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Abstract

Homological aspects of equivariant modules and sheaves are dis-
cussed. Construction of $Ext_{A}$ and $Tor^{A}$ in the category of $(G, A)-$

modules is the main subject. As an application, Matijevic-Roberts
type theorem on homological properties such as Cohen-Macaulay
property for graded noetherian rings are generalized to a theorem on
group action. As another application, Cohen-Macaulay approxima-
tion and Ringel’s $\Delta$-good approximation on reductive groups (quasi-
hereditary algebras) are unified, and resolutions of Buchsbaum-Rim
type are studied, utilizing the notion of tilting modules.

1 Introduction

The purpose of these notes is to present some results on homological aspects
on equivariant modules and sheaves.

Let $R$ be a commutative ring, $G$ an affine $R$-group scheme, and $A$ a
noetherian commutative $G$-algebra, namely, $R$-algebra with a $G$-action. We
say that $M$ is a $(G, A)$-module [52] if $M$ is both a $G$-module and an A-
module, and the $A$-action $A\otimes Marrow M$ is a $G$-homomorphism. Equivariant
module theory is nothing but a study of $(G, A)$-modules. A $(G, A)$ -module
is sometimes called a $G$-equivariant $A$-module. lt seems that tbere has been
no coherent treatment of this object over arbitrary base $R$ and general $G$ ,
except for Seshadri’s paper [52]. However, the work presented here is deeply
related to the theory of relative Hopf modules over a field (see, e.g., [43]),
some works in representation theory over a field. and the study of graded
modules over graded noetherian rings by Goto-Watanabe $[23, 24]$ .

This paper consists of four parts.
The first part (sections 2-7) is devoted to give $G^{t}$-equivariant structures

to $Ext_{A}^{i}(M, N)$ and $r_{1_{0}^{\urcorner}r^{A}(i}M,$ $N$ ) for $(G, A)$ -modules $M$ and $N$ , under appro-
priate assumptions. If $G’$ is a split torus $G_{m}^{n}$ , then a $G$-algebra $A$ is nothing
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but a $\mathbb{Z}^{n}$-graded $R$-algebra (see Example 3.4), and a $(G, A)$-module is noth-
ing but a graded $A$-module. The grading of $E_{Xt_{A}^{i}}(M, N)$ and $Tor_{i}^{A}(M, N)$

agree with those used in Goto-Watanabe papers $[23, 24]$ . What we try to
do here is to generalize homological theories on graded rings and modules
to $G$-equivariant theory for more general groups. This part contains some
considerable survey materials (mainly for ring theorists) on basics on Hopf
algebras and representation theory of algebraic groups over arbitrary base.

In section 2, we review basics on comodules over $R$-flat coalgebras over
arbitrary base. Restriction and induction will be important in the third part.
In section 3, assuming that $R$ and $A$ are noetherian and $G$ is $R$-flat, we give a
definition of the $(G, A)$-module $Ext_{A}^{i}(M, N)$ , where $M$ is an $A$-finite $(G, A)-$

module, and $N$ a $(G, A)$-module. Graded modules over $\mathbb{Z}^{n}- graded$-noetherian
rings are good examples. Note that if $M$ is not $A$-finite, then $E_{Xt_{A}^{i}}(M, N)$

can not be graded in an appropriate way, even if both $M$ and $N$ are graded.
In section 4, we give a definition of $Tor_{i}^{A}(M, N)$ for $(G, A)$-modules $M$ and
$N$ , under the assumption $R$ noetherian, $G$ an affine flat group scheme over
$R$ which is $\dot{i}nd$-finite projective (IFP for short, see Definition 4.1), and $A$ a
commutative $G$-algebra. In section 5, we introduce hyperalgebras (algebras
of distributions) of an algebraic group, and give a sufficient condition for the
theory of rational modules goes well, which should be compared with the
results in [33]. We also give a sufficient condition for an affine group scheme
being IFP. Section 6 is an attempt to extend the category of $(G, A)$-modules
to a module category in an appropriate way. The category of $C_{7}$-modules and
$(G, A)$-modules do not have enough projective objects in general. Although
they have projective limits if $A$ and $R$ are noetherian and $G$ is $R$-flat, the
projective limits in these categories do not agree with the projective limits
as $R$-modules in general. These are sometimes inconvenient. For exanlple,
even if $A$ is a noetherian $G$-algebra which is local, the completion $\hat{A}$ is not
a $G$-algebra in general, although there is a canonical way to define G-action
when $G$ is a finite flat group. We treat another case, the case $G$ is flat,
infinitesimally flat, affine, of finite type with connected geometric fibers. The
hyperalgebra and its smash product with $A$ is used to extend the category of
$(G, A)$-modules. The group $Ext_{A}^{i}(M, N)$ for non-finite $M$ lies in the extended
category. The constructions up to section 5 will be.generalized to quasi-
coh\‘erent sheaves over a scheme, in section 7.

The second part (sections 8-9) is a first application of the constructions in
the first $pa.rt$ . Matijevic-Roberts type theorems on Cohen-Macaulay, Goren-
stein and regular properties $i\dot{n}[24]$ and for complete intersection property in
[15] for graded rings are generalized to equivariant context.

In section 8, we study the stability of subschemes under the action of an
algebraic group. In section 9, we discuss Matijevic-Roberts type problem,
using the results in section 8. The notion of $G$-linearlization by Mumford-
Fogarty [44], and normal flatness play important roles there.
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The third part (sections 10-13) is a generalization to the arbitrary base

of the theory of good filtrations on representations of reductive algebraic
groups over a field. Although the representations of (split) reductive groups
are strongly related to the theory of quasi-hereditary algebr-as, and the no-
tion of quasi-hereditary algebras is generalized to the notion over arbitrary

base by Cline-Parshall-Scott [16], some considerable part of the theory over
fileds has not been generalized to the theory over arbitrary base. For ex-

ample, construction of tilting modules over arbitrary base is new here. Sec-
tion 10 is a survey on the Auslander-Buchweitz theory, which contains an
$im^{portant}$ application to ring theory, Cohen-Macaulay approximations. The

Auslander-Buchweitz theory is convenient to describe Ringel’s theorem and

its generalization discussed here. Section 11 is a survey on split reductive

groups. $\ln$ this section, we remark that any split reductive group is IFP, and

remove the embeddability assumption in Seshadri’s theorem [52, Theorem 2].

In section 12, we extend the definitions and related results on good filtrations

over a field to those over arbitrary base. The notion ‘good’ is divided into

two different ones, good and $u$-good. $U$-good is an abbreviation for univer-
sally good, which means the goodness which is stable under base change. In

section 13, we generalize Ringel’s theorem to a theorem over arbitrary base.

The fourth part (sections 14-15) is an application of the first and the

third part to commutative ring theory again. The notion of tilting modules,

and the $(G, A)$-structure of higher $Ext_{A}$-groups play important roles here.

Existence of a $G$-equivariant resolution of determinantal ideals of certain
type, which generalizes Buchsbaum-Rim resolution for maximal minors in

a natural way, is discussed in section 14. In section 15, Ringel’s approxi-
mation and Cohen-Macaulay approximation are unified in some sense. The

determinantal rings give an example.

General notation
Throughout these notes, $R$ denotes a commutative ring. The $symbols\otimes and$

$Hom$ denote $\otimes_{R}$ and $Hom_{R}$ , respectively. For a commutative ring $A$ , the

prime spectrum of $A$ is denoted by $SpecA$ . For $\mathfrak{p}\in SpecA$ , the symbol $f_{\iota}^{\prime(\mathfrak{p})}$

stands for the field $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ . All schemes are assumed to be separated. For

an $R$-scheme $X$ and $Y$ , we denote the set of $SpecR$-morphisms $fro\ln Y$ to $X$

by $X(Y)$ . Moreover, $X\cross Y$ stands for $X\cross_{R}Y$ . If $Y=SpecR$’ is affine, then,

$X(Y)$ and $X\cross Y$ may also be denoted by $X(R’)$ and $X\otimes R’$ , respectively.
Action of an algebraic group scheme $G$ over $R$ on an $R$-scheme $X$ is a right
$R$-action, unless otherwise specified. Modules (over a non-commutative ring

or a group) are left modules unless otherwise specified, and AM denotes the

category of $A$-modules for a ring $A$ .
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2 Comodules over flat coalgebras over commutative rings

For the theory of Hopf algebras over a field, see $[53, 43]$ .
Let $R$ be a commutative ring. An $R$-algebra is nothing but a monoid in

the symmetric category [36] of $R$-modules. An $R$-coalgebra is a comonoid in
the symmetric category of $R$-modules by definition. Namely, an R-module
$C$ , together with $R$-linear maps

$Rarrow carrow\epsilon_{C}\triangle cC\otimes C$

satisfying the commutativity $(1_{C}\otimes\triangle_{C})\triangle c=(\Delta c\otimes 1C)\Delta C,$ $\rho c(1C\overline{\mathfrak{G}}6C)\Delta c=$

$1_{C}=\lambda_{C}(\epsilon_{C}\otimes 1_{C})\Delta_{C}$ , where $\rho_{C}$ : $C\otimes Rarrow C$ is given by $c\otimes r\mapsto rc$ , and
$\lambda_{C}$ : $R\otimes Carrow C$ is given by $r\otimes c\mapsto rc$ . A coalgebra map $Carrow C’$ is a map
of comonoids by definition. Namely, an $R$-linear map $f$ : $Carrow C’$ is said to
be a coalgebra map if $\epsilon_{C}=\epsilon_{C’}f$ and $(f\otimes f)\Delta_{C}=\Delta_{C’}f$ hold.

