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Stepwise Synthesis of Partial Specifications
preserving Strong ({21, {);)-Equivalence
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abstract : In this paper we present a partial equality called strong (Q1,Qs)-equivalence
between two partial specifications SP; and SP,, denoted by SP, g,~q, SP, based on an
extended bisimulation relation. The parameters €2; and 25 are the sets of available actions
in SP; and SP,, respectively. Furthermore we present a synthesis method of the two par-
tial specifications SP; and SP» into a specification SPjs such that SPis g,u0,~q, SP1 and
SPiy g,u,~0, SPa. SPi is called the principal strong (21, $s)-synthetic specification of SPy
and SP,, and it is denoted by SPyo~(SP; q,[]q, SPs2). For example, this synthesis method is
used for stepwise refinement of partial specifications preserving strong (€23, (22)-equivalence.

1 Introduction

A specification of a large system is generally too complex for users (and also designers) to
understand, and users are often interested in some actions. Therefore it is useful for users to
extract partial specifications about their interesting actions from the complete specification
by hiding uninteresting actions. On the other hand, it is also needed to stepwise synthesize
partial specifications required by many designers.

In this paper, we propose a partial analysis method in models based on labeled transition
systems (LTS). A set of interesting actions is called a filter ranged over by Q. An action
observed through the filter is changed into an internal action 7, if the action is not included
in the filter. '

We explain the partial analysis by using Figure 1. The transition graph SP shows the
specification of a system SY'S. Each node represents a state and each labeled arrow represents
a transition by the label which corresponds to an action. In this paper we use the sequential
process expressions of a fundamental process algebra CCS[1] for describing specifications as
follows: def

SP = a.(b.c.SP+b.7.SP)+ a.(b.1.SP + 1.c.SP)
where the period ‘.’ is a sequential combinator and ‘4’ is a choice combinator. 4 is used for
defining the left side specification constant as the right side specification, thus it is a recursive
definition.

SP; is a partial specification of SY'S observed through the filter {a,b}. In this case the two
states (3) and (4) in SP are not distinct in SP;, because ¢ is changed into 7 through {a,b}.
Although it is expected that two sequential transitions by 7 from (2) to (0) via (5) in SP; is
reduced to one transition by 7, the reduction is not considered in this paper. The reduction
of internal actions based on weak equivalence of CCS is the next work, and we first clarify
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Figure 1: Partial specifications (SPy, SP,, SP3) and a synthetic specification SP2

the effect of the filter based on strong equivalence. SP, and SP; are partial specifications
observed through {a,c} and {b, c}, respectively.

We give a partial equality called strong (Q;,Qs)-equivalence denoted by o, ~q,, for relating
such partial specifications, where €; and (2, are filters used for getting the left side partial
specification and the right side one, respectively. For example, SP; and SP, are strongly
({a,b}, {a, c})-equivalent and it is denoted by

SP1 {ap}~{act P

Braces and commas of filters are often omitted such that {a, b} is written as ab.

Next, we discuss how to reconstruct the complete specification by synthesizing partial speci-
fications. For the example of Figure 1, it is expected to produce a synthetic specification S P9

such that _
SPi2 gbe~ap SP1 and SPig gpe~ac SPs. (%1)

In this case, it is a problem that there are many synthetic specifications satisfying (*;) and
they are always not strongly (abc, abc)-equivalent. For example, the following specifications
satisfy (*1), but SP12 abcr//achPl’Q.

S P, def a.(b.c.SP13 +b.7.5P13) + a.(b.7.SPi2 + 1.c.SP12 + b.c.SPm + 7.7.5Py3)
SPl, ¥ a.(b.c.SPly + b.7.SPl,) + a.(b.c.SPl, + 7.7.SP.,)

It is also important to notice that SPig apepe SPs and SP{y abe?pe SP3. This inequality
complicates the next synthesis of SP;» and SP3, thus stepwise synthesis of specifications is
difficult.

‘In order to overcome this problem, we attempt to describe a comprehensive specification

which includes all the synthetic specifications satisfying (x;). Thus a synthetic specifica-
tion satisfying (*;) can be selected form the comprehensive specification. For describing the
comprehensive specification, we present a multi-labeled transition system abbreviated to a
multi-LTS. A transition of the multi-LTS has the following form

(al 302 7"'7a'n)

P (P, Py, P,)
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di Py
da
P : Pz
B d, n H

Figure 2: A transition in the multi-labeled transition system (multi-LTS)

and its transition graph is written as shown in Figure 2. It intuitively means that P can
perform an action «; then behaves like P;, P can perform an action as then behaves like Ps,

-, and/or P can perform an action a,, then behaves like P,. The ‘and/or’ is important. For
example the following specification AB

AB -, 0. 0)
can perform a then stops and/or can perform b then stops.

We present a specification language SPEC" based on the multi-LTS. SPECY consists of
the sequential combinators of CCS and a new combinator V called an Andor combinator.
Intuitively PV @ behaves P or Q or P + ). We often say that P V Q includes P, Q, and
P + Q. For example, the above AB can be described as follows:

AB % (a.0) v (b.0)
The important difference between V and + is explained as follows:
¢ (a.0) v (b.0) can perform a and/or b.

