
Speed-Sensitive Orders
for Communicating Processes

Ichiro Satoh*

Department of Information Sciences, Ochanomizu University
2-1-1 Otsuka Bunkyo-ku Tokyo 112 Japan

Abstract

This paper proposes two process calculi for synchronously communicating real-time
processes and asynchronously ones. They are extensions of existing process calculi
with the ability to express a time-dependent constructor, representing execution
time and delayed processing. We also construct a theoretical framework for the
performance analysis of communicating processes. It is formulated as two algebraic
order relations for synchronously communicating processes and asynchronously ones.
The relations can order two behaviorally equivalent processes with respect to their
relative execution speeds. It provides a suitable method to verify and optimize
real-time communicating systems.

1 Introduction
Over the last few years, many researchers have explored time-extended process calculi for
the specification and the verification of real-time systems, for example see [7, 10, 16, 18, 19,
23]. Most of them are extensions of existing untimed process calculi, like CSP [11], CCS
[14], and ACP [3], with the ability to quantitatively express temporal features, for example
delayed processing, timeout handling, and so on. Some of the researchers also have
developed time-sensitive equivalences by extending existing untimed equivalences such as
bisimulation [14] and testing equivalence [9] with the notion of time. These equivalences
equate two real-time processes when both their functionally behavioral properties and
their temporal properties are completely matched with each other.

However, the equivalences may often be too strict in the analysis of most time-
dependent systems, including non-strict real-time systems. This is because most sys-
tems have various temporal uncertainties, for example unpredicted transmission delays
in communication, and unexpected interruptions in processors. Therefore, the tempo-
ral properties of implementations in the real world are never the same as those of their
specification exactly. Also, we can often say that an implementation is able to satisfy its
specification, only when the implementation can perform the behavioral properties given
in its specification at earlier timings than those given in the specification.

*Email: ichiro@is.ocha.ac.jp

数理解析研究所講究録
996巻 1997年 23-38 23

Therefore, it is convenient to construct a verification framework that can decide
whether two processes can perform the same behaviors and whether one of them (e.g.
an implementation of a system) can perform the behaviors faster than the other (e.g. the
specification of the system). Moreover, in real communicating systems, interprocess com-
munication is often realized by means of asynchronous style as well as synchronous one.
In asynchronous communication settings, the sender of a message cannot know when
the message is actually consumed as opposed to synchronous ones. Consequently, the
verification of asynchronously communicating processes requires another time-sensitive
framework. We address both synchrony and asynchrony in communication.

This paper proposes such a framework. It is formulated through two algebraic order
relations on real-time processes with respect to their execution speeds. The relations can
order two processes when they have the same behavioral properties and one of them can
perform the properties earlier than the another. To clarify our exposition, we first develop
two new time-extended calculi towards synchrony and asynchrony in communication. One
of them aims to model synchronous interactions among real-time processes and the other is
to model asynchronous interactions among ones. We next equip each calculus with its own
speed-sensitive order relation, which corresponds to its communication fashion. We have
many occasions to replace a slower subsystem in a system with a faster subsystem. In such
a reconstruction, we need to guarantee that the slower subsystem can really be replaced
by the faster one without altering the behavioral properties or lowering the execution
speed of the whole system. We thus investigate the substitutability of speed-sensitively
ordered processes.

The organization of this paper: The organization of this paper is as follows: In
the next section we briefly present our basic ideas concerning the process calculi and
then define their syntax and semantics. In Section 3 we define two speed-sensitive order
relations on synchronously $/\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{l}\mathrm{y}\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{l}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}_{\mathrm{C}\mathrm{a}\mathrm{t}}\mathrm{i}\mathrm{n}\mathrm{g}$ processes and study their
basic properties. In Section 4 we compare with related work and in the final section we
give some concluding remarks.

2 Calculi
This section constructs two calculi by extending CCS [14] with the notion of quantitative
time.

2.1 Basic Framework
Before defining the calculi, we summarize our basic ideas of them.

Time Values
We assume that time is interval between events instead of any absolute time, and is
discrete, instead of continuous time. Time values are denoted as positive natural numbers
including zero.

24

The Passage of Time
Time passes in all processes at the same speed. Also, all processes follow the same clock,
or different ones but well-synchronized clocks. The advance of time is modeled as a special
transition which is labeled by a quantity of time to indicate the amount of the advance,

for example $Prightarrow P’\langle t\rangle$. It means that process P become $P’$ after t time units.

Instantaneous Action
To preserve the pleasant properties of the original calculus, all communication and inter-
nal actions are assumed to be instantaneous. Instead, we introduce a special language
construction to express temporal costs, including the execution time of processes.

Time-Dependent Behavior
We introduce a new prefix operator whose contents are dependent on the passage of time,
called delay operator. This operator suspends a process for a specified period, written as
$\langle t\rangle$, where t is the amount of the suspension. For instance, $\langle t\rangle.P$ means a process which is
idle for t time units and then behaves as P^{1}.

Idling
We assume that when an internal or communication action is enabled, processes must
perform the action immediately without imposing unnecessary idling.2 This assumption
is the same as the notion of maximal progress shown in [10, 19, 23]. It lets us measure
the minimum cost in synchronization among parallel processes, and enables the calculus
to preserve the observation properties of CCS.

Asynchronous Communication
The word asynchrony here means that sender processes can send messages without syn-
chronizing any processes. However, most of existing process calculi, including CCS [14]
are formulated based on synchronous communication, they can have the expressive power
of asynchronous communication. A way to express asynchronous communication is to
restrict the formation of a term, $\overline{a}.P$, in the original calculus to the case where P is a ter-
minate process, written as 0 . That is, an asynchronous output, \overline{a}, followed by a process,
P , is the same as the parallel composition $\overline{a}.0|P$. This approach is essentially similar to
several existing ones, for example see [1, 4, 12]. We also assume that the order of message
arrival is indeterminate.3

1We can introduce some operators which restrict the possibility of particular actions due to the passage
of time, but leave a calculus with such operators to other paper, e.g. [19]. That result is available in the
calculi presented here.

2On the contrary, we can assume that when an internal or conununication action is enabled, processes
may not perform the action soon. We leave further details of this alternative model to another paper
[20].

3In this paper, we assume that communication delay is negligible. In [20], we present a calculus
for communicating systems where processes are located remotely and communication delay cannot be
ignored.

25

3 Definition
This section defines the syntax and the semantics of the calculi.

3.1 Timed Calculus for Synchronous Communication
We present a calculus for synchronous interactions among real-time processes. The cal-
culus is called TSCS (Timed calculus for Synchronously Communicating Systems) and is
an extension of Milner’s CCS [14].

