P

13

M (:1:) = 0 M (nilj = 00
M(.E) = oo M(Ey <4 E3) = min(M(E1),d)
M(Ey + Ey) = min(M(E1), M(E?)) M(E1©E;) = 0 o
M(rec:z.E) = M(E)

-Table 3: Life Function M

4 Symbolic Alternative Characterizations

This section gives “symbolic” alternative characterizations as-a proof technique.
Due to the dense property of a time domain, the alternative characterizations in the
previous section still require an infinite checking procedure with respect to time. But
there are only finite number of points at which a real-time communicating process
may change its behavior through the timeout combinator by the construction of
a process. For example, the characterization of a.nil <5 b.nil can be divided into
the three cases: before time 5, exactly at time 5 and after time 5. Based on this
observation, we will define characterizations with respect to time intervals that are
“essential” to observe the behavior of a process.

4.1 Symbolic Transition Relation

We define the lzfe time function M : PE — R® by table 3. We also define a symbohc
delay relation AN C P x P as follows: :

o PLP if P(—)*P'
e When M(P) = d < co, PPP" and P"& P’ imply PRS P!
If P3P for some P’ , then we simply write P-5.

Lemma 9 When P € P, {d | P3} is finite.

Proof: Suppose {d | Pf&} is infinite. By the construction of ,é,, there must be an

infinite derivation from P only by — and - €9 . But this is impossible because of the
guardedness condition and the definition of computation. a
In the rest of this subsection, we present the basic properties with respect to the
labeled transition system (P, —, A).

Lemma 10 M(P) =d and 0 < d < oo imply P=5 19,
Lemma 11 P — implies M(P) = 0.
Lemma 12 When PSP/ , one of the followings holds:
1. MP)=oc0
2. PSP oand M(P') =0

14

3. There exists d such that PSP, M (PY>0andd<c<d+ M(P)

A timed action is a triple (d,a,t) € R2% x Act x R® to express that action a is
enabled after time d for time t. We write af; for a timed action (d,a,t). The set

of all timed actions is denoted by A7, ranged over by u,v. A relation < over Ar,

a}, < a¥ holdsife < dand d+t < u+e. af) X a¥ is said that al; covers a¥, meaning

that action a in a}, is possible whenever action a is enabled in a¥. We write af ~ a¥
when d < e + u and e < d + t, meaning that action ¢ may be enabled both in a
and a at the same time.

A sequence of timed actions is called a symbolic timed word. We use the notation
for a symbolic timed word. The empty symbolic timed word is denoted by);. And
the set of all symbolic timed words is denoted by Lr.

e Let symbolic timed words o, = pipt2 - - pin and o, = phph---ph,. o5 ~ o} if
pi ~ plfor 1 <i < m.

.o Let ¥; C L.

st = {0s€%,]||os|=1}
X, tue' = Z() 10

where Y. (u') = {os|nos € Zs, p’' X u}.

o Let Ay C Ay. Arcovers afl if there exists af;;, € Ar such that d; < d,
d+t<dp+tn, di<diy1 <di+t;forl <i<n.

. :
Definition 8 A symbolic transition relation 4y s defined as follows:
t
P 4 P' if for some P" PSP", P"SP' and M(P") =t
Let 05 = pyjig -+ pin € A7. We write PESP' if P 0.0 B3P,
t
Intuitively, P24 P' means that P waits for time d and do an action a before ¢ to

become P’. This notion is justified by the time-determinacy property and the time
continuity property.

Lemma 13 P3P and M(P) > 0 imply PgdP’ for all d such that 0 < d < M(P).

Lemma 14 Let P rfj’—) P,

1. t =0 implies P> 4P’

2. t > 0 implies P54P' for all d' such thatd < d' < d+t
The derivation by the symbolic transition relation is finite.

Lemma 15 Let P P. {(P,p) | P55 Puce AT} is finite.