¢ (a.0) + (b.0) can perform a and b.

If a specification contains no Andor combinators, then it is called a ground specification.
Thus ground specification can be described in CCS. For example, (a.0) + (b.0) is a ground
specification. A specification of a practical system is always a ground specification. Specifi-
cations containing Andor combinators are used for describing medium specifications during
design process.

Strong (€21, Q;)-equivalence previously introduced for ground specifications is extended to
SPEC". Intuitively, two specifications P and Q are strongly (21, Qs)-equivalent, denoted by
P q,~q, Q, if Py q,~q, Qo for some ground specifications P, and Q, included in P and Q,
respectively. For example,

(@.0) V (b.0) apc~abe (a.0) V (c.0),

because both of them include a ground specification (a.0).

Another equality called strong (€01, Q2)-full-equivalence is also given. Intuitively, two specifi-
cations P and @ are strongly (2, Q;)-full-equivalent, denoted by P q,~q, Q, if Py q,~q, Qo
for any ground specifications Py and @ included in P and @, respectively. For example,

(a.0) V (b.0) ghe~ape (6.0)V (a.0),

(CLO) v (bO) abc¢abc (CLO) \4 (0'0)7

(@.0)V (0.0) aeabe ((a.0)V (5.0)) + (a.0).
The reason of the last inequality is that (a.0) V (b.0) includes a ground specification (5.0) but
((a.0) v (b.0)) + (a.0) does not include (b.0).

Then we present a relation called the principal strong (1, Qs)-synthetic specification P of
two specifications @; and @2, denoted by P=(Q; o,[]q, @2). For the example of Figure 1,



42

Figure 3: The transition graph of SP[;

the following specification SPJ} is the principal strong (ab, ac)-synthetic specification of SP,
and SP. 2,
SP % 4.(b.c.SPiy 4 b.7.SPis)
+a. ((b.C.SPlz V b.T.SPu) + (T.C.S.Plg’ \Y% T.T.SP]Q)
+(b.c.SP;3 V 7.c.5P12) + (b.7.SPpa V 1.7.5P2)),

thus SPQ 2 (SP; s ]ac SP2). Figure 3 shows the transition graph of SP[}. In Section 4
it is shown how to check whether a specification is the principal strong (£21,2)-synthetic
specification of two specifications, and how to produce the principal strong (Q4, Q2)-synthetic
specification from two specifications. The principal strong (Q1, Qz)-synthetic specification 18
uniquely decided.

The main property of the principal strong (£, {22)-synthetic specification is shown in Propo-
sition 4.1. For the example of Figure 1, the following relation holds by Proposition 4.1. For
any ground specification SFp,

SPO abc ™ achPB iff SPO achabS-Pl and SPO abe ~ac SPQ

Thus, all the ground specifications included in SPj} satisfy both SP; and SP,, and they are all
the ground specifications satisfying both SP; and SP,. Furthermore SP; can be synthesized to
SPL, by SPlhs2(SP]} abe[16c SP3). Then the following relation holds by Theorem 4.4, because
SP[} ae~be SPs. For any ground specification .S F,

SPy ape~abe SP3 iff SPy abe~ab SP1, SPy abe~ac SP2, 20d SPy abe~be SPs.
Thus stepwise refinement of specifications is possible.

The outline of this paper is as follows: In Section 2, we define the syntax and the semantics
of SPEC". In Section 3, strong (Q1,Q2)-equivalence is defined. In Section 4, principal strong
(1, Q,)-synthetic specifications are defined. In Section 5, we discuss partial analysis and
synthesis methods already proposed. In Section 6, we conclude this paper.

2 Definition of specifications

We use expressions like CCS for describing behavior of specifications. They are sequential
processes of CCS with Andor combinators introduced in Section 1. We call the specification
language SPEC". In this section, we define the syntax and the semantics of SPEC".

We assume that an infinite set of names N ranged over by a, b, - - -, is given. The set of actions
Act ranged over by a, 3, - - -, is defined as Act = N'U {7}, where 7 is a special action called an
internal action not included in A/. We also assume that a set of specification constants (also
called Constants) K ranged over by A, B, - - -, is given. Then, the syntax of SPEC" is defined.
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Definition 2.1 The set of specifications P is the smallest set including the following expres-

s10ns: ' A : Constant (A € K)
0 : Inaction
a.P : Prefix (a € Act)
P+ @ : Choice
Pv Q@ : Andor
where P and QQ are already in P. i

A Constant is a specification whose meaning is given by a defining equation. In fact, we

assume that for every Constant A € K, there is a defining equation of the form A o P, where
P € P. To avoid too many parentheses, combinators have binding power in the following
order: Prefix > Choice > Andor.

We also define ground specifications Py with the following syntax:
Po i= Ay |0 | aPy | Ph+ P
where Ay € Ky C K and a € Act. The set of ground specifications is denoted by Py. We

assume that for every Constant Ay € Ky, there is a defining equation of the form A def Py,
where Py € Py.