Syntax

The syntax of the calculus is coincide with all the construction of CCS except for a new
time-dependent operators, called delay operator. We first define the notations of time
values.

Definition 3.1 Let \mathcal{T} denote the set of the positive natural numbers including 0 . We
call \mathcal{T} time domain. \square

Next, we define symbols to present the events of processes.

Definition 3.2

\bullet Let A be an infinite set of names denoting communication actions. Its elements are
denoted as a,b,\ldots

\bullet Let \overline{A} be an infinite set of $\mathrm{c}\mathrm{o}$-names. Its elements are denoted as $\overline{a},\overline{b},\ldots$

\bullet Let $\mathcal{L}\equiv A\cup\overline{A}$ be a set of communication action names. Elements of the set are
written as $\ell,$ $\ell’,$

\ldots .
\bullet Let τ denote an internal action.
\bullet Let Γ be the set of actions corresponding the amount of the passage of time. Ele-

ments of the set are denoted as $\langle t_{1}\rangle,$ \langle $t_{2})$, \ldots , where $t_{1},$ $t_{2},$ $\ldots\in \mathcal{T}$.
\bullet Let $Act\equiv \mathcal{L}\cup\{\tau\}$ be the set of operational actions. Its elements are denoted as

α,β,\ldots . \square

\overline{a} is the complementary action of a . τ-action represents all handshake communications
and is considered to be unobservable from outside environments.

Definition 3.3 The set $\prime \mathcal{P}_{s}$ of TSCS expressions ranged over by $P,$ $P_{1},$ $P_{2},$
\ldots is defined

recursively by the following abstract syntax:

P $::=$ 0 (Terminate Process) $|$ $\alpha.P$ (Action Prefix)
$|$ $P_{1}+P_{2}$ (Summation) $|$ $P_{1}|P_{2}$ (Composition)
$|$ $P\backslash L$ (Action Restriction) $|$ A $\mathrm{d}=^{\mathrm{e}\overline{1}}P$ (Recursive Definition)
$|$ $\langle t\rangle.P$ (Delay Prefix)

where t is an element of \mathcal{T} and L is a subset of $\mathcal{L}.$ A is a process variable in set \mathcal{K} . We
assume that in A $\mathrm{d}=^{\mathrm{e}t}P,$ P is always closed, and each occurrence of A in P is only within
some subexpressions $\alpha.A$ where α is not empty, or \langle $t).A$ where $t>0$. \square

26

The informal meaning of each process constructor is as follows:

\bullet 0 is a terminate process which can perform no internal nor communication action.
\bullet $\alpha.P$ is a process to perform action α and then behaves like P , where α is an input,

output, or internal action.
\bullet $P_{1}+P_{2}$ represents a process which may behave as either P_{1} or P_{2} .
\bullet $P_{1}|P_{2}$ represents that process P_{1} and P_{2} may run in parallel.
\bullet $P\backslash L$ behaves like P but it is prohibited to communicate with external processes at

actions in $L\cup\overline{L}$.
\bullet A $\mathrm{d}=^{\mathrm{e}\mathrm{f}}P$ means that A is defined as P , where P may include A .
\bullet $\langle t\rangle.P$ represents a process which is suspended for t time units and then behaves like

P .

We need the notion of action sort later.

Definition 3.4 The syntactic sort of each process, $\mathcal{L}(P)$, is defined inductively by:

$\mathcal{L}(0)$ $=$ \emptyset

$\mathcal{L}(a.P)$ $=$ $\{a\}\cup \mathcal{L}(P)$

$\mathcal{L}(\overline{a}.P)$ $=$ $\{\overline{a}\}\cup \mathcal{L}(P)$ $\mathcal{L}(\tau.P)$ $=$ $\mathcal{L}(P)$

$\mathcal{L}(P_{1}+P_{2})$ $=$ $\mathcal{L}(P_{1})\cup \mathcal{L}(P_{2})$ $\mathcal{L}(P_{1}|P_{2})$ $=$ $\mathcal{L}(P_{1})\cup \mathcal{L}(P_{2})$

$\mathcal{L}(P\backslash L)$ $=$ $\mathcal{L}(P)-(L\cup\overline{L})$ $\mathcal{L}(\langle d\rangle.P)$ $=$ $\mathcal{L}(P)$

when A $\mathrm{d}\mathrm{e}\mathrm{f}=P$, we have $\mathcal{L}(P)\subseteq \mathcal{L}(A)$. We often call sort simply. \square

Semantics

The operational semantics of the calculus can computationally encompass that of CCS and
embody the notion of time. The semantics is defined as two tiers of labeled transition rules.
One of them defines the semantics of functional behaviors of processes, called behavioral

α

transition, written as $arrow(arrow\subseteq P_{s}\cross Act\cross\prime p_{S})$ and the another defines the passage

of time on processes, called temporal transition, written $\mathrm{a}\mathrm{s}arrow\langle t\rangle(arrow\subseteq \mathcal{P}_{s}\cross\Gamma\cross P_{s})$.

Definition 3.5 TSCS is a labeled transition system \langle \mathcal{P}_{s} , $Act\cup\Gamma,$ $\{arrow\mu\subseteq P_{s}\cross$

$\mathcal{E}_{s}|\mu\in Act\cup\Gamma\}\rangle$. The transition relation $arrow \mathrm{i}\mathrm{s}$ defined by two kinds of structural
induction rules given in Figure 1 and 2. \square

In giving the rules, we adopt the convention that the transition below the horizontal line
may be inferred from the transitions above the line.

Example 3.6 We show some basic examples of processes in \mathcal{P}_{s} as follows:

(1) $\langle 2\rangle.\overline{a}.P_{1}$ is a process which performs output action \overline{a} after 2 time units and then
behaves like P_{1} .

$\langle 2\rangle.\overline{a}.P_{1}arrow\overline{a}.P_{1}\langle 2\ranglerightarrow P_{1}\overline{a}$

(2) $\langle 3\rangle.(a.P_{2}+b.P_{3})$ is a process which can receive either input action a or b after 3 time
units, and then behaves like P_{2} or P_{3} .

27

(3) After three time units, ($2\rangle.\overline{a}.P_{1}|\langle 3\rangle.(a.P_{2}+b.P_{3})$ performs a communicate between
$\langle 2\rangle.\overline{a}.P_{1}$ and $\langle 3\rangle.(a.P_{2}+b.P_{3})$ at action name a .