Proof: From lemma 9, d’s for p=a% € {u | P r-ﬁe} are finitely many. And by the
construction of M(P), ¢’s must appear in a timeout operator <; or co. And P is
finite branching with respect to communication. : v , O

15

4.2 Symbolic Characterization of C &
Definition 9 The symbolic timed language of P is defined as follows:

Ls(P) = {os | Plé*}

A symbolic timed word spec1ﬁes a timed language by the timeout points. For ex-
ample, Ly(a.nil <5 b.nil) = {), a3, b2°} which specifies the timed language
{A {a, t) (byu) | 0<t<5u>5}

Definition 10 The covering relation < is defined as follows:
(1) s € Z; implies A\; < X,
(2) (s 1 0s5) covers p implies ogp 1 2,

We write X} I X, if for all 05 €), 0, 4 Z;.

Intuitively Ls(P) 9 Ls(Q) means that the timed language specified by L,(P) is
covered by some timed language specified by L,(Q).

In the rest of this subsection, we shall show that the covering relation character-
izes T,y - First we show the adequacy of the characterization.

Before showing the adequacy result, we show the following technical lemma.

Lemma 16 Let P%,P' and {Q1,...,Qn} C P, then, Ly(P) 9 U;Ls(Q;) implies
Ls(P") Qu{Q' | Qi>aQ'}.

Proof: Let P such that P=>4P"5P'. By repeated applications of Lemma 11 and
Lemma, 12, either of the following (1) or (2) holds:

(1) M(P")=0andd=d'
(2): M(P")>0andd <d<d + M(P"
We prove for each cases:
(1) M(P")=0andd=d
o If \; € Ls(P’):
Since af € Ly(P), Ls(P) QU?_, L,(Q4). Following from this,

(Up=1{Ls(Qx)} S UE_,) covers a? Thus, there exist a, for 1 <1< msuch
that {a} & ,adm} and d; < d < dpy+1t, where d; < dJ+1 and dj; < d;j+t;

(1 £1 < n). Then, for some j, Qﬂé‘t’)Q} and d; < d < d;j +t;. Since by
lemma 14 Q;=4Q}, Uf_;1{Ls(Q")|Q;->4Q}} # 0. Then, by the definition,
As JUE_ {Ls (Q’)IQk——>dQ’} since A; € Ly(P) for every P.

e Ifolp E L,(P:
Since a0’y € Ly(P), Up_,Ls(Q:) 1 ado’yu € Ly(P) coversu Thus, for ol

there exists Q(o%p) such that Q(obp) C Up 1{Q’lQ,c — Q',a) < 1/} and
U{Ls(R)|R € Q(c'p)} 1 o’ covers p. Thus olp < Q(olpy). Then since by

lemma 14 Q(oip) C U =1{Q'|Qk—>dQ'}, o A Up_ {Q'|Qr>4Q'}

16

Thus, Ly(P') <U?_ {Q'|Qr—=4Q'} for case (1).
(2): M(P")>0and d' <d<d + M(P")

o If \; € Ly(P'):
Since agf[(P") € Ls(P), there exist aﬁ’l for 1 < 1 < m such that d; < d,
d'+M(P") < dpm, d; < diz1, diy1 < di+t;and {a¥,...,a5" } C UP_ L,(Qx).
Since d < d < d' + M(P'), for d, there exists j such that aZ’;, ~ aly,
dj < d < dj+t; and Q; —2 Q. Since by lemma 14 Q;%4Q),), €
Upo1{Ls(@)|Q;j—4Q'} showing A, < {Ly(Q)|Q;=4Q'}-

o Ifolp e Ly(P):
Since aZI(P")a;u € Ls(P),

n_{Ls(R)|Qx — R, ay(P") < v} 1 ol covers p.

While, af}il(P”) < v implies that Qy—>¢R when Q; —— R by lemma 14. This
establishes UZ_, {L;(R)|Qr—q4R} T o) covers p.

Thus, ogp 9 Up_ {L.(Q)|Qk—4Q'}
Thus, L,(P') < U2_ {Q'|Qx—aQ'} for case (2).

Lemma 17 Ly(P) < Ly(Q) implies L(P) C L(Q).
Proof: We shall prove the following by induction on the length of o.
For o € L(P), Ls(P) < U}, Ls(Q;) implies 0 € U™, Ls(Q;).

For o = J, it is trivial. Let 0 = (d, a)o’. Then, there exists P’ such that P-%4P' and
o' € L(P'). By lemma 16, L,(P') < U,-{QQ,J-|Q,-—9+4Q§,J-} By the induction hypothesis,
o' € Ui ;L(Q; ;). Thus, o € U;L(Q;).