A (right) $C$-comodule is a (right) coaction of $C$ . Namely, an R-
module $M$ , endowed with an $R$-linear map $\omega_{M}$ : $Marrow M\otimes C$ satisfying
$\rho_{M}(1_{M}\otimes\epsilon_{C})\omega_{M}=1_{M}$ and $(1_{M}\otimes\Delta_{C})\omega_{M}=(\omega_{M}\otimes 1_{C})\omega_{M}$ . A (right) C-
comodule map is an $R$-linear map $f$ : $Marrow M’$ satisfying $(f\otimes 1_{C})\omega_{M}=\omega_{M’}f$ .
Left $C$-comodules and comodule maps are defined similarly. Unless other-
wise specified, a $C$-comodule mean a right $C$-comodule. The category of
$C$-comodules is denoted by $MI^{C}$ . The category $RI^{C}$ is an additive category
with cokernels and arbitrary inductive limits, as cokernels and inductive lim-
its are compatible with the functor $?\otimes C$ . If $C$ is $R$-flat, then $M[^{C}$ is abelian.

General theory of $R$-flat coalgebras and comodules goes like a dual of the
theory of algebras and modules. Let $C$ be an $R$-flat coalgebra. It is obvious
that $C$ is a $C$-comodule (in fact, a $(C, C)$-bicomodule, which is appropriately
defined) with $\omega_{C}=\Delta_{C}$ . For an $R$-module $V$ and a $C$-comodule $M,$ $I^{\gamma}’\otimes M$

is a $C$-comodule with $\omega_{V\otimes M}:=1_{V}\otimes\omega_{M}$ . If $I$ is an injective $R$-module, then
$I\otimes C$ is an injective $C$-comodule (i.e., an injective object in $MI^{C}$ ). For a
$C$-comodule $M$ , the map $\omega_{M}$ : $Marrow M\otimes C$ is a $C$-comodule map, where
$\omega_{M\otimes C}:=1_{M}\otimes\Delta_{C}$ . Combining these, it is easy to verify that $\mathbb{N}I^{C}$ has enough
injectives, and any injective $C$-comodule is a direct summand of an injective
comodule of the form $I\otimes C$ , where $I$ is an injective R-module.

The dual algebra $C^{*}$ is $Hom(c, R)$ . It is an $R$-algebra with the product
defined by

$\langle_{C^{*}}d^{*}, C\rangle:=\sum_{C()}\langle_{C}*, c_{1}\rangle\langle d^{*}, c_{2}\rangle$

for $c^{*},$ $d^{*}\in C^{*}$ and $c\in C$ , where $\Sigma_{(c)}C_{1}\otimes c_{2}=\triangle c(c)$ . A $C$-comodule $M$ is
a $C^{*}$-module. The $C^{*}$-action is defined by

$c^{*}m:= \sum_{m()}\langle C^{*}, 7n_{1}\rangle m_{0}$
,
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for $c^{*}\in C^{*}$ and $m\in M$ , where $\Sigma_{\langle m)}m_{0}\otimes m_{1}=\omega_{M}(m)$ . A C-comodule
map is a $C^{*}$-linear map, and we obtain a functor $\Phi$ : NI$carrow c*MI$ . It is an
equivalence, if $C$ is $R$-finite projective.

Let $M$ be a $C$-comodule, and $N$ a left $C$-comodule. The cotensor product
of $M$ and $N$ , denoted by $M\otimes^{C}N$ is the kernel of the map

$M\otimes N^{\underline{\omega_{M}\otimes\otimes\omega_{N}}}M\otimes c\otimes N1_{N}-1_{M}$.

Note that $?\otimes^{C}N$ and $M\mathbb{E}^{C}$ ? are left exact, and we have

$R^{i}(?\otimes^{C}N)(M)\cong Ri(MH^{C}?)(N)$

in a natural way for $i\geq 0$ , which we denote by $Cotor^{i}C(M, N)$ .
Let $f$ : $Darrow C$ be a coalgebra map of $R$-flat coalgebras. For $M\in MI^{D}$ ,

$M$ is a $C$-comodule by $\omega_{M}^{C}:=(1_{M}\otimes f)\omega_{M}^{D}$ . A $D$-comodule map is a C-
comodule map, and we obtain a functor $\mathbb{M}I^{D}arrow NI^{C}$ , which we denote by
$res_{C}^{D}$ and call the restriction functor. The restriction for left comodules are
defined similarly.

The restriction functor has a right adjoint. For $N\in MI^{C}$ , the tensor
product $N\otimes D$ is a $D$-comodule, and $N\otimes^{C}(res_{c^{D}}^{D})\subset N\otimes D$ is a D-
subcomodule. We denote $N\otimes^{C}(res_{c^{D}}^{D})$ by $ind_{C}^{D}N$ . It is easy to check that
$ind_{C}^{D}$ gives a functor NI$carrow MI^{D}$ , and is right adjoint to $res_{C}^{D}$ , and hence is
left exact. Note also that $ind_{C}^{D}$ preserves injectives, as it has an exact left
adjoint.

Let $M$ be an $R$-module and $N$ an $R$-submodule of $M$ . We say that
$N$ is a pure $R$-submodule of $M$ if for any $R$-module $W$ , the canonical map
$W\otimes Narrow W\otimes M$ is injective. Note that $N$ is $R$-pure if the inclusion $N\mapsto,$ $M$

$R$-splits or $M/N$ is R-flat.

Definition 2.1 Let $C$ be an $R$-coalgebra. We say that $D$ is an R-
subcoalgebra of $C$ when $D$ is an $R$-pure submodule of $C$ , and $\triangle c(D)\subset D\otimes D$ .

It is obvious that an $R$-subcoalgebra $D$ is an $R$-coalgebra so that the
inclusion map $Drightarrow C$ is an $R$-coalgebra map. If $D$ is an $R$-subcoalgebra of
$C$ , then the unit of the adjunction $Marrow(ind_{Cc}^{D_{O}D}reS)(M)$ is an isomorphism.
In fact, $ind_{C}^{D}(N)$ is identified with the R-submodule

$\{n\in N|\omega_{N}(n)\in N\otimes D\}$

of $N$ . This shows that $res_{C}^{D}$ is fully faithful (and obviously exact, as
$res_{C}^{D}(N)=N$ as an $R$-module). Thus, a $D$-comodule is identified with a
$C$-comodule $M$ such that $\omega_{M}^{C}(M)\subset M\otimes D$ .

We say that an $R$-coalgebra, which is also an $R$-algebra, $B$ is an R-
bialgebra if both $\epsilon_{B}$ : $Barrow R$ and $\Delta_{B}$ : $Barrow B\otimes B$ are $R$-algebra maps.
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An antipode of an $R$-bialgebra $B$ is an $R$-linear map $S$ : $Barrow B$ satisfying
$m_{B}(1_{B}\otimes S)\Delta_{B}=1_{B}=m_{B}(S\otimes 1_{B})\Delta_{B}$ . An antipode of an $R$-bialgebra is
unique, if it exists. If an $R$-bialgebra $B$ has an antipode, then it is called an
$R$ -Hopf algebra.

The $R$-algebra $R$ is an $R$-Hopf algebra in an obvious way.
Let $B$ be an $R$-bialgebra. $\backslash It$ is easy to see that the unit map $u:Rarrow B$

$(u(1)=1_{B})$ is an $R$-bialgebra map. Hence, any $R$-module is a B-comodule
via restriction. For an $R$-module $M$ , the $B$-comodule $M=res_{B}^{R}(M)$ is called
the trivial $B$-comodule $M$ . For a $B$-comodule $M$ , we define the invariance
of $M$ , denoted by $M^{B}$ , as

$\{m\in M|\omega M(m)=m\otimes 1B\}$ .

The $R$-submodule $M^{B}$ of $M$ is identified with $Hom_{B}(R, M)$ , where $Hom_{B}$

means $Hom_{M^{B}}$ . The higher $B$-cohomology of $M$ , denoted by $H^{i}(B, M)$ is
$Ext_{B}^{i}(R, M)$ by definition.

3 $(G, A)$-modules and $Ext_{A}$-groups

Let $G$ be an affine $R$-group scheme. In other words, the coordinate ring
$H$ , sometimes denoted by $R[G]$ , of $G$ is a commutative $R$-Hopf algebra. A
$G$-module is an $H$-comodule by definition. A $G$-linear map of $G$-modules is
an $H$-comodule map by definition.

Alternative definition of a $G$-module is given as follows [33].
Let $C$ be a category. An $R$-functor (with valued in $C$ ) is a covariant

functor from the category of commutative $R$-algebras (to $C$ ). An affine R-
group scheme $G$ is a representable $R$-functor with valued in the category
of abstract groups (by Yoneda’s lemma). A $G$-module is an $R$-module $M$

together with a natural transformation $Garrow GL(M)$ between R-functors
with valued in the category of abstract groups, where the functor $G^{t}L(M)$ is
given by $GL(M)(A):=End_{A}(M\otimes A)^{\cross}$ for any commutative $R$-algebra $A$

(if $M$ is $R$-finite projective, then $GL(M)$ is also representable, but is not in
general). For the correspondence between this definition and the definition
via comodules, see [33].

Thus, a $G$-module $M$ is nothing but the functorial $A$-linear action of the
group of $A$-valued points $G(A)$ on $M\otimes A$ , for any commutative R-algebra
$A$ . We express this situation with a set-theoretic (naive, and sonletimes
dangerous) description: For $g\in G$ and $m\in\Lambda l,$ $gm\in M$ is given (and
satisfies certain axioms of linear action).

The category of $G$-modules (and $G$-linear maps) is not necessarily abelian.
However, if $G$ is $R$-flat, then the category of $G$-modules, denoted by $cIM$ , is
abelian.