We use the follbwing short notations:
. _fo (I=0) ‘
E“%ZEH—{PHJHP“+REU:“ﬁf”mn

. _]o (I=0)
WRJE”={HVEV~NRIU=ﬂanM)
Next, in order to define the multi-labeled transition system introduced in Section 1, an
operator ( ) for any set S is defined as ,
(S) = {{e1, €9, -+, €n) s €; € S,n > 1}.

(S) is called the multi-set of S. Three functions over a multi-set (S) are defined.

Definition 2.2 Let s,s' € (S), e;,¢; € S, and n,i € {1,2,3,---}.

o (#s5) is the length of s. Thus #(e1, €2, -+ ,€,) = n.
o (s<i) is the i th element of s (i € [1,#s]). Thus (e1,ez, -, €n) i = €;.
o (s;5') is the concatenation of s and s'.

Thus {e1, ez, -, n); (€}, €5, -, €)= (€1,€2,+ ,€n, €1, €5, €n).

where [1,n] is an abbreviation of an integer set {1,2,---,n}. 1
Then we define multi-labeled transition systems (multi-LTS).

Definition 2.3 A multi-LTS is a triple (S, L, —) where:
1. S is a set of states,
2. L is a set of labels,
3. — is a set of transition relations such that
N {(e,u,s): e € S,u € (L),s € (S), #u = #s}
We write e — s for (e,u;s) €—. 1
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The semantics of SPECY is given by the multi-LTS (P, Act,—), where — is defined in
Definition 2.4. The set of multi-specifications (P) is ranged over by M, N,--- and the set of
multi-actions (Act) is ranged over by p, v,

Definition 2.4 The transition relation — between a specification P, a multi-action u, and
a multi-specification M is the smallest relation satisfying the following inference rules. Each
rule is to be read as follows: if the transition relation(s) above the line are inferred and the
side condition(s) are satisfied, then the transition relation below the line can be also inferred.

Act————— Choice; —L—=M
), (py TP b M
m
Conl = M 4 & py Choice,— 92— _

P M Q-5SN

Andor T
PVQ@-— M;N

where ¢’ used in Andor is the concatenation function given above. I

3 Partial equalities

In this section two kinds of partial equalities in SPECY are defined based on extented bisim-
ulation relations.

First, we define a function for filtering actions.

Definition 3.1 Filter function ( / : Act x 2V — Act ) is defined as follows: For any o € Act

If o € Q, then « is called a valid action for 2, otherwise « is called an invalid action for Q.

Next we define a function called Selective function to select the valid action from two actions
observed through two filters. If two actions are inconsistent Wlth each other, then Selective
_ function returns the symbol L (¢ Act).

Definition 3.2 Selective function e : Act x 2V x Act x 2V — Act U{L} is defined as follows:
For any a; € Act and Q; C N,

al/ﬂl (al/ﬂl = a2/92) (Cl)
a1 (061 €N — 9, aso ¢ QQ) (02)
Q9 (032 € QQ — Ql,al ¢ Ql) (03)
L (otherwise) (C4)

(ah Ql) L4 (012, QQ) =
|

(C2) represents a selection of the valid action a;. The condition (e € 5 — ) of (C2)
represents that «; must be invalid for s, in spite of ay ¢ o, because ay should be equal
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to a; if a3 € Qy. (C4) represents the three cases that (1) a; € Q3 NNy and oy # ap or (2)
ag € Q1 Ny and o 75 Q9 OT (3) a1 € 1, as € (9, and a; # as.

For example, the following applications show properties of Selective function.

(a,ab) e (a,ac) =a by (C1) (b,ab) e (e,ac) =b by (C2)
(d,ab) e (e,ac) =1 by (C1) (a,ab) @ (1,ac) = L by (C4)
(1,ab) e (e,ac) =1 by (C1) (b, ab) e (c,ac) =L by (C4)

Then, (;,Qs)-consistency about actions is defined as follows. If two actions a; and as
observed through two filters Q; and s, respectively, are consistent with each other by means
of Selective function, then they are (Q,Qs)-consistent and it is denoted by (a1 o,=q, @2),

thus .
o=0, = {(a1,02) : (a1, ) @ (2,) # L}
We show several properties of Synthetic function.

Proposition 3.1 For any a; € Act, Q; CN,

(1) If (al, Ql) ] (Olg, Qz) =, then (011, Ql) [ ] (a,ng) = Q.

(2) If (a1 q,=q a),(a a=q, as),and Q; CQ, then (oq o, =q, 02).

(3) If (041 Q;ig a)',(a giQQ a2),and ng QQ, then (Oél,Ql) L] (ag,Qz) = a/le.
(4) ((0[1, Ql) ° (CMQ, Qz), 912) ® (0{3, 93) = -(Otl, Ql) L (((12, QQ) L] (OZ3‘, Q3), 923)

where Q19 = 7 U Qy and Qg = Ny U 3. ]

(1) means that the selected action « is consistent with a;. (2) is conditional transitivity.
(3) is useful for synthesis of two partial specifications. (4) means that the selected action does
not depend on the order of the selections.