$\langle 2\rangle.\overline{a}.P_{1}|\langle 3\rangle.(a.P_{2}+b.P_{3})arrow\overline{a}.P_{1}\langle 3\rangle|(a.P_{2}+b.P_{3})-^{\tau}P_{1}|P_{2}$
\square

We present some basic properties of the semantics of the calculus.

Proposition 3.7

(1) Maximal Progress

If $P-^{\tau}P’$ then, there is not some P^{JJ} such that $Prightarrow P^{u}\langle t\rangle$ where $t>0$.
(2) Time Determinacy

If $Parrow P’\langle t\rangle$ and $Parrow P^{\prime/}$ t
$\langle t\rangle$

hen $P’$ and $P’$ are syntactically identical. \square

The first property means that if a process has an executable communication or an internal
action, it must perform the action immediately without imposing unnecessary idling. This
property allows us to estimate synchronization time in communication exactly. The second
means that time is deterministic in the sense that the passage of time does not interfere
with any non-determinism.

The transition $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}arrow \mathrm{d}\mathrm{o}\mathrm{e}\mathrm{s}$ not distinguish between observable and unobservable
actions. We define two transition relations due to the non-observationability of τ .

Definition 3.8

(i) $P\Rightarrow^{\alpha}P’$ is defined as $P(arrow)^{*}-\tau\alpha \mathcal{T}(arrow)^{*}P’$

(ii) $P\Rightarrow^{\alpha}P’\wedge$ is defined as $P(-^{\tau})^{*}$
α 7^{-} τ

$arrow(arrow)^{*}\langle t_{1}\rangle\tau P^{;}$
if

$\alpha\neq\tau \mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}_{\mathcal{T}}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}P(arrow)^{*}\tau\langle t_{n}\rangle P^{J}$

(iii) $P\Rightarrow\langle t$
)

$P’$ is defined as $P(-^{\tau})^{*}-(-)^{*}\cdots(arrow)^{*}-(-)^{*}P$; $(t=$

$t_{1}+\cdots+t_{n})$. \square

$\mathrm{w}^{\mathrm{p}}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}+$ is a mathematical addition over two numbers.

3.2 Timed Calculus for Asynchronous Communication
We now define a calculus for asynchronous interactions among real-time processes, called
TACS (Timed calculus for Asynchronously Communicating Systems). It is a subset of
the previous calculus where there is not any output prefix. We also disallow output
guards in any alternative choice. This is because in asynchronous communication settings,
it is difficult to realize output guards on choice points without synchronization at the
implementation level.

Definition 3.9 The set P_{a} of TACS expressions, $P,$ $P_{1},$ $P_{2},$
\ldots is defined by the followirig

expressions:

P $::=$ \overline{a}
$|$ $P_{1}|P_{2}$ $|$

$\langle t\rangle.P$
$|$ $P\backslash L$ $|$ A $\mathrm{d}=^{\mathrm{e}\mathrm{f}}P$

$|$ G

G $::=$ 0 $|$ $a.P$ $|$ $\tau.P$ $|$ $G_{1}+G_{2}$

where a is a message name in $A,$ t is an element of \mathcal{T} . We often denote $\overline{a}\mathrm{a}\mathrm{S}\overline{a}.0$. \square

28

$\alpha.Parrow P-\overline{\alpha}$
$\frac{P_{1}arrow P_{1}’\alpha}{P_{1}+P_{2}arrow P_{1}’\alpha}$ $\frac{P_{2}arrow P_{2}’\alpha}{P_{1}+P_{2}arrow P_{2}^{J}\alpha}$

$\frac{P_{1}arrow P_{\rceil}’\alpha}{P_{1}|P_{2}arrow P’|\alpha 1P_{2}}$ $\frac{P_{2}arrow P_{9}^{J}\alpha}{P_{1}|P_{2}arrow P1|\alpha P_{2}^{;}}$
$\frac{P_{1}arrow P_{1}^{;},P2arrow P_{9}^{J}l\overline{l}}{P_{1}|P_{2}arrow P_{1}’|\tau P_{2}’}$

$\frac{Parrow P’,\alpha \mathit{4}nL\cup\overline{L}\alpha}{P\backslash Larrow P’\backslash L\alpha}$ $\frac{Parrow P’\alpha}{Aarrow P\alpha},$(A $\mathrm{d}=^{\mathrm{e}}P$)
r

$\frac{Parrow P’\alpha}{\langle 0\rangle.Parrow\alpha P’}$

Figure 1: Inference Rules for Behavioral Transition

$\overline{0arrow 0\langle t\rangle}-$ $\overline{\ell.Prightarrow\ell\langle t)}-.P$

$\frac{P_{1}arrow P_{1}^{;},P_{2}\langle t\rangle\langlearrow Pt\rangle 9\prime}{P_{1}+P_{2}arrow\langle t\rangle P_{1}’+P’2}$

$\frac{P_{1}arrow P’,P_{2}\langle t\rangle\rceilarrow P\langle t\rangle 2\prime}{\langle t\rangle}(\neg\exists P’ : P_{1}|P_{2}arrow \mathcal{T}P’)$

$P_{1}|P_{2}arrow P_{1}’|P^{J}2$

$\frac{Parrow\langle t\rangle P’}{\langle t\rangle}$ $\frac{Parrow\langle t\rangle P^{J}}{\langle t\rangle}$ (A $\mathrm{d}\mathrm{e}t=P$)
$P\backslash L\langle t\ranglearrow P’\backslash L$

$Aarrow P’$

$\frac{Parrow P’}{\langle t\rangle}$ $-\overline{\langle t\rangle}(t+t’>0)$
$\langle 0\rangle.Parrow P’$ $\langle t+t’\rangle.Earrow\langle t’\rangle.E$

Figure 2: Inference Rules for Temporal Transition

We give the intuitive meanings of some important expressions in the language below.

\bullet $(\overline{a}|P)$ represents a process that sends message a without synchronizing any processes
and behaves like P . Note that \overline{a} corresponds to the asynchronous message itself. P

corresponds to the subsequent computation.
\bullet $a.P$ represents a process that receives message a and then behaves like P .

Semantics

All the expressions in the present calculus are included in those in the previous one. The
semantics of the present calculus is defined through that of the previous one.

Definition 3.10 The operational semantics of TACS is defined from the transition
relation rules given in Definition 3.5. \square

Example 3.11 We show some basic examples of processes in P_{a} as follows:

(1) $\langle 2\rangle.(\overline{a}|P_{1})$ is a process which sends asynchronous message a after 2 time units and
then behaves like P_{1} .