From now on, until the end of these notes, $C_{\tau}$ denotes a flat affine R-group
scheme.
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Let $V$ and $W$ be $G$-modules. Then, $V\otimes W$ is a $G$-module. The $G- acti_{oi}1$

is given by $g(v\otimes w):=gv\otimes gw$ . lf $V$ is of finite presentation as an R-

module moreover, then $Hom(V, W)$ is a $G$-module by $(gf)(v):=g(f(g-1)v)$

for $f\in Hom(V, W),$ $g\in G$ and $v\in V$ , in a naive sense.
Let $A$ be a commutative $G$-algebra, namely, a commutative $R$-algebra on

which $G$-acts as $R$-algebra automorphisms. This is equivalent to say that
$A$ is a commutative $R$-algebra, which is also a $G$-module, and the product
$A\otimes Aarrow A$ is $C_{J}$-linear. We say that $M$ is a $(G, A)$-module when $M$ is
both a $G$-module and an $A$-module, and the $A$-action $A\otimes M--\backslash \prime M$ is G-
linear. Hence, $A$ is a $(G, A)$-module in a natural way. In the language

of Hopf algebras, $G$-algebras and $H$-comodule algebras are the same, and
$(G, A)$-modules and $(H, A)$-Hopf modules are the same. An $R$-linear map
$f$ : $Marrow N$ between $(G, A)$-modules is called a $(G, A)$-linear map when
$f$ is both $A$-linear and $G$-linear. We obtain an abelian category of $(c, A)-$

modules, which is denoted by $G,A$M. Note that $R$ is a trivial $G^{Y}$-algebra, and

a $(G, R)$-module is nothing but a G-module.

Lemma 3.1 The category $G,A$NI has exact filtered inductive limits, and the

forgetful functor from $G,AM$[ to the category of abelian groups preserves arbi-

trary inductive limits.

Let $M$ and $N$ be $(G, A)$-modules, and $V$ a $G$-module. Then, the G-
module $M\otimes V$ is a $(G, A)$-module by the $A$-action $a(m\otimes v):=am\otimes v$ . The

tensor product $M\otimes_{A}N$ is uniquely a $(G, A)$-module so that the canonical
projection $M\otimes Narrow M\otimes_{A}N$ is $(G, A)$-linear.

We denote the full subcategory of $G,A$ MI consisting of all $(G, A)$-modules
which is of finite presentation as an $A$-module by $G,A$NI$f\cdot G,R$NI$f$ is denoted
by $G$ NI$f$ . If $M\in G,A$NI$f$ and $N\in G,AMI$ , then the $A$-module $Hom_{A}(\Lambda\phi, N)$ is
a $(G, A)$-module by $(gf)(m):=g(f(g-1m))$ .

The following is a slight generalization of [52, Proposition 3].

Lemma 3.2 (Local noetherian property) Let $M\in G,A$M. Thcn, for
any $A$ -finite $A$ -submodule $M_{0}$ of $M$ , there is a sequence of $A$ -submodules
$M_{0}\subset N\subset L$ of $M$ with $N$ being a $(G, A)$ -submodule of $M$ and $L$ is A-finite.
In particular, $G,A$MI is Grothendieck, and has injective hulls. If $A$ or $R$ is

noetherian, then we can take them so that $N=L$ . If $A$ is noetherian, then

$G,A$MI is locally noetherian, and hence has arbitrary projective limits.

Note that the forgetful functor $G,ANIarrow A$MI does not even preserves
infinite direct products, in general.

From now on, we assume that both $R$ and $A$ are noetherian. The first

theorem of these notes is:

Theorem 3.3 Let $M\in G,ARI$ , and I an injective $(G, A)$ -module. Then, $u;e$

have $Ext_{A}^{i}(M, I)=0$ for $\dot{\iota}>0$ .

72



This does not mean that an injective $(G, A)$-module $I$ is $A$-injective, as
the class of $A$-modules which admit $(G, A)$-module structures is much smaller
than the class of all $A$-modules. $\ln$ fact, an injective $(G, A)$-module is not
$A$-injective in general even if $R$ is an algebraically closed field and $G=G_{m}$

[23].
Let $M\in G,A$NI$f$ and $N\in G,AMI$ . By the theorem, it follows that the un-

derlying $A$-module of the $(G, A)$-module $R^{i}HomA(M, ?)(N)$ is $Ext_{A}^{i}(M, N)$ ,
since a $(G, A)$-injective resolution of $N$ is $Hom_{A}(M, ?)$-acyclic in the cate-
gory of $A$ -modules. Thus, we have a canonical $G$-equivariant structure of
$E_{Xt_{A}^{i}}(M, N)$ . In particular, if $J$ is a $G$-ideal (a $(G,$ $A)$-submodule) of $A$ , then
the local cohomology $H_{J}^{i}(N)= \lim_{arrow}Ext_{A}^{i}(A/Jn, N)$ has a canonical $(c, A)-$

module structure.

Example 3.4 Let $n$ be a positive integer, and $C_{J}$ the $n$-fold split torus $G_{m}^{n}$ ,
where $G_{m}:=GL_{1}$ . Then, a $G$-module is nothing but a $\mathbb{Z}^{n}$ -graded R-module.

For $V\in G$MI and $\lambda=(\lambda_{1}, \ldots, \lambda_{n})\in \mathbb{Z}^{n}$ , we define

$V_{\lambda}:=$ { $v\in V|t\cdot v=t^{\lambda}v$ for any $t=(t_{1},$
$\ldots,$

$t_{n})\in G$ }, (1)

where $t^{\lambda}:=t^{\lambda_{1}}\cdots t^{\lambda_{n}}\in R^{\cross}$ , and the product $t^{\lambda}v$ is a scalar $mn1ti_{1}$)$1e$ . It is
easy to verify that $V=\oplus_{\lambda}V_{\lambda}$ , and an $R$-linear map $f$ : $Varrow W$ between
$G$-modules is $G$-linear if and only if $f(V_{\lambda})\subset W_{\lambda}$ for any $\lambda\in \mathbb{Z}^{n}$ .

Conversely, if $V=\oplus_{\lambda}V_{\lambda}$ is a $\mathbb{Z}^{n}$-graded $R$-module, then letting (1) as
the definition of the $C_{\tau}$-action, $V$ is a G-module.

A $G$-algebra is nothing but a $\mathbb{Z}^{n}$ -graded $R$-algebra, and a $(G, A)$ -module
is nothing but a graded $A$-module. The $(G, A)$-structure of $M\otimes_{A}N$ and
$Ext_{A}^{i}(M, N)$ are those dis,cussed in [23] and [24].

Related to the example, we introduce some important notion in repre-
sentation theory. For an affine $R$-group scheme $G$ , we denote the set of
isomorphism classes of rank-one $R$-free $G$-modules by $X(G)$ , and call it the
character group of G. lt is an abelian group $with\otimes as$ the group-law. Note
that $X(G)$ is identified with a subset of $R[G]\cross by$

$X(G)=Hom_{ag}- r_{P}(G, G_{m})\subset Hom_{R^{-_{s}}Ch}(c, SpeCR[t, t^{-1}])=R[G]^{\cross}$

With this identification, $X(G)$ is a subgroup of $R[G]^{\cross}$ However, it is common
to express the group-law of $X(G)$ additively. For a split torus $T=G_{m}^{n}$ , the
number $n$ is called the rank of $T$ . The example above shows that $X(T)\cong \mathbb{Z}^{n}$

as additive groups. An element of $X(T)$ is sometimes called a $u$) $e\dot{i}ght$ of $T$ .
Unfortunately, $Hom_{A}(M, N)$ does not allow any $G$-module structure in

general, if $M$ is not $A$-finite. However, if $G$ is good enough, $E_{Xt_{A}^{i}}(M, N)$

admits certain ‘extended’ equivariant structure (extending the category of
$(G, A)$-modules), see section 6.
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An $R$-module can be viewed as a $G$-module with a trivial $G$-action. For
a $G$-module $M$ , we denote the invariance $M^{R[G]}$ by $M^{G}$ and call it the
submodule of (absolute) invariants. The module $Ext_{c}^{i}(R, M)$ is $deno\{_{1ed}$

by $H^{i}(G, M)$ , and called the $ith$ cohomology of $M$ . For $M\in G,AMf$ and
$N\in G,A$NI, we have that $Hom_{A}(M, N)^{c}=H_{om_{G,A}}(M, N)$ , where $HomG,A$

denotes the set of morphisms in $G,A$M. Similarly, $Ext_{G,A}^{i}(MM, N)$ is denoted
by $Ext_{c}^{i},(ANM,)$ .

Proposition 3.5 Let $Aarrow B$ be a map of noetherian $C_{\tau}$ -algebras, $V\in G,A$NI,
$M\in G,BMI$ , and $N\in G,B$M. If $M$ is $A$ -flat and $B$ -finite, then there is a
spectral sequence

$E_{2}^{p,q}=Ext_{G,A}^{p}(V, Ext_{B}q(M, N))\Rightarrow Ext_{c,B}^{p+}q(M\otimes V, N)$ .

If $V$ is $A$ -finite projective, then there are $\dot{i}somorph\dot{i}sms-$

$Ext_{G,B}^{i}(M\otimes V, N)\cong Ext_{c,B}^{i}(M, HomA(V, N))\cong EXt_{c}i,B(M, N\otimes V^{*})$ ,

where $V^{*}:=Hom_{A}(V, A)$ .

4 IFP groups and $Tor^{A}$-groups

Let $R$ be a noetherian commutative ring, $G$ a flat affine $R$-group scheme,
and $A$ a commutative G-algebra.

The definition of the $(G, A)$-structure of $Tor^{A}$ is a little bit more difficult.
Consider the following condition.

$(*)$ For any $R$-finite $G$-module $M$ , there exists some surjective $G$-linear map
$Parrow M$ with $P$ being $R$-finite projective.

It was questioned by Seshadri that if any reductive $R$-group scheme sat-
isfies this condition. We will see later that this is true for split reductive
groups.