Now we define two kinds of partial equalities by using (2, {2)-consistency.

Definition 3.3 Let Q;,Q C N . A binary relation S C P X P over specifications is a strong
(Q4, Q2)-bisimulation, if (P,Q) € S implies that

(i) whenever P 5 M then, for some N and v, Q =~ N and
for some i and 7, (u<i g, =q, v<j) and (M ai,Naj) €S,
(11) whenever Q@ — N then, for some M and p, P £ M and
for some i and j, (u<i g,=q, v<j) and (M ai,N<aj) € S. .
Definition 3.4 Let Q;,Q CN. P and Q are strongly (21, Q2)- equwalent written P q,~aq,
Q, if (P,Q) € S for some strong (1, Qs)-bisimulation S. 1

Definition 3.5 Let Q;,Q C N. A binary relation S C P X P over specifications is a strong
(Q4, Qy)-full-bisimulation, if (P,Q) € S implies that

(i) whenever P £ M then, for some N and v, Q - N and
(a) for alli € [1,#u], for some j, (1 <1 g,=q, v<j) and (M ai¢,N<aj) €S,
(b) for all j € [1,4v], for some i, (u<i g, =q, v<j) and (M <i,N<j) €S,
(i4) whenever @ - N then, for some M and p, P -5 M and
(a) for all i € [1,#u], for some j, (u<i g,=q, v<j) and (M <i,Naj)€S,
(b) for all j € [1,#v], for some i, (u<i g, =q, ¥<4j) and (M ai,N<j) €S, .
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Definition 3.6 Let Q;,Qs C N. P and Q are strongly (4, Qs)-full-equivalent, written
Pa,~0,Q, if (P,Q) € S for some strong (1, Qp)-full-bisimulation S. I

The following relations clearly hold from the definitions.

eForany P,Q € P, P g,~q, @ = P q,~q, @
e For any Py, Qo € Po, Py 0,~0, Qo © P a,~a, Qo
e For any Py, Qo € Py, Po v~n Qo & Py~ Qo

where ~ is strong equivalence defined in [1]. Although neither o, ~q, nor g, ~q, is an
equivalence relation, the following conditional reflexive, symmetric, and transitive laws hold
for 21702

Proposition 3.2 For any P,Q € P, Q; C N, and Ry € Py,

(1) P g,~a, P
(2) IfP Q170 Q: then Q Q™Y P
(3) IfP 270 Ry, Ry Q~0, Q, and 2, C Q, then P Q70 Q ' 1

Proposition 3.2 also holds if qvq, is replaced to q~q,. Furthermore a medium Rq of (3)
does not have to be a ground specification for g, ~g,, thus for any R € P, if P g~ R,
R g~q, @, and ©; C 2, then P g,~~q, Q. '

4 Synthetic specification
In this section, we give a synthesis method of specifications preserving g, ~q,. We explain
how to synthesize specifications by using the following example.

A.=a.7.0+b.7.0+ 7.c.0 By=a.17.0+7.7.0 + 7.c.0 (%)
Bi=a70+b70+770 B3=77.0+4+b7.04+7.c.0 2

where = represents syntactic identity. B;, Bs, and Bs are partial specifications of the complete
specification A., thus for any i,j € {1,2, 3},

A; a~gq, B;and B; a.~q; Bj
where Q = {a,b,c}, Q; = {a,b}, Q2 = {a,c}, and Q3 = {b, c}.

At first, we consider only ground specifications for simplicity. A simple synthesis method is
to use the following combinator.

Q1 fo) Q1) Q2 {o2) (Q3) (
Q1 anlls @2 <25 (@) 010, @5)

This synthetic specification @ ,||n, @2 performs valid actions of ¢); and @2, but the following
expected equation does not always hold.

o) 91”92Q2 Q1277 Q: (7' € {1’2}) (*3)

where Q12 = Q; U Q. For the example (o), the result of synthesis of By and B; by go||q, is
shown as follows:

SYN (a1,8) o (a2, Q) = a)
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By atf|acB2 ~ a.7.0 + b;T.O +7.¢c0+bc0+77.04+004+ 7.0

The last part (.0 + 7.0) is important and breaks the expected equation (*3).
An easy method to guarantee (*3) may be to modify the combinator q||a, as follows:

GLB Q at <Q1) Q2 (02) <Q,2) < (Ctlyﬂl) [ ] (()5,2792) = Q, ) ,
Ql Ql[]Q2Q2 _) (Ql Q1[]QzQ2> Ql BN Q2

but this definition circulates, because g, ~q, should be defined in terms of our transition
relations. Therefore, a relation is defined instead of the combinator.