$\langle 2\rangle.(\overline{a}|P_{1})arrow\langle 2\rangle(\overline{a}|P_{1})arrow P_{1}\overline{a}$

29

(2) ($3\rangle.(a.P_{2}+b.P_{3})$ is a process which can receive either message a or b after 3 time
units and behaves like P_{2} or P_{3} .

(3) $\langle 2\rangle.(\overline{a}|P_{1})|\langle 3\rangle.(a.P_{2}+b.P_{3})$ performs a communication at action name a .

$\langle 2\rangle.(\overline{a}|P_{1})|\langle 3\rangle.(a.P_{2}+b.P_{3})arrow\overline{a}\langle 3)|P_{1}|(a.P_{2}+b.P_{3})-^{\tau}P_{1}|P_{2}$
\square

In asynchronous communication settings, sender processes cannot observe how the mes-
sages which they send will be treated by the other processes. We introduce weak labeled
transitions for asynchronous communication.

Definition 3.12 The operational semantics of TACS is redefined from the transition
relation rules given in Definition 3.5 and the following rules:

$(t\in \mathcal{T})$

$\overline{a}|Parrow P\uparrow a$ $Parrow\langle_{t}\rangle\downarrow a\langle t\rangle.\overline{a}|P$

where we often abbreviate $\langle 0)\downarrow a\mathrm{t}_{0}\downarrow a$. \square

We give intuitive meaning of the above transitions.

\bullet

$P-^{\mathrm{t}a}P’$ means that a conceptual observer or the environment receives message
a from P and P behaves like $P’$.

$\langle_{t})_{)a}$

\bullet $Parrow P’$ means that after t time units, an observer or the environment sends
message a and P becomes $P’$.

Definition 3.13

(1) $P\Rightarrow^{a}P\langle_{t}\rangle_{1\prime}$ is given as $P(-^{\mathcal{T}})^{*}arrow(\langle_{t^{\rangle\}a}}\tau-)^{*}P’$.

(2) $P\Rightarrow^{\uparrow a}P’$ is given as $P(-^{\mathcal{T}})^{*}arrow(-\dagger a\tau)^{*}P^{J}$.

4 Speed-Sensitive Prebisimulations
Based on time-extended process calculi, several researchers have explored time-sensitive
equivalences which are based on trace equivalence, failure equivalence, testing equiva-
lence, and bisimulation equivalence like ours, for example see [10, 16, 18, 19, 23]. These
equivalences equate two processes if they cannot be distinguished from each other in their
temporal properties as well as their behavioral one. This section develops algebraic order
relations on processes with respect to their speeds based on the bisimulation concept.

4.1 An Order for Synchronously Communicating Processes
We define a speed-sensitive relation for synchronously communicating processes based on
the bisimulation technique. r

30

Definition 4.1 A binary relation $\mathcal{R}\subseteq(P_{s}\cross P_{s})\cross \mathcal{T}$ is a t-synchronous prebisimulation
over synchronously communicating processes if $(P_{1}, P_{2})\in \mathcal{R}_{t}(t\geq 0)$ implies, for all
$\alpha\in A_{Ct}$;

(i) $\forall d\forall P_{1}’:P_{1}\Rightarrow\Rightarrow\langle d\rangle\alpha P_{1}’\langle d\rangle\langle d’\rangle then$

$\wedge\alpha$

$\exists d’\exists P_{2}^{;}:P_{2}\Rightarrow\Rightarrow\Rightarrow P_{2}’$ and $(P_{1}’, P_{2}J)\in \mathcal{R}_{t+d’}$

(ii) $\forall d\forall P_{2}^{J}:P_{2}\Rightarrow\Rightarrow P_{2}’$ then
$\langle d)$

α

$\langle d)$ $\langle t\rangle$
$\wedge\alpha$

$\exists P_{1}’:P_{1}\Rightarrow\Rightarrow\Rightarrow P_{1}’$ and $(P_{1,2}’P’)\in \mathcal{R}_{0}$ \square

In the above definition, \mathcal{R}_{t} is a family of relations indexed by a non-negative time value
t . Intuitively, t is the relative difference between the time of P_{1} and that of P_{2} ; that is,
it means that P_{1} precedes P_{2} by t time units.4 The following order relation starts with
a prebisimulation indexed by t (i.e., \mathcal{R}_{t}^{L}) and can change t as the bisimulation proceeds
only if $t\geq 0$.

Definition 4.2 We let $P_{1}\leq_{s}^{t}P_{2}$ if there exists some t-synchronous prebisimulation such
that $(P_{1}, P_{2})\in \mathcal{R}_{t}$. We call \leq_{s}^{t} speed-sensitive order on synchronously

$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\coprod$

processes. We shall often abbreviate \leq_{S}^{0} as \leq_{S} .

Hereafter, we usually consider \leq_{S} only. We show several algebraic properties of the order
relation below.

Proposition 4.3 Let $P,$ $P_{1},$ $P_{2},$ $P_{3}\in P_{s}$. Then,

(1) $P\leq_{S}P$

(2) $P_{1}\leq_{S}P_{2}$ and $P_{2}\leq_{S}P_{3}$ then $P_{1}\leq_{S}P_{3}$ \square

From these results, we see that \leq_{S} is a preorder relation. We also have $P_{1}\leq_{S}^{t_{1}}+t_{2}P_{3}$ if
$P_{1}\leq_{s^{1}}^{t}P_{2}$ and $P_{2}\leq_{s^{2}}^{t}P_{3}$.

Proposition 4.4 Let $P_{1},$ $P_{2}\in \mathcal{P}_{s’ 1}t,$ $t_{2}\in \mathcal{T}$ such that $t_{1}\leq t_{2}$. Then,

$\langle t_{1}\rangle.P\leq S(t2\rangle.P$ \square

The above proposition shows an important characteristic of \leq_{S} .

Example 4.5 We show some basic examples of \leq_{S} as follows:

(1) $a.P\leq_{S}\langle 1\rangle.a.P$

(2) $\langle 1\rangle.\overline{a}.\langle 2\rangle.\overline{b}.P\leq_{S}\langle 1\rangle.\overline{a}.\langle 3\rangle.\overline{b}.P$

(3) $a.P_{1}|\langle 1).b.P_{2}\leq_{S}\langle 1\rangle.a.P_{1}|\langle 1\rangle.b.P_{2}$

(4) $\langle 1\rangle.(a.P_{1}+b.P_{2})|\langle 2\rangle.\overline{a}.P_{3}\leq_{S}\langle 2\rangle.(a.P_{1}+b.P_{2})|\langle 2\rangle.\overline{a}.P_{3}$ \square

Proposition 4.6 Let $P_{1},$ $P_{2},$ $Q\in P_{s}$ such that $P_{1}\leq_{S}P_{2}$. Then

(1) $\alpha.P_{1}\leq_{S}\alpha.P_{2}$

4This means that the performance of P_{1} is at most t time units faster than that of P_{2} .