If the condition $(*)$ holds, then for any (non-R-finite) $G$-module $M$ , there
exists some surjective $G$-linear map $Parrow M$ with $P$ being $R$-projective, by
Lemma 3.2 (applied for the case $A=R$). It follows that if $M$ is a $(c, A)-$

module (resp. $A$-finite $(G,$ $A)$-module), then there is a $(G, A)$-epimorphism
$Parrow M$ with $P$ being $A$-projective (resp. $A$-finite projective). We take a
$C_{T}$-submodule (resp. $R$-finite $C_{\tau}$-submodule) $M_{0}$ of $M$ which $A$-generates $M$ ,
and take a surjective $G$-linear map $P_{0}arrow M_{0}$ with $P_{0}$ being R-projective
(resp. $R$-finite projective). Then, it is easy to see that the composite map

$P=A\otimes P0arrow A\otimes M_{0}arrow A\otimes Marrow M$

is $(G, A)$ -linear and surjective.
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Assume $(*)$ holds and let $N$ be a $(G, A)$-module. We have a derived
functor

$\underline{L}(?\otimes_{A}N)$ : $D^{-}(_{G,A}\mathbb{N}I)arrow D^{-}(_{G,A}MI)$

by [25, Corollary $5.3.\beta$]. For $M,$ $N\in G,AMI$ , we have $L_{i}(?\otimes_{A}N)(M)\cong$

$L_{i}(M\otimes_{A}?)(N)$ in a natural way, which we denote by $Tor_{i}^{A}(M, N)$ . The un-
derlying $A$-module is the same as the usual one, because it is calculated by
an $A$-projective $(G, A)$-resolution.

Similarly, if $(*)$ is satisfied, $A$ is noetherian, and $N\in G,AMI$ , then, the
derived functor

$\underline{R}Hom_{A}($ ?, $N)$ : $D^{-}(_{G,A}MI_{f})arrow D^{+}(_{G,A}MI)$

is induced, and $R^{i}HomA(?, N)(M)\cong E_{Xt_{A}^{i}}(M, N)$ in a natural way for $M\in$

$G,AMI_{f}$ , where $E_{Xt_{A}^{i}}(M, N)$ is the one defined in the last section.

Definition 4.1 We say that an $R$-coalgebra $C$ is $ind$-finite projective (IFP,
for short) if any $R$-finite $R$-submodule $M$ of $C$ is contained in some R-finite
projective $R$-subcoalgebra $D$ of $C$ . We say that $G$ is IFP if the coordinate
ring $H$ is IFP as an R-coalgebra.

Note that an IFP $R$-coalgebra $C$ is $R$-flat. A base change of an 1FP
coalgebra is IFP.

Lemma 4.2 Let $C$ be an $IFPR$-coalgebra. If $M$ is an $R$ -finite C-comodule,
then there exists some surjective $C$ -comodule map $Parrow M$ such that $P$ is R-
finite projective. In $part\dot{i}cular_{f}$ if $G$ is $IFP$, then the condition $(*)$ is satisfied.

A base change of an IFP group is IFP. A sufficient condition for IFP will
be given in the next section.

5 Universal density

Definition 5.1 Let $R$ be a field, $V$ an $R$-space, and $W$ an $R$-subspace of
$V^{*}$ . We say that $W$ is dense in $V^{*}$ when the canonical map $Varrow W^{*}$

$(v\vdasharrow(w\vdasharrow wv))$ is injective. Let $R$ be a general commutative ring, and
$V$ and $W$ be $R$-mod-ules. We say that an $R$-module map $f$ : $Varrow W^{*}$ is
universally dense when for any $R$-module $U$ , the canonical $R$-linear map

$\theta_{U}$ : $U\otimes Varrow Hom(W, U)$ $u\otimes varrow(w\mapsto\langle v, w\rangle u)$

is injective.
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If $R$ is a field and $W$ is a dense subspace of $V^{*}$ , then the inclusion $Warrow V^{*}$

is universally dense. In the definition above, the canonical pairing which
corresponds to $f$ by the canonical isomorphism

$Hom(W, V*)\cong H_{0}m(W\otimes V, R)$

is denoted by $\langle-,$ $-\rangle$ . For any commutative $R$-algebra $R’$ , the pairing $R’$ \copyright

$\langle-,$ $-\rangle$ yields an $R’$-linear map $f’$ : $W’arrow Hom_{R}’(V’, R’)$ . Note that the map
$\theta_{U}$ is natural with respect to $U$ .

Lemma 5.2 Let $R$ be a general commutative ring, and $f$ : $Warrow V^{*}$ be an
$R$ -linear map. Consider the following conditions.

1 $f$ is universally dense.

2 $V$ is $R$ -flat, and for any $\mathfrak{p}\in S_{P^{eC}}R$ , the image of the canonical map

$f(\mathfrak{p})$ : $W\otimes\kappa(\mathfrak{p})arrow Hom_{\kappa(\mathfrak{p})}(V\otimes\kappa(\mathfrak{p}), \kappa(\mathfrak{p}))$

is a dense subspace of $Hom_{\kappa(}$ )$(\mathfrak{p}V\otimes\kappa(\mathfrak{p}), \kappa(\mathfrak{p}))$ .

It holds in general that 1 implies 2. If $R$ is noetherian, then 2 $i,mpl_{\dot{i}e}s1$ .

If $f$ is universally dense, then the canonical map $\theta_{R}$ : $Varrow W^{*}$ is injective
and R-pure.

Let $C$ be an $R$-coalgebra, and $Aarrow C^{*}$ be a universally dense R-algebra
map (in particular, $C$ is R-flat).

A $C$-comodule $M$ is a $C^{*}$ -module, hence is an $A$-module. We denote
the canonical exact functor NI$Carrow AM$ by $\Phi$ . As an $R$-module, we have
$\Phi(M)=M$ .

Let $V$ be an $A$-module, and we denote the action $A\otimes Varrow V$ by $a_{V}$ . We
denote the canonical isomorphism

$Hom(A\otimes V, V)\cong H_{0}m(V, H_{0}m(_{\backslash }A, V))$

by $\rho_{V}$ . By assumption, the map
$\theta_{V}$ : $V\otimes Carrow Hom(A, V)$

is injective.
We denote the pull-back of ${\rm Im}(\theta_{V})$ by $\rho_{V}a_{V}$ : $Varrow Hom(A, V)$ by $V_{rat}$ ,

and we call $V_{rat}$ the rational part of $V$ .

Lemma 5.3 $V_{rat}$ is an $A$ -submodule of V. Moreover, the composite map
$V_{rat}arrow Varrow Hom(A, V)$ factors through

$V_{rat}\otimes C^{c}arrow V$ \copyright $C^{\theta}-^{V}Hom(A, V)$ ,

the map $\omega_{V_{rat}}$ : $V_{rat}arrow V_{rat}\otimes C$ is obtained, and $V_{rat}$ is a $C$ -comodule with the
structure map $\omega_{V_{r\mathfrak{n}t}}$ . With respect to this $C$ -comodule structure, the A-module
structure of $\Phi(V_{rat})$ agrees with that of $V_{ra5}$ as an $A$ -submodule of $V$ .
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Lemma 5.4 Let $V\in M^{C},$ $W\in A\mathbb{M}I$ and $f\in Hom_{A}(\Phi V, W)$ . Then, we have
$f(V)\subset W_{rat}$ . Thus, we have an isomorphism

$Hom_{A}(\Phi V, W)\cong Homc(V, W_{rat})$ .

In particular, if $W’\in A$MI and $g\in Hom_{A}(W’, W)$ , then we have $g(W_{rat}’)\subset$

$W_{rat}$ . $Lett\dot{i}ngg_{rat}:=g|_{W_{rat}}’\in Homc$ ( $W_{ra}^{;}$ Wrat)
$t$” we have a functor $(?)_{rat}$ :

A $MIarrow NI^{C}$ The functor $(?)_{rat}$ is a right adjoint of $\Phi$ .

Corollary 5.5 The functor $(?)_{rat}$ is left exact, and preserves injective ob-
jects. The functor $\Phi$ is fully faithful and exact.

In what follows, $R$ is noetherian, and $G=SpecH$ is a flat affine R-
group scheme of finite type. We denote the defining ideal of the unit elelnent
$\{e\}arrow G$ by $I$ . In other words, $I$ is the kernel of the counit map $\vee Hc$ : $H$

.
$arrow,$ $R$ .

Definition 5.6 We call

Hy $G=U:= \lim_{arrow}(H/In)^{*}$

the hyperalgebra or the algebra of distributions of $G$ .

Note that $U$ is an $R$-subalgebra of $H^{*}$ . In fact, we have $1_{H^{*}}=\epsilon_{H}\in$

$(H/I)^{*}\subset U$ , and $(H/I^{n})^{*}\cdot(H/I^{m})\subset(H/I^{n+m-1})^{*}for$ any $m,$ $n\geq 1$ .
The following definition is in [33].

Definition 5.7 We say that $G$ is infinitesimally flat when $H/I^{n}$ is R-finite
projective for any $n\geq 1$ .

Assume that $G$ is infinitesimally flat. Then $U=$ Hy $C_{I}$ is R-projective.
Moreover, as we have $(H/I^{n})^{*}(I^{n}\cdot H+H\cdot I^{n})=0$ and $(H/I^{n}\otimes H/I^{n})^{*}\cong$

$(H/I^{n})^{*}\otimes(H/I^{n})^{*}$ , we have a canonical map $\triangle_{U}$ : $Uarrow U\otimes U$ given by

$\langle\triangle_{U}(u), a\otimes b\rangle:=\langle u, ab\rangle$ $(u\in U, a, b\in H)$ .

It is straightforward to check that $U$ is an $R$-Hopf algebra with these struc-
tures in this case.

The following is well-known [7, VIII.1.3].

Lemma 5.8 If $G$ is $R$ -smooth, then $G$ is infinitesimally flat.

The following is also known as a special case of a theorem proved by
Raynaud [47].

Theorem 5.9 If $G$ is $R$ -smooth with connected geometric fibers, then $H$ is
R-projective.
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The following is a slight generalization of Theorem 5.9, and gives a suffi-
cient condition for universal density of $U$ .

Theorem 5.10 Assume that $G$ is infinitesimally flat with connected fibers
$(\dot{i}.e., G\otimes\kappa(\mathfrak{p})$ is connected for any $\mathfrak{p}\in SpecR$). Then Hy $Garrow H^{*}$ is
universally dense, and $H$ is R-projective.