Taking U;Q; as {Q} completes the proof. O
Next we show the abstractness of the characterization. We introduce a function that
expands a symbolic timed word to the timed language being specified.

ezp(As) = {(d,a)o | O'FE exp(os)}

exp(ag) = {(d,a)o | o € exp(o,)}

exp(ay) = {(d,a)o|o€exp(os),d<d <d+1t} (t>0)
Lemma 18 L(P) C L(Q) implies LS(P)S L,(Q).

Proof: We prove the contra-positive. Suppose L,(P) 4 Ls(Q). Then there exists
osaly € Ly(P) such that (Ls(Q) T o5) coyersa;.

(1): Ly(Q) 1 05 = 0: for o € exp(osal), o € L(FP) and o ¢ L(Q) Namely
L(P) € L(Q).

17

(2): Lo(Q) T 05 = {a,...,a] }: Since (Ls(Q) T 0,) coyersal, there exists e such
that d <e<t+dande<d;ord;+t <eforalll <i < n. Then, for
o € exp(os), o{e,a) € L(P) and o(e,a) ¢ L(Q). Thus, L(P) € L(Q).

O
Combination of Lemma 17 with lemma 18 shows the full abstractness.

Theorem 3 Ls(P) < Ls(Q) if and only if L(P) C L(Q).
Corollary 2 Ly(P) < Ls(Q) if and only if L(P) Cay L(Q).
Corollary 3 L;(E[P/z]) & Ls(P) implies Ls(rec:z.E) L,(P).

Thus, together with lemma 15, we can finitely prove C,,,, for a regular class of
real-time communicating processes.

4.3 Symbolic Characterization of C_, .,

In this subsection, we present a symbolic alternative characterization for C Cinust -
The underlying idea for the characterization is to consider the essential type of
timed tests, shown in definition 7 only for the timeout points.

In the characterization, we use the following “past” notation.

Let P/(o_,,c) = {R | P|=>0MR M(R) =0}
U{R | P}:)OMR ¢ <e< d + M(R) for some c'}.

P/{c’,c) denotes the set of timed processes after timed word o} is performed
time c.

Definition 11 P <27 if

must
for o5 € Ly(Q) and d € RZ° Q= o4 Q" implies the following (1) and (2):
(1) 05 < {0 € Ls(P)|og ~ 05}
(2) For 0! ~ o5 and o, € Ly(P), either of (2-a) or (2-b) holds:
(2-a) When M(Q') = 0:
There exists P' such that P' € P/{o%,d) and S(P') C S(Q')
(2-b) When M(Q') > 0:
For alld € {d} U{c|d < ¢ < d+ M(Q"), PE=> 05}, there exists P' such
that P' € P/(o3,c') and S(P') C S(Q').

We shall show the equivalence between <<f¥$st and < must in the rest of this
subsection. First we show the adequacy of the characterization.
sym

Lemma 19 P <] Q implies P <must Q-
Proof: Suppose Q>Q"=4Q’ and P <., Q. We will show the existence of P’
and P" such that P=P"=4P' and S(P') C S(Q').

Let 0 = (dy1,a1) - - - (dn, an), then there exist some symbolic word o5 = p1 -+ fin
such that for each p; = a;g} either u; =0 and d; = e¢; or u; > 0 and e; < d; < e; +u,

Then, QF=>Q". And also o € exp(os).

18

For Q"=4Q’, let Q"%Q’ then either M(Q') = 0 and d, = d or M(Q’') > 0 and
ds <d < ds + M(Q') hold.

From condition (1) of definition 11 and lemma 17, there exists o, such that
o € expand(cl) and o, ~ o,. For this o}, we will show either of cond1t10n (2) holds.

e If M(Q')=0:
When P' € {R|PEZ> o-5R, M(R) = 0} and S(P') C S(Q'), PE2% 0 =4P'. From
the fact that o € exp(0’), P= o =4P'.
Otherwise, P' € {R|PEZs o-5R,M(R) > 0,¢ < d < ¢ + M(R)} and S(P') C
S(Q"). P%P”«iP’ . Since o € ezp(c’) and P"=4P' by lemma 12(3), P> P"=>4P'.
o If M(Q') > 0:
Let C = {c|d; < ¢ < ds + M(Q'),PE2 0-5}. If C = 0, then there exists P’

such that P'/{d",d,) and S(P") C S(Q'). Let PEZP"P", then dy + M(Q') <
e + M(P'). Then, for all € such that d; < €' < d; + M(Q'), P'=P'.