31

(2) $P_{1}\backslash L\leq_{S}P_{2}\backslash L$

(3) $\langle t).P_{1}\leq_{S}\langle t\rangle.P_{2}$ \square

It is convenient to develop a precongruence with respect to speeds in order to guarantee the
substitutability between two ordered processes in any parallel context. However, there
is an undesirable problem in defining such a pre-congruence with temporal inequality.
Suppose three objects: $A_{1}=\mathrm{d}\mathrm{e}\mathrm{f}\langle 2\rangle.\overline{a}.0,$ $A2=\mathrm{d}\mathrm{e}\mathrm{f}\langle 4\rangle.\overline{a}.0$, and $B^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}a.P_{1}+b.P_{2}|\langle 3\rangle.\overline{b}.0$. We clearly

have $A_{1}\leq_{S}A_{2}$ but cannot expect that $A_{1}|B\leq_{S}A_{2}|B$, because $A_{1}|B^{\langle}-^{2\rangle\tau}-P_{1}|\langle 1$) $.\overline{b}.0$ and
$A_{2}|B(3Iarrow\tau\langle 1\rangle.\overline{a}.0|P_{2}$. This anomaly is traced to contexts that restrict the capability to
execute a particular computation due to the passage of time, for example timeout handling
in B . In order to define a rational pre-congruence with respect to speed, we need to impose
certain syntactic restrictions on processes that may be composed in parallel.

Definition 4.7

(1) $(\alpha_{1}|\cdots|\alpha_{n}).P$ is defined as $\Sigma_{1\leq i\leq n}\alpha_{i}$, where $(\alpha).P\equiv\alpha.P$. $(\alpha_{1}|\cdots|\alpha_{i-1}|\alpha_{i}+1|\cdot.\cdot\cdot|\alpha_{n}|).P$

is called confluent summation.
(2) $P_{1}||{}_{L}P_{2}$ is defined as $(P_{1}|P_{2})\backslash L$. $P_{1}||{}_{L}P_{2}$ is confluent composition if $\mathcal{L}(P_{1})\cap \mathcal{L}(P_{1})=\emptyset$

and $\overline{\mathcal{L}(P_{1})}\cap \mathcal{L}(P_{1})\subseteq L\cup\overline{L}$.
\square

Definition 4.8 $P\in P_{s}$ is time-stable if P is built using only terminate process, action
prefix, delay prefix, action restriction, confluent composition, confluent summation, and
recursion given in Definition 3.3. \square

Example 4.9 We show some basic examples of time-stable processes: $\overline{a}.0,$

$(\langle 3\rangle.\overline{a}.P_{1}|a.P_{2})\backslash \square$

$\{a\},$ $\langle 3\rangle.(a.b.P+b.a.P)$, and A $\mathrm{d}=^{\mathrm{e}\mathrm{f}}\overline{a}.b.A$, where $P,$ $P_{1},$ P_{2} are time-stable processes.

This restriction allows processes to perform executable actions in any order. When we
focus on processes cooperating only with particular processes, there may indeed be more
suitable forms which cover a class of such processes. We here give a lemma before proving
that \leq_{S} is preserved in a parallel composition.

Lemma 4.10 Let $P_{1},$ $P_{2},$ $Q_{1},$ $Q_{2}\in/P_{S}$ be time-stable processes. Then,

$P_{1}\leq_{s}^{t}P_{2}$ and $Q_{1}\leq_{s}^{t}Q_{2}$ then $P_{1}|Q_{1}\leq_{s}^{t}P_{2}|Q_{2}$ \square

We now come to the main result of this subsection.

Theorem 4.11 Let $P_{1},$ $P_{2},$ $Q\in 7^{\mathit{2}_{s}}$ be time-stable processes. Then,

$P_{1}\leq_{S}P_{2}$ then $P_{1}|Q\leq_{S}P_{2}|Q$ \square

Intuitively, the above result tells that a parallel composition between the faster processes
can really perform faster than one between the slower ones. That is, a system when
embedding the faster processes can still perform faster than when embedding the slower
ones.

32

4.2 An Order for Asynchronously Communicating Processes
In asynchronous communication settings, sender processes do not have to synchronize
their receiver processes and thus can send messages as soon as they can- Therefore, in
the settings real-time processes do not need to completely match their own temporal
specification, and need only to deliver their required messages to receiver processes at
earlier timings than those given in their specification. This means that in the verification
of asynchronous communicating real-time processes, a speed-sensitive order relation can
be often more suitable than in that of synchronous ones.

Definition 4.12 A binary relation $\mathcal{R}\subseteq(\mathcal{P}_{a}\cross\prime p_{a})\cross \mathcal{T}$ is a t-asynchronous prebisim-
ulation over asynchronously communicating processes P_{a} if $(P_{1}, P_{2})\in.\mathcal{R}_{t}$ implies, for all
$a,$ $b\in A$, and $d\in \mathcal{T}$;

(i) $\forall t_{1}\forall P_{1}’:P_{1}\Rightarrow^{a}\langle d\rangle\}\langle t\Rightarrow\Rightarrow\rangle 1\pi P_{1}’$ then
$\langle_{d}\rangle_{\mathrm{J}a}\langle t_{2}\rangle$ $1b$

$\exists t_{2}\exists P_{2}’:P_{2}\Rightarrow\Rightarrow\Rightarrow P_{2}’$ and $(P_{1}’, P_{2}J)\in \mathcal{R}_{t-t_{1}+t_{2}}$

(ii) $\forall t_{2}\forall P_{2}’:P_{2}\Rightarrow\Rightarrow^{2}\Rightarrow^{\uparrow b}(d\rangle$$\downarrow a\langle t\rangle P_{2}’$ then
$\langle_{d}\rangle_{\rfloor a}\langle t_{1}\rangle$ $1b$

$\exists t_{1}\exists P_{1}’:P_{1}\Rightarrow\Rightarrow\Rightarrow P_{1}’$ and $(P_{1}’, P_{2}J)\in \mathcal{R}_{t-t_{1}+t_{2}}$

where $a,$
b may be empty names and $t,$ $t_{1},$ $t_{2},$ $d\in \mathcal{T}$. \square

As t-synchronous prebisimulation, \mathcal{R}_{t} is a family of relations indexed by a non-negative
time value t , where t corresponds to the relative difference between the time of the first
process and the second one.