Here we sketch an outline of the proof. Note that if $C_{\tau}$ is infinitesimally
flat, then $($ Hy $G)^{*}$ is nothing but the $I$-adic completion of $H$ . Hence, if
$R$ is a field, the universal density in problem is nothing but the assertion
$\bigcap_{i>0}I^{i}=0$ , which follows from the fact $G$ is irreducible and Cohen-Macaulay
(so any zerodivisor in $H$ is nilpotent). The universal density in the general
case follows from Lemma 5.2. A slight modification of [47, Corollary 1] shows
that $($ Hy $G)^{*}iS$ R-Mittag-Leffler, hence so is $H$ , as $H$ is an $R$-pure submodule
of $($ Hy $G)^{*}$ by universal density. As $H$ is $R$-countable and Mittag-Leffler, it
is R-projective.

Assume that $G$ is infinitesimally flat with connected fibers. We say that a
$U$-module $V$ is rational if $V=V_{rat}$ . By Corollary 5.5, the full subcategory of
rational $U$-modules is identified with $G$ NI via the fully faithful exact functor
$\Phi$ .

The following is proved in the same line of [52, Proposition 4].

Corollary 5.11 If $0\overline{n}e$ of the following holds, then $G$ is $IFP$.

1 gl.dim $R=0$

2 $gl.\dim R=1$ , and $G$ is infinitesimally flat with connected fibers.

The structure of $To\Gamma_{i}^{A}(M, N)$ for $G=G_{m}^{n}$ given in [24] agrees with our
definition for the IFP group $G$ .

$e$

6 Smash products and $(G, A)$-modules

Let $R$ be a noetherian commutative ring, and $G=SpecH$ a flat, infinitesi-
mally flat, affine $R$-group scheme with connected fibers. We set $U:=HyG$.

Let $A$ be a commutative noetherian $G$-algebra. As $A$ is a $U-nlod_{Ule}$

algebra [43], we can define the smash product [43] $\Gamma:=A\neq U$ . As an R-
module, $A\neq U=A\otimes U$ , and the product of $A\neq U$ is given by

$(a \otimes u)(b\otimes v):=\sum_{u()}a\cdot(u1b)\otimes u_{2}v$
$(a, b\in A, u, v\in U)$ .

With this product, $\Gamma=A\neq U$ is an associative $R$-algebra. A $\Gamma$-module is an
$A$-module $U$-module via the $R$-algebra maps $A-\rangle$ $\Gamma$ and $Ur_{arrow}\Gamma$ given by
$a\mapsto a\otimes 1$ and $u\mapsto 1\otimes u,$ respeCti.Vely (note that $u1_{A}=(\epsilon_{U}u)1_{A}$ for $u\in U$ ).
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For a $\Gamma$-module $M$ , the $A$-module $G$-module $M_{rat}$ is a $(G, A)$-module, and
we have a functor $(?)_{rat}$ : $r^{MI}arrow G,AMI$ . Conversely, for a $(G, A)$ -module $M$ ,
the $A$-module $U$-module $M=\Phi M$ gives a $\Gamma$-module $M$ defined by

$(a\otimes u)m:=a(um)$ $(a\in A, u\in U, m\in M)$ .

Hence, $\Phi$ : $G,AMIarrow r^{MI}$ is left adjoint to $(?)_{rat}$ , and we identify $(c, A)-$

modules and rational $\Gamma$-modules via $\Phi$ .
Let $M,$ $N\in rMI$ and $V\in U$M. As in the case of $(G, A)$ -modules, $M\otimes V$

is a $\Gamma$-module, and $M\otimes_{A}N$ is a quotient $\Gamma$-module of $M\otimes N$ . More-
over, $Hom(M, V)$ is a $\Gamma$-module, and $Hom_{A}(M, N)$ is a $\Gamma$-submodule of
$Hom(M, N)$ , without assuming $th\cdot atM$ is $A$-finite. Another advantage of
$\Gamma$-modules compared with $(G, A)$-modules is, the category of $\Gamma$-modules $r^{NI}$

has enough projectives. Moreover, the projective limit in $\Gamma$ MI is compatible
with the forgetful functor $r^{MI}arrow A$M.

If $M,$ $N\in G,A$NI and $V\in cMI$ , then $\Phi(M\otimes V)\cong\Phi M\otimes\Phi$ V. In particular,
we have $\Phi(M\otimes_{A}N)\cong\Phi M\otimes_{A}\Phi N$ . If $M$ is $A$-finite moreover, then we have
$\Phi Hom_{A}(M, N)\cong Hom_{A}(\Phi M, \Phi N)$ .

Lemma 6.1 A $\Gamma$ -projective (resp. $\Gamma$ -injective) module is $A$ -projective (resp..
A-injective).

Let $M,$ $N\in r^{MI}$ . By the lemma, we have an isomorphism of $\Gamma$-modules

$L_{i}(?\otimes_{A}N)(M)\cong Li(M\otimes A?)(N)$ ,

and both are isomorphic to $Tor_{i}^{A}(M, N)$ as $A_{/}-moduleS$ , so we have a canonical
$\Gamma$-module structure of $To\Gamma_{i}^{A}(M, N)$ . lf $G^{t}$ is IFP, and both $M$ and $N$ are
rational, then $Tor_{i}^{A}(M, N)$ is rational for $i\geq 0$ , and this structure coincide
with the one we defined before. Similarly, we have an isomorphism

$R^{i}HomA(M, ?)(N)$
.

$\cong R^{i}Hom_{A}(?, N)(M)$ ,

and both $\Gamma$-modules are isomorphic to $E_{Xt_{A}^{i}}(M, N)$ as $A$-modules, so we
have a canonical $\Gamma$-module structure of $Ext_{A}^{i}(M, N)$ . If both $M$ and $N$ are
rational and $M$ is $A$-finite, then $E_{Xt_{A}^{i}}(M, N)$ is rational, and this. $(G, A)-$

module agrees with the one we have defined before.
Any $R$-module is a $U$-module via the restriction through the R-algebra

lnap $\epsilon_{U}$ : $Uarrow R.TheR$’-submodule $Hom_{U}(R, V)$ of a $U$-module $V$ is called
the invariance of $V$ , and denoted by $V^{U}$ . For a rational $U$-module $V$ , we
have $V^{G}=V^{U}$ . Note also that $Hom_{A}(M, N)^{U}=Hom_{\Gamma}(M, N)$ .

Lemma 6.2 Let $M\in r^{MI},$ $N\in rMI$ and .V $\in u^{M[}$ . Then, the canonical
isomorphism

$Hom_{A}(M\otimes V, N)\cong Hom(V, Hom_{A}(M, N))$
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is a $\Gamma$ -isomorphism. In particular, the isomorphism

$Hom_{\Gamma}(M\otimes V, N)\cong Hom\sigma(V, HomA(M, N))$

is induced, taking the U-invariance.

By the lemma, if $I$ is an injective $\Gamma$-module and $M$ is an $R$-flat F-module,
then $Hom_{A}(M, I)$ is $U$-injective. So a spectral sequence analogous to Propo-
sition 3.5 is obtained.

7 Linearlizable quasi-coherent $(G, \mathcal{O}_{X})$-modules, $\underline{Ext}_{\mathcal{O}}’$ and$\underline{Toxr}^{Ox}$

In this section, $R$ denotes a noetherian commutative ring, and $G=SpecH$
denotes a flat affine $R$-group scheme of finite type. $X$ denotes a locally
noetherian $G$-action (an $R$-scheme together with an $R$-morphism $a_{X}$ : $X\cross$

$Garrow X$ which satisfies the usual axiom of the r.ight action). We denote the
product of $G$ by $\mu_{G}$ .

The following definition is essentially due to Mumford-Fogarty [44].

Definition 7.1 A $G$-linearlized $\mathcal{O}_{X}$ -module is an $\mathcal{O}_{X}$ -module $M$ together
with an $\mathcal{O}_{X\cross G}$-isomorphism $\phi$ : $a_{X}^{*}Marrow p_{1}^{*}M$ , satisfying the condition: The
isomorphism

$[a_{X}o(ax\cross 1_{G})]^{*}M=[a_{X}o(1x\cross\mu c)]^{*}M^{\underline{(}}[c\phi p11_{X^{\cross\mu}})*O(1x\cross\mu_{G})]^{*}M$

agrees with the composite map

$[a_{X}o(ax\cross 1_{G})]^{*}M[\underline{(a_{X}\cross 1_{G})^{*}\phi}p1o(ax\cross 1_{G})]^{*}M=[aXOp_{12}]*M^{p^{*}}1arrow 2\phi$

$[p_{1}op_{12}]*M=[p_{1}o(1xx\mu_{G})]^{*}M$ .

We give another definition, which will appear to be equivalent for quasi-
coherent $O_{X}$ -modules, of G-linearlization.

First, assume that $X=Spec$ $A$ is affine. Then, an $A$-module $M$ cor-
responds to a quasi-coherent $O_{X}$ -module $\overline{M}$ . Moreover, $M\otimes H$ equipped
with the $A\otimes H$-module structure by $(a\otimes h)(m\otimes h’):=am\otimes hh’$ corre-
sponds to $p^{*}\tilde{M}$ , and $M\otimes H$ equipped with the $A\otimes H$-module structure by
$(a\otimes h)(m\otimes h’):=\Sigma_{(a)}a_{()}0m\otimes(Sa(1))hh’$ corresponds to $a^{*}N\tilde{I}$ , where $S$

denotes the antipode of $H$ .
A $(G, A)$-module $M$ yields a canonical map $\square$ : $M\otimes Harrow M\otimes H$ defined

by $n?_{\text{ノ}}\otimes hrightarrow\Sigma_{(m)}m(0)\otimes m_{(1)}h$ , and the corresponding map $\phi:=\square$ satisfies
the commutativity. Thus, a $(G, A)$-module $M$ gives a $G$-linearlized quasi-
coherent $O_{X}$ -module $(\overline{M}, \phi)$ .
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Conversely, a $G$-linearlized quasi-coherent $\mathcal{O}_{X}$-module $\mathcal{M}$ gives an A-
module $M:=\Gamma(X, \mathcal{M})$ , and the map $\omega$ : $Marrow M\otimes H$ derived from the
map

$\mathcal{M}arrow a_{*}a^{*}A\not\in^{a_{*}\phi}arrow a*p^{*}\mathcal{M}$

gives the $(G, A)$-module structure of $M$ , and this correspondence gives an
equivalence.