IfC={cli=1,2,---}, for all e, ¢; =< e < d; + M(Q') implies that there exists

i such that ¢; = e and ¢; < e < ds + M(Q'). Let R; such that Plé) oi}R then
by the assumption S(R;) C S(Q’) for all j. Then, ife; <d<ds;+M (Q’), then

there exists ¢ such that Pi=> o—gP' =R;. Ifd, <d < ¢, there exists some
P' € P/(ol,ds) such that P|=) o —gqP'.

Next we present the abstractness of the characterization.

sym
must

Lemma 20 P < ust @ tmplies P K

Proof: We denve a contradiction supposing P <must @ and P €0t Q.

Let Q2 05 4Q'. We also suppose X/, = {0} € Ls(P)|os ~ 0} and 0, < X,.
Then, there must be p; € L;(P) such that p; ~ o, and none of condition (2-a) and
(2-b) holds.

o If M(Q) =0:
For all P' € P/{ps,ds), S(P') € S(Q'). Then, for some o € exp(ps) and d = d,,
{R|P3 0 —4R} C P/{ps,ds)}. Then, for Q= o =4Q’, there is no P’ such that
P35 0=4P' and S(P') C S(Q'). This contradicts P < must Q-

o If M(Q') > 0:
Let o € exp(os) Nexp(ol) # 0. Then, from lemma 12(3), for d such that d; <
d<ds+ M(Q"), Q3Q'—4Q'. From P Kmust Q, for all such d, there must exist

P' such that P3 o —4P' and S(P') C S(Q) But this makes condition (2-b)
established. Then, this contradicts P <™, Q

From lemma 19 and lemma 20, we obtain the following characterization.

Theorem 4 P <™ if and only if P <must Q-

must

19

Corollary 4 P <0, Q if and only if P C ..« Q-

Corollary 5 E[P/z] <ns: P implies rec:z.E <> . P.

must

Together with lemma 15, we can finitely check the preorder for the regular class of
real-time communicating processes.

4.4 Examples

We end this section by showing some examples of proofs using the symbolic alter-
native characterizations.
For notational convenience, we simply write a for a.nil in what follows.

Example 1 Let P, = (nil <5 a) & (nil < b) and Q2 = nil <5 (a <1 (a +b)). Then,
L s(P2) = {Xs,a°,08°} and Ls(Q2) = {)s, a},ad ,bg°} Since Ly(P2) 4 Ls(Q32) and
Ls(Q2) < Ly(P2), Ls(P2) Epnay Ls(Q2) and Ls(Q2) Eppay Ls(P2).
Thus, for P, and Q2, condition (1) of definition 11 holds.
For Qz«»(aql b), S(a<1b) = {a} and M(a<1b) = 1. Then, Pyoa and M(a)
make condition (2-b) hold.

For Q%a < (a+0), Pyoa satisfies condition (2-a).
For sz\»a + b, PZMb satzsﬁe.s condztzon (2-b). And for Q2|=>ml Qs |=)n11

For P, |=>n11 and Q2|==>ml P |=>n11 Thus, P, <0 Q2-

But for PyE2% 0 &b, {c|6 < ¢, Q222 o~5} = {6}. And P/{),6) = {a,a +
b}. Then, there is no symbolic transition that satisfies condition (2-b). Therefore,
Q2 must P,.

Example 2 For the vending machine ezample[17], we can show Ps that is less
deterministic than Q3 with respect to timeout is related less in the sense of must by
our characterization.

P; = rec:z.coin.(coffee.z <g9 = @ coffee.x <21)
Q3 = rec:z.coin.(coffee.x <y)

Since Ls(coin.(coffee.z <99 z)[P3/z}) = Ls(coin.(coffee. P53 <gg P3)) < Ly(P3), by corol-
lary 3 Q3 4 P3.