Definition 4.1 Let Q;,Q C N. A triadic relation T over ground specifications is a strong
(€21, Q2)-GLB relation, if (P,Q1,Q2) € T implies that

(i) whenever P o, (P') then, for some Q1,Q5, a1, and o, :
g (Q1), Q2 2 (@3), (a1,) @ (a2, ) = 0, Q) o,~a, @), and (P',Q1,Q4) € T,
(i#) whenever Q1 23 (Q1), Q2 2 (Qh), (an, ) @ (02, %) = a # L, and Q) a,~a, @,
then, for some P, o, (P and (P',Q7,Q%) € T. .

Definition 4.2 Let Q1,Qy C N. P is the strong (Q,3)-GLB specification of Q, and Q,,
written P~ (Q1 o,[la, Q2), if (P,Q1,Q2) € T for some strong (1, Q2)-GLB relation T . 1

The strong (21, Q2)-GLB specification P of @; and Q, is uniquely decided from @Q; and Q-
up to a~yr, and the following relation holds.

If P~(Q1af]e, @2) and Q; o,~q, Q2, then P g, ug,~q; Q: (1 € {1,2}) (*4)

For the example (x2), we can obtain the strong (ab, ac)-GLB specification A;5 such that
A2~ (B1 abllac B2), considering Definition 4.2.

A12_0T0+b7'0+7'00+b00+7'7'0

Then AIZ abec ™ ab Bl and A12 abc ~ac BQ by (*4)

Unfortunately strong (£, 2s)-GLB specifications are not useful for synthesis of three or
- more specifications, namely stepwise refinement. For example, (*4) can not be used for the
synthesis of A;2 and Bjs, because A1 qbe b B3.

The problem is that there are many synthetic specifications like A’ satisfying A’ gpc~a Bi
and A’ g ~q4c Ba. The complete specification A, is one of them. Therefore it is expected to
produce a comprehensive specification which includes all the synthetic specifications like A’.
For the purpose a multi-LTS is needed and SPEC" is used.

Now we define principal strong (£, Q2 )-synthetic specifications in SPEC".

Definition 4.3 Let Q1,9 C N . A triple relation T C P3 over specifications is a principal
strong (1, Q2)-synthetic relation, if (P, Q1,Q2) € T implies that
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(1) for all M and p, whenever P-X5M then,
(1) for some (N1, v1), @1— Ny and
(a) for all (N}, v4, §', k'),
 whenever Qz—iNé, v 47 q=q, vy k', and Ny aj' q,~q, Ny ak', then
for some i, (v <5, Q) e (Vyak!, Q) = p<i and (M <i,Ny a5, Ny<k') € T,
and _
(b) for all @' € [1,#p], for some (Nj, vy, ', k'), N1 <j' q,~q, Ny <k,
Q2N (4, ) » (Vy <K', Qp) = pai’, and (M <i', Ny ', Ny <k') € T,
or
(2) for some (Na, 1), Q2—> N, and
(a) for all (N1, v1, 7', K'),
whenever Q4 —Vi—->N{, Va7 q=q, Vo <k’, and N{aj' q,~q, Na<k', then
~ for some i, (V] <7, Q1) @ (va<k', Qo) = p<i and (M <i,N{aj',Na<k') €T,
and
(b) for all @' € [1,4tu], for some (N1, vi, 5, k'), N7 45" q,~q, N2 <k,
Q1L NI, (4, 1) o (v <K', Q) = p<i', and (M <i', Nj aj', Ny<k') € T,
and
(11) for all (N1, Na, v1, va, §, k),
whenever QI_KI_)NI, QQ_V%")NQ, 141 <1j QliQ2 1) <lk, N1 <|j 01~ 0 N2 <1k', then
(1) for some (M, ), P-->M and
(a) for all (N}, vh, j', k'),
whenever Qo V—5>N§, v <4j o =q, Vy<ak', and Ny aj' q,~q, Ny k', then
for some i, (v1 <j', ) e (Vh<ak', Qo) =p<iand (M <i,N1<j',Ny<k') €T,
and
(b) for all i' € [1,#u], for some (N3, v5, §', k'), N1 <3 q,~a, Ny <k,
Q5N (114, ) o (V< k', Q) = p i’ and (M <i', Ny <j', Ny <k') € T,
and _
(2) for some (M, ), P-*>M and
(a) for all (N], v, §', k'),
whenever Qq —iN{, vy <47 a=q, V2 <ak’, and N{«j' q,~q, N2 <k, then
for some i, (V, 97, Q1) @ (va k', Q) = p<i and (M <i,N{<j',Na<k') € T,
and '
(b) for all @' € [1,#u], for some (N1, v, j', k'), N{ aj" a,~q, N2 <k,

Qb N, (497, 00) 0 (o K, Q) = i, and (M <, Njaf', Noak) € T.

Definition 4.4 Let Q1,Qs C N. P is the principal strong (Q1,Qs)-synthetic specification of
Q, and Qq, written P=~(Q o,[1a, @2), if (P,Q1,Q2) € T for some principal strong (2, s)-
synthetic relation T . ]

Definition 4.3 bases on the idea of Definition 4.1, thus selection of valid actions and preser-
vation of g,~gq,.