Definition 4.13 We let $P_{1}\leq_{a}^{t}P_{2}$ if there exists a t-asynchronous prebisimulation such
that $(P_{1}, P_{2})\in \mathcal{R}_{t}$. We call \leq_{a}^{t} speed-sensitive order on asynchronously

$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\square$

processes. We shall often abbreviate \leq_{a}^{0} as \leq_{a} .

We here state the informal meaning of $P_{1}\leq_{a}^{t}P_{2}$. We first assume $(P_{1}, P_{2})\in \mathcal{R}_{t}$. This
assumption means P_{1} precedes P_{2} by t time units. An observer sends message a to P_{1} after
d time units (written as $P_{1}\Rightarrow\langle d\rangle\downarrow a$ in (i)). It also sends the same message to P_{2} after d time
units (written as $P_{2}\Rightarrow\langle d\rangle\downarrow a$ in $(\mathrm{i}\mathrm{i})$). And then the observer receives return message b from P_{1}

after t_{1} time units (written as $\langle t4\rangle\uparrow b\Rightarrow P_{1}$
; in (i)), and from P_{2} after t_{2} time units (written

as $\langle t\Rightarrow_{\Rightarrow}\rangle\uparrow b$ n$P^{J}2$ i $(\mathrm{i}\mathrm{i}))$. If the arrival time of the return message from P_{1} is earlier than that
from $P_{2^{5}}$, and if $P_{1}’$ and $P_{2}’$ can be successfully observed in $(P_{1}’, P_{2}’)\in \mathcal{R}_{t-t_{1}+t_{2}}$ in the
same way, P_{1} and P_{2} can perform the same behaviors but P_{1} can perform the behaviors
faster than P_{2} . We show several algebraic properties of the order relation below.

Proposition 4.14 Let $P,$ $P_{1},$ $P_{2},$ $P_{3}\in 7^{\mathit{2}_{a}}$. Then,

(1) $P\leq_{a}P$

(2) $P_{1}\leq_{a}P_{2}$ and $P_{2}\leq_{a}P_{3}$ then $P_{1}\leq_{a}P_{3}$ \square

5Note that P_{2} already precedes P_{1} by t time units. Thus, the relative difference between the arrival
timing of the message from P_{2} and that from P_{1} is $t-t_{1}+t_{2}$.

33

The above proposition says that \leq_{a} is a preorder relation. We also have $P_{1}\leq_{a^{1}}^{t+t_{2}}P_{3}$ if
$P_{1}\leq_{a^{1}}^{t}P_{2}$ and $P_{2}\leq_{a^{2}}^{t}P_{3}$.

Proposition 4.15 Let $P_{1},$ $P_{2}\in \mathcal{P}_{a},$ $t_{1},$ $t_{2}\in \mathcal{T}$ such that $t_{1}\leq t_{2}$. Then,

$\langle t_{1}\rangle.P\leq_{a}\langle t_{2^{\rangle.P}}$ \square

Example 4.16 We show some basic examples of \leq_{a} as follows:

(1) $\overline{a}\leq_{a}\langle 1\rangle.\overline{a}$

(2) $a.P\leq_{a}\langle 1\rangle.a.P$

(3) $a.P_{1}|\langle 1\rangle.b.P_{2}\leq_{a}\langle 1\rangle.a.P_{1}|\langle 1\rangle.b.P_{2}$

(4) $\langle 1\rangle.(\overline{a}|\langle 3\rangle.(\overline{b}|P))\leq_{a}\langle 2\rangle.(\overline{a}|\langle 2).(\overline{b}|P))c.f$. $\langle 1\rangle.\overline{a}.\langle 3\rangle.\overline{b}.P\not\leq_{s}\langle 2\rangle.\overline{a}.(2\rangle.\overline{b}.P$ \square

In the above example, (4) shows a difference between synchrony and asynchrony in com-
munication.

Proposition 4.17 Let $P_{1},$ $P_{2},$ $Q\in’\rho_{a}$ such that $P_{1}\leq_{a}P_{2}$. Then,

(1) $a.P_{1}\leq_{a}a.P_{2}$

(2) $P_{1}\backslash L\leq_{a}P_{2}\backslash L$

(3) $\langle t\rangle.P_{1}\leq_{a}\langle t\rangle.P_{2}$
\square

From the above result, we directly know that $\overline{a}|P1\leq_{a}\overline{a}|P_{2}$ when $P_{1}\leq_{a}P_{2}$. Next, we show
that \leq_{a} is precongruent with respect to parallel composition. We establish a convention
that at most one process in parallel compositions can receive any given message, for the
sake of substitutability. As the same of the synchronous communication setting, we need
a syntactic restriction on expressions on \mathcal{P}_{a} .

Definition 4.18 $P\in 7^{\mathit{2}_{a}}$ is time-stable if P is built using only terminate process, action
prefix, delay prefix, action restriction, confluent summation, composition, and recursion
and when any subsequence of P occurs in form $P_{1}|P_{2},$ $\mathcal{L}(P_{1})\cap \mathcal{L}(P_{1})\cap A=\emptyset$. \square

Note that $\mathcal{L}(P)\cap A$ means all the action names included in P . We need a lemma before
proving it.

Lemma 4.19 Let $P_{1},$ $P_{2},$ $Q_{1},$ $Q2\in P_{a}$ be time-stable processes. Then,

$P_{1}\leq_{a}^{t}P_{2}$ and $Q_{1}\leq_{a}^{t}Q_{2}$ then $P_{1}|Q_{1}\leq_{a}^{t}P_{2}|Q_{2}$ \square

Theorem 4.20 Let $P_{1},$ $P_{2},$ $Q\in 7^{\mathit{2}_{a}}$ be time-stable processes. Then,

$P_{1}\leq_{a}P_{2}$ then $P_{1}|Q\leq_{a}P_{2}|Q$ \square

Intuitively, the result shows that if two processes are behaviorally equivalent and one of
them can perform faster than the other, the faster process can be behaviorally substituted
for the slower one in a parallel composition. That is, a parallel composition between the
faster processes can really perform faster than one between the slower ones. That is, a
system embedded with the faster processes can really perform faster than one embedded
with the slower ones.