This correspondence is extended to the case $X$ is not necessarily affine in
a natural way.

We define $\mathcal{G}x$ to be the category of noetherian $(G^{t}, X)$-schemes of finite
type. Namely, an object in $\mathcal{G}x$ is a quasi-compact $G’$-scheme $Y$ together with
a $G$-morphism $Yarrow X$ locally of finite type. Note that $Y\in \mathcal{G}x$ implies
$Y$ is noetherian and of finite type over $X$ . A $\mathcal{G}x$ -morphism $Yarrow Y’$ is a
$G$-morphism $X$-morphism. $\mathcal{G}_{X}fl$ denotes the full subcategory of $\mathcal{G}x$ of flat
$X$-schemes, affine over $s_{P^{ec}}$ Z.

For a category $C$ , a $C$-valued $(G, X)$-functor (resp. $(G,$ $X)fl$-functor) is
a contravariant functor from $\mathcal{G}x$ (resp. $\mathcal{G}_{X}fl$ ) to $C$ by definition. Note that
the category $\mathcal{G}x$ is skeletally small, so the category of $(G, X)$-functors with
valued in any $C$ is a category with small $hom$ sets.

Definition 7.2 Assume that $C$ has finite projective limits. A C-valued
$(G, X)$-functor $F$ is called a $(G, X)$-faisceau if it satisfies the conditions:

1 If $Y=Y_{1}11\cdots 11Y_{r}\in \mathcal{G}x$ is a finite disjoint union of $(G, X)$-schemes,
then the canonical maps $F(Y)arrow F(Y_{i})$ yield an isomorphism $F(Y)\cong$

$\Pi_{i}F(Y_{i})$ .

2 If $Yarrow Y’$ is a morphism in $\mathcal{G}x$ which is faithfully flat, $t_{1}he11$ the map
$F(Y’)arrow F(Y)$ is a difference kernel of two maps $\Gamma^{\prec}(f_{1})$ and $F(f_{2})$ ,
where $f_{i}$ : $Y’$ Xy $Y’arrow Y’$ is the $\dot{i}th$ projection.

$(G, X)fl$-faisceau is defined similarly.

The functor $Y\mapsto\Gamma(Y, OY)$ is a faisceau of $R$-algebras, which we denote
by $\mathcal{O}_{X}$ , by abuse of notation. Moreover, $\mathcal{O}_{X}$ is a faisceau of $G$-algebras. Let
$Y\in \mathcal{G}x$ . The action $a_{Y}$ : $Y\cross Garrow Y$ yields a $G$-algebra map

$\omega$ : $\mathcal{O}_{X}(Y)=\Gamma(Y, O_{Y})arrow\Gamma(Y\cross G, \mathcal{O}_{GxY})=\mathcal{O}_{X}(Y)\otimes H$

by [26, Proposition 9.3]. lt is easy to see that $\omega$ defines a $G’$-module structure
of $\mathcal{O}_{X}(Y)$ , and $\mathcal{O}_{X}(Y)$ is a $G$-algebra in fact.

An $\mathcal{O}_{X}$-module $M$ is said to be quasi-coherent, by abuse of terminology,
if for any $Aarrow B$ such that $S_{P^{eC}}Barrow S_{P^{eC}}$ $A$ is a morphism in $\mathcal{G}x$ , the
canonical $B$-module map $B\otimes_{A}M(A)arrow M(B)$ is an isomorphism. $\Lambda I$ is
called coherent if it is quasi-coherent and $M(A)$ is $A$-finite for any $A$ with
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$s_{pec}A\in \mathcal{G}x$ . A quasi-coherent $\mathcal{O}_{X}$ -module is a faisceau as a $(G, X)$-functor
[40, Corollary 1.6].

For a quasi-coherent sheaf (for the usual Zariski topology) $M$ on $X$ , we
define a $(G, X)$-functor of $\mathcal{O}_{X}$-modules $W(M)$ by $W(M)(Y)=\Gamma(Y, f^{*}M)$

for $Y\in \mathcal{G}x$ , where $f:Yarrow X$ is the structure map. lt is easy to check that
$W(M)$ is a quasi-coherent faisceau. These definitions are done for $(G, X)fl-$

functors similarly.
Now we give an alternative definition of $(G, O_{X})$-modules.

Definition 7.3 A $(G, \mathcal{O}_{X})$-module (faisceau) $M$ is a collection of data:

1 $M$ is an $\mathcal{O}_{X}$-module $(faiSCeau. ).\cdot$

2 For $Y\in \mathcal{G}x,$ $M(Y)$ is a $(G, \mathcal{O}_{X}(Y))$-module.

3 For each $Yarrow Y’$ , the canonical map $M(Y’)arrow M(Y)$ is a $G$-linear map.

A $(c, 0_{x})fl$-module (faisceau) is defined similarly.

Let $M$ be a quasi-coherent $(G, Ox)$-module. Then, $M$ is a quasi-coherellt
$(G, \mathcal{O}x)fl$ -module by restriction.

Let $M$ be a quasi-coherent $(G, \mathcal{O}_{X})fl$ -module. We show that a $G^{t}-$

linearlized quasi-coherent $\mathcal{O}_{X}$-module corresponds in a natural way.
First, note that $X$ is covered by a $G$-stable open subschemes (for the

definition of $G$-stability of subschemes, see the..next section). Let V be a
quasi-compact open subset of $X$ . Then, the image $VG$ of the action $V\cross Garrow$

$X((v, g)\mapsto vg)$ is a quasi-compact open subset of $X$ , and is $G$-stable. So, if
$(V_{i})$ is an open covering of $X$ , then $(V_{i}G)$ is the desired one.

Hence, we may assume that $X$ is quasi-compact without loss of generality.
Let $(V_{i})$ be a finite covering of $X$ with each $V_{i}$ affine. We set $Y:=(11iV_{v}?\cdot)\cross C\text{ア}$ ,
and we regard $Y$ to be a principal $G$-action. Then, the action $Yarrow X$

preserves $G$-action, and we have that $Y\in \mathcal{G}_{X}fl$ .
Note that to give a quasi-coherent $\mathcal{O}_{X}$-module is the same as to give a

quasi-coherent $\mathcal{O}_{Y}$ -module $\mathcal{M}$ and an isomorphism $\psi$ : $\pi_{1}^{*}\mathcal{M}\neg\pi_{\sim}^{*}9M$ which
satisfies the cocycle condition $\pi_{31}^{*}\psi=\pi_{32}^{*}\psi 0\pi_{2}\psi*1’ w$here $\pi_{i}$ : $Y\cross_{X}Y-AY$

is the $ith$ projection, and $\pi_{ji}$ : $YX_{X}\cross xYarrow Y\cross xYiS$ the map $gi_{Ven}$ by
$(y_{1}, y_{2}, y3)\mapsto(y_{i}, y_{j})$ , see [40, p. 19].

The map $\psi$ is defined as the restriction map $\mathcal{M}(\tau)$ , where $\tau$ : $YX_{X}]^{\nearrow}arrow$

$Y\cross_{X}Y$ is given by $\tau(y_{1}, y_{2})=(y_{2}, y_{1})$ , as $\tau$ is a morphism in $\mathcal{G}_{X}fl$ . Thus, $\mathcal{M}$

gives a quasi-coherent $\mathcal{O}_{X}$-module $\mathcal{M}_{0}$ .
As $\psi$ : $\mathcal{M}(\pi_{1})arrow \mathcal{M}(\pi_{2})$ is $G$-linear by the definition of $(G^{l}, Ox)fl- nlodule$ ,

it is easy to verify that $\phi$ : $a^{*}\mathcal{M}arrow p^{*}\mathcal{M}$ induces $\phi_{0}$ : $a^{*}At_{0}arrow p^{*}\mathcal{M}_{0}$ , and
this defines a $G$-linearlization of $\mathcal{M}_{0}$ .

Finally, if $M$ is a quasi-coherent $C_{J}$-linearlized $O_{X}$ -module, then $f^{*}M$ is
a $G$-linearlized $O_{Y}$-module for any $f$ : $Yarrow X$ with $Y\in C_{JX}$ . It is easy
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to see that $f^{*}Marrow a_{*}a^{*}f^{*}M-a_{*}\phi*f^{*}a_{*}pM$ gives the coaction $W(\Lambda I)(Y)arrow$

$W(M)(Y)\otimes H$ , which is natural on $Y$ . From the linearlizable $slleaf$ condition,
we can check that $W(M)$ is a quasi-coherent $(G, O_{X})$-module.

Thus, a quasi-coherent $(G, \mathcal{O}_{X})$-module, a quasi-coherent $(G, O_{X})$fl-
module, and a $G$-linearlized quasi-coherent $\mathcal{O}_{X}$-module are one and the same
thing by the correspondence above.

Let $M$ be a coherent $(G, \mathcal{O}_{X})$-module, and $N$ a quasi-coherent $(c, 0_{X})$ -

module. Then, we define the $(G, \mathcal{O}_{X})fl_{-module}\underline{EXt}_{\mathcal{O}_{X}}(iM, N)$ by

$\underline{Ext}_{\mathcal{O}_{X}}^{i}(M, N)(A):=Ext_{A}^{i}(M(A), N(A))$ .

It is easy to see that $\underline{Ext}_{\mathcal{O}_{X}}(iM, N)$ is quasi-coherent, and can be grasped as
a $(G, \mathcal{O}_{X})$-module.

Assume that $G$ is IFP. Then, we can define a $G$-linearlized structure of
$\underline{Tor}_{i}o_{x}(M, N)$ for quasi-coherent $(G, \mathcal{O}_{X})$-modules $M$ and $N$ , in a similar
way.