Not let R3 = coin.(coffee.Q3 <20 Q3 @ coffee.Q3 <21 Q3). If we can show that
R3 <¥st Q3, then by corollary 5, we can conclude that P3 <., Q3. First since
Q3 < P3, condition (1) in definition 11 is satisfied.

Here, M(R3) = M(Q3) = o0, S(R3) = S(Qs) {coin}. Let Q5 = coffee.Q3 <z
Qs and Qf = coffee.Q3 <9 Q3. Then, Q3|=£ Q5 where M(Q%) = 20. And Q% 2OQ
and Q4% Qs, Q4EES"Q,

Let R, = coffee.QQ3 <39 Q3 @ coffee.Q3 <21 Q3, then R3 cl(ﬂ{ Ré
We have the following three cases:

(1) For Qa’@ o'\O»Qg, M(Q%) =20 > 0. Thus, we check condition (2-b).

coin®®

Now {0} U {c|0 < ¢ < 20,R3=3 o~5} = {0}. For 0, R3/{coin{®,0) =
{Rj3, coffee.Q3 <39 Q3, coffee.Q3 <21 Q3}. S(Rj) = {coffee} C S(Q%) = {coffee}
make the condition hold.

20

(2) For Q3}g§° o.«ggQ’ M(QY) = 0. Thus, we check condition (2-a).

3/(coing®,20) = {coffee.Q3 <9 @3, Q3}.
And S(R3) = {cof fee} C S(coffe.Q3 <p Q3) = {coffee}.

(3) For Q3'gn$ 629#623, M(Q3) = co. Thus, we check condition (2-b). {20} U

{c|20 < ¢ < o0, RsE=3 0 -5} = {20,21}. For 20, Q3 € R}/{coin{,20)
satisfies the condition.

For 21, Q3 € Ry/(coinf®,21) also satisfies the condition.

Henceforth, the transitions form R3 are same as those from Q3. Then, we have the
condition (2).
coind® com

Conversely, for R3—> o5 coffee. Q3 < Q3, there ezists no R such that Q3==3 o
=91 R and coffee € S(R). Thus, Q3 P;.

must

5 Concluding Remarks

In this paper, we have presented a testing framework for real-time communicating
processes that is extended to deal with the time constraints for communication.
The time domain dealt with is the real numbers. Our calculus is extended by the
“timeout” combinator, <z, where P <4 @ is intended to denote the process that
behaves like P if P performs any observable event before time d, or behaves like Q
otherwise.

We have established the testing preorders for the extended calculus of real—tlme
communicating processes and the alternative characterizations which are fully ab-
stract to the testing preordres, focusing on the “essential” type of timed tests. More-
over, we also have given another type of alternative characterizations, called symbolic
alternative characterizations, in need to establish a proof technique for the regular
class of real-time communicating processes.

Our calculus for real-time communicating processes is based on the sub-calculus
of Timed CSP[7] and Timed CCS[23]. We chose such a timeout operator that is
presented in[19] as a time-constraint combinator, which is considered general enough.
For example, we can define the delay prefix[23] e(c).E as nil<gE. In [23], the timeout
is presented by the rules that a 7 transition must be prior to the time passage. [19]
also uses the timeout operation as the time constraint. Since their approach of
modeling a process as a graph is also based on a strong bisimulation, it differs from
our approach. But, for the untimed processes, the testing preorder can be related by
constructing acceptance graphs[6]. It is a future topic to investigate such a relation
for the real-time communicating processes.

The “symbolic” technique presented here is studied first in [17] for the strong
bisimulation. In [17], a logical characterization is presented as a proof technique.
We studied the technique for the testing preorders and established the “symbolic”
alternative characterizations as a proof technique. One of the advantages of the
testing preorders is that they are formulated as preorders of nondeterminism. In our
observation, if the timing to make a choice is uncertain, then it should be treated as
a nondeterminism. Thus, in testing preorders, we can conclude the third example in
the previous section, while they are treated unequal in the bisimulation semantics.