34

Remarks The definition of each relation can reveal essential differences between syn-
chrony and asynchrony in interactions among processes in time-sensitive contexts. In syn-
chronous communication settings, processes must be blocked until their partner processes
are ready to communicate. \leq_{S} can order two synchronously communicating processes
when a conceptual observer cannot distinguish between them in $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}\mathrm{i}\mathrm{r}$ communications,
and when t.he timings of the communications with one of them are earlier than those with
the another. On the other hand, in asynchronous communication settings, the observer
cannot exactly know when the messages which it sends are received by processes. It can
know only the arrival timings of return messages. In \leq_{a} , an observer sends arbitrary mes-
sages to processes and waits for return messages from them. It orders the two processes
when the return messages cannot be distinguished from each other, and when the arrival
timings of the messages from one of them are earlier than those from the another.

5 Related Work
We here survey some related work. There have indeed been many process calculi for
time-dependent systems, for example see [7, 10, 16, 18, 19, 22, 23]. Most of the calculi
have been equipped with time-sensitive equivalences as verification methods. However,
there have been a few researchers that studied inequalities for time-dependent processes.

Moller and Tofts in [16] proposed a preorder relation over processes with respect to
their relative speeds, based on the bisimulation technique. Unlike ours, their calculus
assumes to permit an executable communication to be suspended for arbitrary periods
of time. As a result, the relation shows only that a process may possibly execute faster
than the other. Recently, Vogler in [22] and Jenner and Vogler in [13] presented speed-
sensitive preorder relations based on the testing equivalence technique [9]. The relation
can relate asynchronously communicating processes according to their relative speeds,
but its semantics is formulated based on causality between events on the assumption
that actions are not instantaneous, unlike ours. Also, some researchers have explored the
performance analysis by means of process algebras, for example see [5]. However, most
of them are based on non-instantaneous actions. The other assumes that every process
proceeds in lockstep and at every instant performs a single action.

Arun-Kumar and Hennessy in [2] propose an approach to relate processes with respect
to their relative efficiencies based on the bisimulation technique [14]. Cleaveland and
Zwarico in [6] Natarajan and Cleaveland [17] propose a similar approach based on the
testing equivalence technique [9]. These approaches relate two processes whether their
behavioral properties are equivalent and one of them can perform less internal actions τ

than the other. That is to say, a process which needs to take more τ actions to execute
the same properties than the other, is a slower process. However, it is very difficult to
reflect the execution cost of real systems upon the number of τ-actions exactly in the
description of the systems.

On the other hand, there have been several process calculi with the ability to express
asynchronous communication (e.g. [1, 4, 8, 12]). Among them, in [4] Baeten and Bergstra
proposed a time-extended process calculus with the ability to express asynchronous com-
munication. It represents asynchronous message transmission as the creation of a process
corresponding to the message like the methods developed in [12]. However, it provides

35

just a language to describe asynchronously communicating real-time processes and it does
not provide any method to analyze the performance of processes.

6 Concluding Remarks
In this paper, we proposed two time-extended calculi to specify and analyze synchronous
interactions among real-time processes and asynchronous ones. They are extensions of
CCS with the ability to express quantitatively temporal properties of processes. They
$\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\sim$ us to describe the behavioral and temporal properties of interactions among real-
time processes.

Based on the calculi, we define algebraic order relations that can distinguish between
behaviorally equivalent processes performing at different speeds. The relations can prove
that a faster process can behaviorally replace a slower process without altering any behav-
ioral properties nor the performance of the whole system. They can provide a theoretical
framework to verify and optimize communicating systems.

This paper gives only a starting point for understanding communications among real-
time processes. There are many issues that we leave in this paper, One of the most
important issues is to study further refinements of the calculi and the relations. We are
also interested in formulating inequalities based on the order relations, and investigating
how the relation of each calculus is related with each other.

References
[1] Amadio, R.M., Castellani, I, and Sangiorig, D., On Bisimulation for the Asynchronous

π -calculus, Proceedings of CONCUR’96, p148-162, Springer-Verlag, August, 1996.

[2] Arun-Kumar, S. and Hennessy, M., An Efficiency Preorder for Processes, Acta Informatica,
Vo1.29, p737-760, 1992.

[3] Baeten, J. C. M., and Bergstra, J. A., Process Algebra, Cambridge University Press, 1990.

[4] Baeten, J. C. M., and Bergstra, J. A., Asynchronous Communication in Real Space Process
Algebra, Proceedings of Formal Techniques in Real-Time and Fault-Tolerant System, LNCS
591, p473-491, $\mathrm{S}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}- \mathrm{V}\dot{\mathrm{e}}$rlag, May, 1991.

[5] Chen. X. J., Corradini, F., and Gorrieri, R., A Study on the Specification and Verification
of Performace Properties, Proceedings of Algebraic Methodology and software Technology,
LNCS Vol. 1011, Springer-Verlag, 1996.

[6] Cleaveland, R and Zwarico, A.E., Theory of Testing for Real- Time, Proceedings, 6th IEEE
Symposiu.m on Logic in Computer Science, p110-119, 1990.

[7] Davies, J. W., Specification and Proof in Real- Time CSP, Cambridge University Press,
1994.

[8] de Bore, F.S., Klop, J.W., and Palamidessi, Asynchronous Communication in Process Al-
gebra, Proceedings of LICS’92, p137-147, June, 1992.

[9] de Nicola, E. and Hennessy, M., Testing Equivalence for Processes, Theoretical Computer
Science, No.34, 1984.

[10] Hennessy, M., On Timed Process Algebra: a Tutorial, Technical Report 2/93, University of
Sussex, 1993

36

[11] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985.
[12] Honda, K., and Tokoro, M., An Object Calculus for Asynchronous Communication, Pro-

ceedings of ECOOP’91, LNCS 512, p133-147, June, 1991.
[13] Jenner, L., and Volger, W., Faster Asynchronous Systems in Dense Time, Proceedings of

ICALP’96, p75-86, LNCS Vol. 1099, Springer-Verlag, 1996.
[14] Milner, R., Communication and Concurrency, Prentice Hall, 1989.
[15] Milner, R., Parrow. J., Walker, D., A Calculus of Mobile Processes, Information and Com-

putation, Vo1.100, p1-77, 1992.
[16] Moller, F., and Tofts, C., Relating Processes with Respect to Speed, Proceedings of CON-

CUR’91, LNCS 527, Springer-Verlag, August, 1991.
[17] Natarajan, V., and Cleaveland, R., An Algebraic Theory of Process Efficiency, Proceedings

of LICS’96, p63-72, June, 1996.
[18] Nicollin. X., and Sifakis, J., An Overview and Synthesis on Timed Process Algebms, Pro-

ceedings of Computer Aided Verification, LNCS 575, p376-398, Springer-Verlag, June, 1991.
[19] Satoh, I., and Tokoro, M., A Formalism for Real-Time Concurrent Object-Oriented $C_{om}-$

puting, Proceedings of ACM Conference on Object Oriented Programming Systems, Lan-
gauges, and Applications (OOPSLA’92), p315-326, 1992.