8 Stability of subschemes

In this section, $R,$ $G$ , and $X$ are the same as in the last section. Moreover,
we assume that $G$ is $R$-smooth with connected geometric fibers.

Note that if $Y$ is an irreducible (resp. reduced, integral) locally noetherian
$R$-scheme, then so is $Y\cross G$ .

We denote the action (resp. the first projection) $X\cross Garrow X$ by $a=a_{X}$

(resp. $p=p_{X}=p_{1}$ ). The isomorphism $X\cross Garrow X\cross G^{t}$ given by $(x, g)\mapsto$

$(xg, g)$ is denoted by $h_{X}$ . Note that it holds $p_{XX}oh=a_{X}$ .
For a subscheme $Y$ of $X$ , we say that $Y$ is $G$ -stable when the action

$Y\cross Garrow X((y, g)-yg)$ factors through $Y(arrow X$ . If $Y$ is $G$-stable, then
$Y$ has a unique $G$-action such that $Y\llcorner_{arrow}X$ is a $G$-morphism. We say that
$x\in X$ is $G$-stable when $\overline{\{x\}}$ , as an integral subscheme of $X$ , is G-stable.

Lemma 8.1 The following hold:

1 Let $Y$ be a closed subscheme of $X$ , and $Y^{*}$ denotes the closure of the image
of the action $Y\cross Garrow X$ . Then; $Y^{*}$ is the smallest $G’$ -stable closed
subscheme containing Y. If $Y$ is irreducible (resp. reduced), then so is
$Y^{*}$

2 For a reduced closed subscheme $Y$ of $X$ , the following are equivalent.

a $Y$ is G-stable
$b$ Any irreducible component (maximal integral closed subschemc) of

$Y$ is G-stable
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$cX-Y$ is G-stable.

3 When $X=X_{0}\cross_{R}G$ is a principal $G$ -bundle, then any $G$ -stable open set

of $X$ is of the form $V\cross_{R}G$ , where $V$ is an open set of $X_{0}$ .

4 If $\varphi$ : $Xarrow X’$ is a $G$ -morphism of locally of finite type between locally
noetherian $R$ -schemes with $G$ -actions, then the flat locus Flat $(\varphi)$ is a
$C_{T}$ -stable open subset of $X$ .

5 If the Cohen-Macaulay (resp. Gorenstein, local complete $intersect\dot{i}on,$ reg-
ular) locus is an open set of $X$ , then it is G-stable.

6 If $M$ is a $G$ -linearlized coherent $\mathcal{O}_{X}$ -module, then, for any $r\geq 0_{f}$ the
set { $x\in X|M_{x}$ is $O_{X,x}$ -free of rank $r$ } is a $C_{J}$ -stable open set of X. $In$

particular, $SupP^{M}$ (as a reduced closed subscheme) is a $G$ -stable closed
subscheme of $X$ .

For $x\in X$ , we denote the generic point of $\overline{\{x\}}^{*}$ by $x^{*}$ . $x$ is $G$-stable if
and only if $x=x^{*}$ .

Corollary 8.2 Assume that the Cohen-Macaulay (resp. Gorenstein, local
complete intersection, regular) locus $U$ of $X$ is an open subset of $X(e.g.$ ,

$X$ is excellent). If $U$ contains all of the $G$ -stable points of $X$ , then $U=X$ .

Proof. Assume the contrary. Then, $Y:=X-U$ with the reduced closed
subscheme structure is a non-empty $G$-stable closed subscheme of $X$ . It
follows that the generic point $\eta$ of any irreducible component of $Y$ is G-
stable, but $\eta\not\in U$ . This is a contradiction. $\square$

This corollary remains true without assuming that $X$ is excellent, as will
be seen in the next section.

9 First application –Matijevic-Roberts type theorem

As in the last section, $R$ is a noetherian commutative ring, $C_{\tau}$ a smooth affine
$R$-group scheme with connected geometric fibers, $X$ a locally noetherian $C_{\tau-}$

action. The following is the first application of our construction.

Theorem 9.1 Let $x\in X$ and $\mathcal{M}$ a coherent $(C_{\tau}, \mathcal{O}x)$ -module. Then, the
following hold:

1 If $\mathcal{O}_{X,x^{*}}\dot{i}S$ a regular local ring (resp. a complete intersection), then so is
$O_{X,x}$ . In $parti_{Cu}lar$, if $X$ is regular (resp. a complete intersection) at
any stable point, then $X$ is regular (resp. a local complete $a(,ntersect\dot{i}on)$ .
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2 If $\mathcal{M}_{x^{*}}$ is Gorenstein (resp. Cohen-Macaulay, free), then so is $\mathcal{M}_{x}$ . In
particular, $\dot{i}f\mathcal{M}$ is Gorenstein (resp. Cohen-Macaulay, free) at any
stable point, then $\mathcal{M}$ is Gorenstein (resp. Cohen-Macaulay, locally free).

In [39], J. Matijevic and P. Roberts proved the following theorem, proving
Nagata’s conjecture [45] affirmatively.

Theorem 9.2 (Matijevic-Roberts) Let $A=\oplus_{n\in \mathbb{Z}}A_{n}$ be a commutative
$\mathbb{Z}$ -graded noetherian ring. If $A_{\mathfrak{p}}$ is Cohen-Macaulay for every graded prime
ideal $\mathfrak{p}$ of $A$ , then $A$ is Cohen-Macaulay.

Nagata’s conjecture was proved also by Hochster and Ratliff [30].
After a while, Matijevic-Roberts theorem was generalized to the theorem

on Gorenstein and regular properties and any finitely generated module $M$ ,
see J. Matijevic [38], and Y. Aoyama and S. Goto [3].

Moreover, these generalized versions were extended to the case of $\mathbb{Z}^{n_{-}}$

graded rings by S. Goto and K.-i. Watanabe [24]:

Theorem 9.3 Let $A$ be a $\mathbb{Z}^{n}$ -graded commutative noetherian ring, and $M$ a
finitely generated graded $A$ -module. Let $\mathfrak{p}\in SpecA$ , and we denote by $\mathfrak{p}^{*}$ the
maximal graded (prime) ideal contained in $\mathfrak{p}$ . Then, the following $h,old_{S}$ :

1 If $A_{\mathfrak{p}}*\dot{i}S$ a regular local ring, then so is $A_{\mathfrak{p}}$ .

2 If. $M_{\mathfrak{p}}*isCohen$’-Macaulay (resp. Gorenstein), then so is $M_{\mathfrak{p}}$ .

A similar result on the complete intersection property was obtained by
Cavaliere and Niesi [15] after a while.

Theorem 9.1 is yet another generalization of these theorems, see Exam-
ple 3.4. The rest of this section is devoted to describe how Theorem 9.1 is
proved as an application of G-linearlization.

Lemma 9.4 Let $Y$ be a closed integral subscheme of $X$ with the generic
point $\eta$ . Then, the following hold:

1 $\mathcal{O}_{Y^{*},\eta}$ is a regular local $r\dot{i}ng$

2 Let $\mathcal{M}$ be a coherent $(G, \mathcal{O}_{Y^{*}})$ -module. Then, $\mathcal{M}_{\eta}$ is $\mathcal{O}_{Y^{*},\eta}$ -free. If $N$

is a coherent $(G, \mathcal{O}_{X})$ -module moreover, then $Ext_{\mathcal{O}_{X}.\eta}^{i}(\mathcal{M}N_{\eta})\eta$
’ is also

$O_{Y^{*},\eta}$ -free for any $i\geq 0$ .

Proof. Consider the morphism $\varphi$ : $Y\cross Garrow Y^{*}$ defined by $(y, g)\mapsto yg$ .
It is clear that $\varphi$ is a $G$-morphism, and Flat $(\varphi)$ is a $G$-stable open subset of
$Y\cross G$ . By Lemma 8.1, $, Flat $(\varphi)$ is of the form $F\cross G$ for some open subset
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$F$ of $Y$ . As $\varphi$ is dominating and both $Y\cross G$ and $Y^{*}$ are integral, we have
that $\eta\in F$ . Hence, the composite morphism

$\psi$ : $S_{P}eC\kappa(\eta)\cross Garrow Y\cross G^{\varphi}arrow Y^{*}$

is flat, as the first arrow is obviously flat, and the second one is flat at the
image of the first. As $Spec\kappa(\eta)\cross G$ is $\kappa(\eta)$-smooth and the unit element
$S_{P^{eC\kappa}}(\eta)\cross\{e\}$ is mapped to $\eta\in Y^{*}$ by $\psi$ , the local ring $\mathcal{O}_{Y^{*},\eta}$ is a regular
local ring, and 1 is proved.

We prove 2. By Lemma 8.1, 6, the free locus $U$ of $\mathcal{M}$ is a $G$-stable open
subset of $Y^{*}$ , and is non-empty, as it contains the generic point of $Y^{*}$ . If
we have $Y\subset Y^{*}-U$ , then we have $Y^{*}\subset Y^{*}-U$ , as $Y^{*}-U$ with the
reduced structure is $G$-stable. This is a contradiction, and we have $\eta\in U$ .
This proves that $\mathcal{M}_{\eta}$ is $\mathcal{O}_{Y^{*},\eta}$-free. Applying this observation to the coherent
$(G, 0_{Y^{*}} )$ -module $\underline{Ext}_{o}\grave{\iota}_{X}(\lambda 4,N)$ , we are done. $\square$

Now the proof of Theorem 9.1 is reduced to a $pu\underline{rely}$ ring-theoretic argu-
ment. Let $x\in X$ as in the theorem, and we set $Y:=\{x\}$ . We set $B:=O_{X,x}$ ,
$B/P=\mathcal{O}_{Y^{*},x}$ , and $M:=\mathcal{M}_{x}$ . We know the following:

1 $B/P$ is a regular local ring (Lemma 9.4, 1).