- Then the expected relation is obtained.
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Proposition 4.1 Let P~(Q1 q,[]q, Q2), @1 a,~a, @2, and Q12 = O U Q.
For any ground spectfications Py € Py,

PU Q12702 P iff PO QﬁNQl Ql and PO Q1270 QZ-
Proof

(=) We show that the following S is a strong (£2;2, Q% )-bisimulation.
S ={(Py,Q1): Py € Py,AP, Q2 € P,P=(Q1 oy, @2), Q1 .~0; Q2, Po 012~a,, P}

Let (Py, Q1) € S. Thus, P, is a ground speéiﬁcation, and for some P and Q2, Q1 g,~a, Qo,
PO Q12’\.1912 P7 a’nd PE(QI Q]lﬁlﬂz Q?)

o (i) Let P, <25 (P). Since Py q,,~q,, P, for some M and y, we have that P > M, for
some %, (& q,,=0q,, #<t) and Py q,,~q,, M <i. This implies the following either case.

— By Definition 4.3(i)(1)(b), since P~(Q; q,[]a, Q2), for some N; and vy, we have
Ql = N1 and for some N2, Vs, j, and k', Q2 2, NQ, (l/ldj,ﬂl).(I/QQk,QQ) =M<12,
Niqajg a2 ~0, Ny 4k, and M<1Z".:‘(N1 a7 QIHQ2 Ny « k,') Thus (Pé,Nl Q]) €S,
Here, by Proposition 3.1(1), (v1 <4 j o,=q,, 1 <1). Hence, by Proposition 3.1(2),
(a =0, U1 4])

— The case by Definition 4.3(i)(2)(b) can be shown by the same argument as the
above case.

e (ii) Let Q; =% N;. Since Q; g,~q, @2, for some N, and 15, we have that Qy =2 No,
for some j and k, (v1 9j a,=q, v2<k) and N1 <) q,~q, N> <k. By Definition 4.3(ii)(1),
since P~(Q; o,[ 1, Q2), for some M and p, we have P £ M. Since P, q,,~gq,, P, for

some Pj and «, we have that Py Lo, (Pp), for some ¢ € [1,#u], (o 0,,=0,, #<4) and

P} a,,~q,, M <i. By Definition 4.3(ii)(1)(b), for some N} and 4, 5/, and k', Q2 — N&,
(v14j’, )0 (Vhak!, Qo) = p<i, Ny<aj' g,~q, Ny<k', and M <«iz(N; <7 q,[1a, Ns<k').
Thus, (Pj, N1 «j') € S. Here, by Proposition 3.1(1), (11 < j' g,=q,, 1 <i). Hence, by
Proposition 3.1(2), (a g;,=q, ¥1<J')-

(<) We show that the following S is a strong (Q;2, £212)-bisimulation.
S ={(Fo,P) : Py € Po,3Q1,Q2 € P, P=(Q1 o,[]0, Q2), Po ais~a, Q1, Po a1,~0, Q2}

Let (Pp, P) € S. Thus, P, is a ground specification, and for some Q; and Qs, Py o,,~q, @1,
Py 0,,~0, Q2, and P=(Q1 ,[]a, Q2)-

e (i) Let Py Lo, (P}). For each n € {1,2}, since Py q,,~q, Qn, for some N, and v,, we

have that Q, == N, for some j and k, (a q,,=q, ¥1 <4J), (@ q,=q, V2 k), P} a,,~a,
Ni1«j, and Py q,,~q, No<k. By Proposition 3.1(2), (11 <j o,=q, v2<k). By Proposition
3.2(3), N1 <j q,~q, Na <k. Thus, by Definition 4.3(ii)(1)(a), since P~(Q; o,[]q, @2),
for some M and p, we have P %5 M and for some i, (v; <5, Q1) o (1o 9k, Q) = p<i
and M <«i~(Ny<j o,[]a, N2<k). Thus (P§,M «i) € S. Here, by Proposition 3.1(3),
(11 97,Q1) o (12 <k, Qs) = a/q,,. Hence, (a q,,=q,, 1 <i), because a/q,, = 1 <.

e (ii) Let P <% M. This implies the following either case.
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— By Definition 4.3(i)(1), since P=~(Q1 o,[la, @2), for some N; and 1/1, We have

Q, 2 Ni. Since Py o, ~q, @1, for some o and P}, we have that P, 2 (PO)
for some j, (a q,,=q, ¥1 <j) and Pj q,, ~o, N1 <j. Since Py qy, ~q, Q2, for
some N, and v,, we have that Qy —= N,, for some k, (a q,, =q, V2 <k) and
P} a,,~q, No <k. By Proposition 3.1(3), (11 <7,) ® (12 <k,Q2) = a/q,,- By
Proposition 3.2(3), N; < j o, ~q, Na <k. By Definition 4.3(i)(1)(a), for some ¢,
(1/1<1j7 QI)O(VQQIC, Qz) = /.I,4'l and MQZE(quj Qlﬂg2 NQQk). ThllS, (P(;,MQZ) €S
and (a Q1= 1< Z)

— The case by Definition 4.3(1)(2) can be shown by a symmetric argument with the
above case. 1

Next, we give two important propositions. Proposition 4.2 shows that the principal strong
(1, Q2)-synthetic specification P of two specifications Q; and @ is uniquely decided from @

and Q2 up to p~n.
Proposition 4.2 Let Pio~(Q1 o,[la, Q2). For any specification P € P,

P yy PfE P2(Qra,[]e, Q2)
Proof We show that the following 7 is a principal strong (£2;, Q2)-synthetic relation and S is
a strong (N, NV)-full-bisimulation.