[20] Satoh, I., and Tokoro, M., A Formalism for Remotely Interacting Processes, Proceedings
of Workshop on Theory and Practice of Parallel Programming (TPpp’94), LNCS 907,
p216-228, Springer-Verlag, 1995.

[21] Satoh, I., and Tokoro, M., Time and Asynchrony in Interactions among Distributed Real-
Time Objects, Proceedings of European Conference on Object-Oriented Programming
(ECOOP’95), LNCS 952, p331-350, Springer-Verlag, 1995.

[22] Volger, W., Faster Asynchronous Systems, Proceedings of CONCUR’95, p299-312, LNCS
962, Springer-Verlag, 1995.

[23] Wang, Y., $CCS+Time=an$ Interleaving Model for Real Time Systems, In proceedings of
Automata, Languages and Programming’91, LNCS 510, Springer-Verlag, 1991.

Appendix
It is often useful to give time-sensitive equivalences for the present calculi in studying their
basic properties, although such equivalences are often too strict in the verification of real
systems. We thus develop time-sensitive bisimulation relations over process expressions
by extending CCS’s bisimulation with the notion of time. We denote both $\prime \mathcal{P}_{S}$ and \mathcal{P}_{o} as
\mathcal{P} later.

Definition 6.1 A binary relation $\mathcal{R}\subseteq \mathcal{P}\cross P$ is a strong bisimulation if $(P_{1}, P_{2})\in \mathcal{R}$

implies, for all $\alpha\in Act$ and t $\in \mathcal{T}$,

(i) $\forall P_{1}’:P_{1}arrow-P_{1}’\langle t\rangle\alpha$ then $\exists P_{2}’:P_{2}arrowarrow P_{2}\langle t\rangle\alpha$, and $(P_{1}’, P_{2}^{J})\in \mathcal{R}$.
(ii) \mathcal{R} is symmetric.

P_{1} and P_{2} are strongly equivalent, written $P_{1}\sim\tau P_{2}$, if there exists a strong bisimulation
\mathcal{R} such that $(P_{1}, P_{2})\in \mathcal{R}$. \square

37

Intuitively, if P_{1} and P_{2} are strongly equivalent, they cannot be distinguished from one
another in their behaviors and timings. We can know that $\sim\tau$ is symmetric, reflexive,
transitive, and congruent. We show a set of laws which are sound with respect to the
strong equivalence below.

Proposition 6.2

$P_{1}+P_{2}$ $\sim\tau$ $P_{2}+P_{1}$ $P_{1}+(P_{2}+P_{3})$ $\sim\tau$ $(P_{1}+P_{2})+P_{3}$

$P+P$ $\sim\tau$
P $P+0$ $\sim\tau$

P

$P_{1}|P_{2}$ $\sim\tau$ $P_{2}|P_{1}$ $P_{1}|(P_{2}|P_{3})$ $\sim\tau$ $(P_{1}|P_{2})|P_{3}$

$P|0$ $\sim\tau$
P

$P\backslash L$ $\sim\tau$
P if $\mathcal{L}(P)\cap(L\cup\overline{L})=\emptyset$

$(P_{1}|P_{2})\backslash L$ $\sim\tau$
$P_{1}\backslash L|P_{2}\backslash L$ if $\mathcal{L}(P_{\mathrm{I}})\cap\overline{(P_{2})}\cap(L\cup\overline{L})=\emptyset$

$(P_{1}+P_{2})\backslash L$ $\sim\tau$ $P_{1}\backslash L+P_{2}\backslash L$

$\langle t\rangle.(P_{1}+P_{2})$ $\sim\tau$
$\langle t\rangle.P_{1}+\langle t\rangle.P_{2}$ $\langle t\rangle.(P_{1}|P_{2})$ $\sim\tau$

$\langle t\rangle.P_{1}|\langle t\rangle.P_{2}$

$\langle t_{1}+t_{2}\rangle.P$ $\sim\tau$
$\langle t_{1}\rangle.\langle t_{2}\rangle.P$

$\langle \mathrm{O}\rangle.P$

$\sim\tau$
P

口

We define an equivalence with the concept of observation.

Definition 6.3 A binary relation $\mathcal{R}\subseteq P\cross P$ is a weak bisimulation if $(P_{1}, P_{2})\in \mathcal{R}$

implies, for all $\alpha\in Act$ and $t\in \mathcal{T}$,

(i) $\forall P_{1}’:P_{1}\Rightarrow\Rightarrow P_{1}’\langle t\rangle\alpha$ then $\exists P_{2}’:P_{2}\Rightarrow\Rightarrow^{\alpha}\langle t\rangle\wedge P_{2}’$ and $(P_{1}^{;}, P_{2}^{J})\in \mathcal{R}$.
(ii) \mathcal{R} is symmetric.

P_{1} and P_{2} are observation-equivalent, written $P_{1}\approx_{\mathcal{I}}P_{2}$, if there exists a weak bisimulation
\mathcal{R} such that $(P_{1}, P_{2})\in \mathcal{R}$. \square

Intuitively, if P_{1} and P_{2} are observation-equivalent, each action of P_{1} must be matched
by a sequence of actions of P_{2} with the same visible contents and timing, and conversely.
$\approx\tau$ is symmetric, reflexive, transitive. We know that it is congruent except summation,
and $P_{1}\approx_{\mathcal{I}}P_{2}$ if $P_{1}\sim\tau P_{2}$.

Proposition 6.4

$\tau.P$ $\approx\tau$ P $\alpha.\tau.P$
$\approx\tau$

$\alpha.P$

$\tau.P+P$ $\approx\tau$
$\tau.P$ $\alpha.(\tau.P+Q)$ $\approx\tau$ $\alpha.(\tau.P+Q)+\alpha.Q$

$\langle t\rangle.\tau.P$
$\approx\tau$

$\langle t\rangle.P$

日

On the basis of the two equivalence relations, we can have sound and complete equational
laws over finite processes on $\prime p_{s}$ and \mathcal{P}_{a} , but we leave them to other papers.

38