The symbolic alternative characterizations here cannot deal with the time con-
straints bound by communications as presented in [4][16]. By using another type of

21

“symbolic” technique [9], it can be treated in a finite way. This is also a future topic
of research. ‘] :

By excluding divergent processes, the failure semantics|7] for timed CSP charac-
terizes our testing preorders. In our framework, we considered no divergent processes
since our main objective is to have some proof technique. Different from the un-
timed processes, if we have the maximal progress property, a divergent process is
considered as a “time-stop” process. Timed CSP deals with this time-stop process.
[7] proposes a stronger testing preorders than ours in the sense to distinguish the
divergent processes. While, our framework is incapable to distinguish the divergent
processes from the inactive processes. We do not know yet whether this lack of
distinguishing power is a substantial drawback in modeling the practical real-time
programs or not.

For other future work, we need to introduce the composition operator and the
expansion theorem. The expansion theorem enabled more process to be converted
for our method. And implementing a software tools as the practical verification
and debugging method for real-time systems based on the testing preorders is also
a future topic of research. :

References

[1] J.C.M. Baeten and J.A. Bergstra. “Real time process algebra.” Formal Aspects
of Computing, Vol.3, pp.142-188, 1991.

[2] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Computer Science 18. Cambridge University Press, 1990.

[3] T. Bolognesi and S.A. Smolka. “Fundamental Results for the Verification of
Observational Equivalence.” Protocol Specification, Testing and Verification,
VII, H.Rudin and C.H.West (editors), pp.165-179, 1987 (North Holland).

[4] Liang Chen. Timed Processes: Models, Azioms and Decidability. PhD thesis,
The University of Edinburgh, Department of Computer Science, 1993.

[5] R. Cleaveland and A.E. Zwarico. “A theory of testing for real-time.” Proc.
Logics in Computer Science ’91, pp.110-119, 1991.

[6] R. Cleaveland and M. Hennessy. “Testing Equivalence as a Bisimulation Equiv-
alence” Formal Aspects of Computing, Vol. 5, pp.1-20, 1993.

[7] J. Davies and S. Schneider. “A brief history of timed CSP.” Theoretical Com-
puter Science, Vol.138, pp.243-271, 1995.

[8] Hans A. Hansson. Time and Probability in Formal Design of Distributed Sys-
tems. PhD thesis, Uppsala University, Department of Computer Science, 1991.

[9] M. Hennessy and H. Lin. “Symbolic bisimulations.” Theoretical Computer
Science, Vol.138, pp.353—-389, 1995.

[10] M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[11] M. Hennessy. “On timed process algebras: A tutorial.” Technical Report Report
2/93, University of Sussex, Computer Science, 1993.

22

[12] M. Hennessy and H. Lin. “Symbolic bisimulations.” Theoretical Computer
Science, Vol.138, pp.353—-389, 1995.

[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[14] U. Holmer, K. Larsen, and W. Yi. “Deciding properties of regular real timed
processes.” Proc. CAV 91 (LNCS Vol.575), pp.443—453, 1991.

[15] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[16] F. Moller and C. Tofts. “A temporal calculus of communicating systems.” Proc.
CONCUR 90 (LNCS Vol.458), pp.401-415, 1990.

[17] U.Holmer, K.Larsen, and Yi Wang. “Deciding properties of regular real timed
processes.” Proc. CAV 91 (LNCS Vol.575), pp.443-353, 1991.

[18] R. De Nicola and M.C.B. Hennessy. “Testing equivalences for processes.” The-
oretical Computer Science, Vol.34,pp.83-133, 1983.

[19] X.Nicollin, J.Sifakis and S.Yovine. “From ATP to Timed Graphs and Hybrid
Systems.” Proc. Real-Time: Theory in Practice (LNCS Vol.600), pp.549-572,
1991. ' .

[20] Tim Regan. Process Algebra for Timed Systems. PhD thesis, University of
Sussex, Computer Science, 1991.

[21] S. Schneider. “An operational semantics for timed CSP.” Technical Report
TR-1-91, Programming Research Group, Oxford University, 1991.

”

[22] Wang Yi. “CCS+Time=an interleaving model for real time systems.” Proc.

ICALP 91 (LNCS Vol.510), pp.217-228, 1991.

[23] Wang Yi. A Calculus of Real Time Systems. PhD thesis, Chalmers University
of Technology, Department of Computer Science, 1991.