T ={(P,Q1,Q2) : 3P13 € P, Pia nn P, P122(Q1 [0, Q2)}
S ={(P12,P) : 3Q1,Q2 € P,P=(Q1 o[ |0, Q2), Pra=(Q1 o[ 10, @2)}

The proof is omitted because of lack of space. B

Proposition 4.3 shows how to produce the principal strong (£2;, {22)-synthetic specification
of Q1 and Q5. In fact, S’PSS;(QI, Q2) can be efficiently produced from @; and @Q», if @; and
Q)2 have finite states.

Proposition 4.3 S’PSS;(Ql, Q) is defined as follows:

SPSH(Q1,Q2)=  T{V{a.SPSG(Q}, Q%) : (o, @4, Q) € Egl (1, N1,Qa)}
' : (11, N1) € D(Q1)}
+ Z{V{O[S'Psgé( ,1aQ12) : (a7QI27 ,1) € E(S}; (VQaN27Q1)}
: (VZ)NQ) € D(Q?)}
D(P) = {(u, M) : P - M)}

Qz(,u,M Q)={(a,P',Q):3(v,N,i,7),Q = N, (p<1,Q1) e (raj, Q) = a,
Maig~q, Naj, PP=M<i, Q =N«j}

Then, SPSHL(Q1, Q2) = (Q1 e e, Q2)-
Proof We show that the following 7 is a principal strong (21, Qs)-synthetic relation.

T = {(SPSG:(Q1,Q2),Q1,Q2) : Q1,Q2 € P}
Let (P,Q1,Q2) € T. Thus P = SPS2(Q1, Qs).
(i) Let SPSg!(Q1,Q2) — M. By Choicey 2, it implies the following either case (1) or (2).
(1) For some (11, N1) € D(Q1),
V{a.SPSG(Q1, Qh) : (o, Q1, Q) € EG2 (1, N1, Q2)} - M.
We have Q; — Ny, because (v, N1) € D(Q1).

where
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e (a)Let Nj, 4, j', and k' such that Q 22, Ni, v1<)' g, =q, V4<k’, and N1<j’ q,~q, Ny<k'.
In this case, (a, Ny <j', Ny k') € Eg!(v1, N1, Q2), where (v1 <5, Q1) o (<K', Q) = a.
Thus, by Andor and Act, for some i € [1, #4], we have u<i = & and M<i = SPSE (N1«
J',N5<k'). Hence, (11 <4j',Q1) e (Vh<k', Q) =a = pu<iand (M <3, Ny <j',Nj<k') e T.

e (b) Let i€[1, #u]. By Andor and Act, for some (a, @, g)eEg;(z/l,Nl, Q-), we have

p<i=oand M«i = S’PS%;( 1, @5%). Thus, for some N3, v5, j', and k', we have Q- 22,
Ny, (115, Q1) @ (U <k’ Q) = @, Ny <j’ g,~q, Nj<k', Q) = N1 <j’, and Q5 = Ny <k,
because (a, @}, Q%) € Eg;(yl,Nl,QQ). Hence, (11 <j',Q1) o (V4 <k',Q2) = a = p<iand
(M<i,Ny<aj' Ny<k')eT. _

(2) For some (v, N3) € D(Q3),
V{a.SPSG(Q1, @) : (@, @4, QY) € Egl(va, N2, Q1)} = M.
This case is symmetric with the case (i)(1).
(ii) This case can be shown by a similar argument to the case (i). v '

We can check that P ~(Q; o,[]q, @2) by finding a principal strong (21, Q3)-synthetic relation
7 such that (P,Q1,Q2) € 7, but Definition 4.3 is not easy. Proposition 4.2 and 4.3 imply
another method for the check. Thus, we can check that P~ (Q o,[]a, @2) by checking that

P yop SPSGHQ1, Qo).
Finally a theorem for stepwise synthesizing n specifications is given.

Theorem 4.4 Assume that n > 1, for any ground specification Py € Py,
Py o~a P, iff  for anyi € [1,n], Py a~a; Qi

Pn Q1 Qn+1: Pn—!—li(Pn QHQ,,_H Qn+1); and Qi Cc Q (7' € [1,”])
Then, for any ground specification Py € Py,

Py qr~qr Poy1 iff foranyi€[l,n+1], Py qr~a, Q:

where ¥ = QU Qpy;.
Proof This result can be easily shown by Proposition 4.1. '

In Theorem 4.4, if P, q#q,,, @nt1, then there is no ground specification P such that Py o' ~q,
Q; for any ¢ € [1,n + 1] by Proposition 3.2(3). Therefore P, a~q,,; @n+1 is needed.

For example, Theorem 4.4 is used for the following situations.

1. Reconstruction of the complete ground specification Py from many partial specifications
Q: (i € I), such that Py g ~q, Q; and U;c; % = Q. We produce a specification P; by
recursively using Theorem 4.4 and Proposition 3.2(3) like Pr o~q Py and Pr o~q; Qi.

2. Refinement of a specification P,, by synthesizing a new requirement ),+;. Theorem 4.4
guarantees that the refined specification P,; satisfys all the requirements (); which P,
satisfys, thus preservation of the requirements.
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Finally we apply our synthesis method to the example (*,). By Proposition 4.3, the principal
strong(ab, ac)-synthetic specification A7, of B; and By is produced as follows:

A, = SPS®(By, By) = a.7.0 +(b.7.0 V b.c.0) + (7.c.0 V b.c.0)
+(b.7.0 V 7.7.0) + (1.c.0 V 7.7.0)

Proposition 4.1 guarantees that Ac abe ~abe AT because Ac qbe ~ab B1 and A¢ abe ~ac B,.
Furthermore by Proposition 4.3, the principal strong (abc, bc)-synthetic specification Alys of
A", and Bjs is produced as follows:

Ny =SPSY (A, B3) =a.7.0 +b.7.0+ 7.c.0
+(a.7.0V 7.7.0) + (b.7.0 V 7.7.0) 4+ (7.c.0 V 7.7.0)

By Proposition 3.2(3), we have that A%y abe ~be Bg Thus, by Theorem 4.4, for any ground
specification Ay,

Ay abe~ape Ay iff  for any i € [1,3], Ag abe~a; Bi (*5)

The following two specifications are all the ground specifications Ag up t0 abc~abe such that

AO abc™ abe Alys.
1% (1) Apn=a7.04+b7.0+7.c0

(2) App=a7.0+b.7.0+4+ 7.0+ 7.7.0
The first specification Ag; corresponds to the complete specification A.. The second specifi-
cation Age is also a candidate satisfying B, B, and Bs.

5 Related work

Decomposition and refinement methods of specifications have been proposed, for example in
[2, 3]. In [2], algorithms to decompose a specification into two parallel processes are presented
in LOTOS. The algorithms are useful for implementation. Our strong (£, {2s)-equivalence is
used for extracting partial specification about interesting actions, thus the purpose is different
from one of [2].

In [3], a stepwise refinement of specifications is proposed based on a new parallel combinator
in LOTOS. The synchronous rule of the combinator is

Q->Q Q>

!
Sync P Q2(mﬂu2=umA=uzﬂA).
Q1]4Q2 —— Q']4Q5
The labels p on the transitions are sets of actions {aj,---,a,}. It increases greatly the

simplicity and modularity of refined specifications. Our refinement intuitively bases on GLB
rule introduced in Section 4. The most important difference between GLB and Sync is
that GLB has the condition Q] o,~q, @5. The condition is available for specifications with
indeterminate choices and produces a refined specification P such that P q,uq,~a; Qi-

In order to partially analyze processes, we already proposed a process algebra CCSGI4].
In CCSG we approximately analyze processes by neglecting unimportant distant actions. A
disadvantage of CCSG is used for only specific systems, where actions has information about
the importance and the position. SPECY presented in this paper is widely applicable to
models based on LTS.
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6 Conclusion

In this paper we have presented strong (£1;,);)-equivalence o, ~q, to relate partial speci-
fications and have presented principal strong (£2;,2s)-synthetic specifications to synthesize
partial specifications preserving grq,. Theorem 4.4 is used for stepwise refinement of speci-
fications and it guarantees that a new requirement does not break previous requirements. If
P is the principal strong ({2, {22)-synthetic specifications of @; and ()2, then all the ground
specifications included in P satisfy both @Q; and @),, and they are all the ground specifications
satisfying both @; and Q.
We have future works as follows:
1. The most important future work is to develop a weak version of principal strong (2, Qs)-
synthetic specifications, by neglecting internal actions as far as possible. Interesting
examples will be shown by using the weak version.

2. We should clarify more properties of principal strong (21, s)-synthetic specifications.
For example, it is expected that Definition 4.3 of principal strong (€, {2s)-synthetic
specifications is slightly weakened, because there are synthetic specifications P such
that, for any ground specifications P,

Py g,u0,~a,u0, P it Py 0,u,~a, G and Po o,u0,~0e, (2
and P#(Q1 q,[]a, @2)- The example (x2) in Section 4 is used here again. The following
specification AT satisfys (x5), but AThs % (AT, ase[se Bs)-
A, =a.7.0+b.7.0 + 7.c.0 + (a.7.0 V 7.7.0)

3. We will develop a verification tool for strong (€, £22)-equivalence such as the concurrency
workbench [5] and a synthesis tool for producing principal strong (€4, s)-synthesis
specifications. '
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