2 $B$ is normally flat along $P$ , as the defining ideal sheaf 7 of $Y^{*}$ is a coherent
$(G, O_{X})$-module and we have $(P^{n}/P^{n+1})_{x}=P^{n}/P^{n+1}$ (see Lemma 9.4,
2).

3 Similarly, $M$ is normally flat along $P$ (i.e., $Gr_{P}M$ is $B/P$-flat).

4 $Ext_{B}^{i}(B/P, B/P)$ is $B/P$-free for $\dot{i}\geq 0$ .

5 $Ext_{B}^{i}(B/P, M)$ is $B/P$-free for $\dot{i}\geq 0$ .

4 $B_{P}$ is a regular local ring (resp. complete intersection) by the assumption
of the theorem.

6 $M_{P}$ is Cohen-Macaulay (resp. Gorenstein, free) by assumption.

The second part of Theorem 9.1 is reduced to the following:

Lemma 9.5 Let $(B, \mathfrak{n})$ be a noetherian local ring, $M$ a finite $B$ -module. Let
$P$ be a prime ideal of B. Assume that $M$ is normally flat along P. Then,
the following hold:

1 If $M\neq 0$ , then we have $\dim M=\dim M_{P}+\dim B/P$ .

2 Assume that $B$ is normally flat along P. Then, $M$ is $B$ -free if and only if
$M_{P}$ is $B_{P}$ -free.
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If $E_{Xt_{B}^{i}}(B/P, M)$ is $B/P$ -free for $\dot{i}\geq 0$ moreover, then, the following hold:

3 We have depth $M=depthM_{P}+depthB/P$ . In $partiCu\iota ar_{f}\Lambda I$ is Cohen-
Macaulay if and only if so are $M_{P}$ and $B/P$ . If $M$ is Cohen-Macaulay,
then

type $M=tyP^{e}MP^{\cdot}$ type $B/P$,

where type denotes the Cohen-Macaulay type. In particular, $M$ is
Gorenstein if and only if so are $M_{P}$ and $B/P$ .

4 Assume that $B/P$ is Gorenstein. Then, we have $\mu_{B}^{i+d:}mB,/P(M)$ $=$

$\mu_{B_{P}}^{i}(M_{P})$ , where $\mu^{i}$ denotes the Bass number.

The first part of Theorem 9.1 is reduced to the following:

Lemma 9.6 Let $(B, \mathfrak{n})$ be a local ring, $P$ a prime ideal of B. Assume that
$B$ is normally flat along $P$ , and $B/P$ is regular. Then the following hold:

1 $B$ is regular if and only if $B_{P}$ is regular.

2 If $E_{Xt_{B}^{i}}(B/P, B/P)$ is $B/P$ -free for $\dot{i}\geq 0$ moreover, then $B$ is a complete
intersection if and only if $B_{P}$ is a complete intersection.

These lemmas above are already proved or essentially proved and used
in [24], except that the complete intersection property was not treated. $I\ln-$

portant theorems on normal flatness are proved in [49], which includes some
part of these lemmas.

10 Auslander-Buchweitz theory

In [5], an important theory on abelian categories, containing Cohen-Macaulay
approximations as an important example, was developed.

For a category $C$ , the set of objects in $C$ is also denoted by $C$ . A subset
$\mathcal{X}$ of $C$ and the full subcategory $\mathcal{X}$ of $C$ will be sometimes identified. For a
category $C$ , both the set of null objects in $C$ and one of the null objects in $C$

will be denoted by the same symbol $0$ , which will not cause a confusion. For
a functor $F:Carrow C’$ and $S\subset C$ , we denote the set of objects in $C’$ which is
isomorphic to $F(S)$ for some $S\in S$ by $F(S)$ .

Let $A$ be an abelian category. A morphism $p:.J/Iarrow N$ in $A$ is said
to be right minimal if for any $\varphi\in End_{A}(M)$ , we have that $p\varphi=p$ implies
that $\varphi$ is an isomorphism. Left minimality is the dual notion of the right
minimality. That is to say, a morphism in $A$ is said to be left minimal, if it
is right minimal as a morphism in the opposite category $A^{o_{P}}$ of $A$ .

Let $\mathcal{X}$ be a full subcategory of $A$ . A morphism $Xarrow M$ in $A$ is called a
right $\mathcal{X}$ -approximation if $X\in \mathcal{X}$ , and for any $X’\in \mathcal{X}$ and any $g\in A(x’, M)$ ,
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there exists some $h\in A(X’, X)$ such that $fh=g$ . Left approximation is the
dual notion of right approximation. A right (resp. left) minimal right (resp.
left) $\mathcal{X}$-approximation is called a right (resp. left) minimal X-approximation,
for short. A right minimal $\mathcal{X}$-approximation of $M$ is unique up to isomor-
phisms in $A/M$ , if it $exi_{S}t_{S}.\cdot$

We say that $B\subset A$ has right (resp. left) (minimal) $\mathcal{X}$-approximations if
any $M\in B$ has a right (resp. left) (minimal) X-approximation.

Lemma 10.1 If
$0arrow Y^{\grave{l}}arrow Xparrow Marrow 0$

is an exact sequence in $A$ and $Ext_{A(}^{1}\mathcal{X},$ $Y$ ) $=0$ , then we have that $p$ is a right
$\mathcal{X}$ -approximation of $M$ .

Proof. For $X’\in \mathcal{X}$ , we have that

$A(X’, x)arrow A(x’, M)arrow Ext_{A}^{1}(X’, Y)=0$

is exact. Hence, for any $p’\in A(x’, M)$ , there is $h\in A(X’, X)$ such that
$ph=p’$ . $\square$

We say that a ring $E$ is semiperfect if $E/radE$ is semisimple, and if for
any idempotent $\overline{e}\in E/radE$ , there exists some idempotent $e\in E$ which
specializes to $\overline{e}$ . $E$ is semiperfect if and only if any finitely generated E-
module admits a projective cover (essential epimorphism from a projective
$E$-module). A local ring is semiperfect. A module-finite algebra over a
Henselian local ring is semiperfect. The following is a slight modification of
[41, Theorem 3.4].

Proposition 10.2 Let $A$ be an abelian category, and

$0arrow Y^{ip}arrow Xarrow M$

an exact sequence in A. Consider the following two conditions:

1 $p$ is right minimal

2 The image of $i$ does not contain any non-zero direct summand of $X$ .

We have $1\Rightarrow 2$ in general. If $End_{A}X$ is semiperfect, then there exists some
decomposition $X=X_{0}\oplus X_{1}$ such that $X_{0}\subset{\rm Im} i$ and that $X_{1}arrow M$ is right
minimal. In particular, we have $2\Rightarrow 1$ .

Corollary 10.3 Let $\mathcal{X}$ be a full subcategory of A closed under direct sum-
mands. Assume that any object in $\mathcal{X}$ has a semiperfect endomorphism ring.

If $M\in A$ has a right (resp. left) $\mathcal{X}$ -approximation, then $M$ has a unique
(up to isomorphisms in $A/M$ (resp. in $M/A$)) right (resp. left) minimal $\mathcal{X}-$

approximation.
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Let $\mathcal{X}$ be a full subcategory of $A$ . We define some full subcategories
related to $\mathcal{X}$ as follows:

add $\mathcal{X}$ : Consists of $M\in A$ which is isomorphic to a direct sumnland of a
finite direct sum of objects in $\mathcal{X}$ . Note that $O\in add\mathcal{X}\supset \mathcal{X}$ , and add $\mathcal{X}$

is closed under isomorphisms, finite direct sums, and direct summands.
If X is closed under extensions, then so is add $\mathcal{X}$ .

$F(\mathcal{X})$ : Consists of $M\in A$ such that there exists some $\gamma\geq 0$ and a filtration

$0=M_{0}\subset M_{1}\subset\cdots\subset M_{r}=M$

such that $M_{i}/M_{i-1}$ is isomorphic to an object in X for $i=1,2,$ $\ldots$ , $r$ .
Note that $O\in F(\mathcal{X})\supset \mathcal{X}$ , and $\mathcal{F}(\mathcal{X})$ is closed under isomorphisms and
extensions. Note also that $\mathcal{F}(\mathcal{X})$ is not closed under $direCt_{Su}.mmand_{S}$

in general even if so is $\mathcal{X}$ .
$\hat{\mathcal{X}}$ : Consists of $M\in A$ such that there exists some resolution of finite length

$0arrow X_{h}arrow\cdotsarrow X_{1}arrow X_{0}arrow Marrow 0$

with $X_{i}\in \mathcal{X}$ . For $M\in\hat{\mathcal{X}}$ , the smallest integer anlong the lengths $h$ of
$\mathcal{X}$-resolutions of $M$ is called the $\mathcal{X}$-resolution dimension, and is denoted
by $\mathcal{X}- reSol.\dim M$ . For $M\not\in\hat{\mathcal{X}}$ , we define $\mathcal{X}- reSol.\dim M=\infty$ .

$\mathcal{X}^{\perp}$ : For $M\in A$ , we set

X-inj. $\dim M:=\sup(\{i\geq 0|Ext_{A()}^{i}\mathcal{X}, M\neq 0\}\cup\{0\})$ ,

and call X-inj. $\dim M$ the $\mathcal{X}$-injective dimension of $M$ . We say that $M$

is $\mathcal{X}$-injective if X-inj.$\dim M=0$ . The full subcategory of X-injective
objects is denoted by $\chi\perp$ . Similarly, $\mathcal{X}$-projective dimension, denoted
by $\mathcal{X}-P^{roj}.\dim M$ , and $\mathcal{X}$-projective objects are defined. The category
of $\mathcal{X}$-projective objects is denoted by $\perp \mathcal{X}$ . Note that $\mathcal{X}^{\perp}$ is closed under
isomorphisms, extensions, direct summands, and monocokernels. Sim-
ilarly, $\perp_{\mathcal{X}}$ is closed under isomorphisms, extensions, direct summands,
and epikernels.

We say that $\omega\subset \mathcal{X}$ is a cogenerator of X if for any $X\in \mathcal{X}$ , there exists
some exact sequence

$0arrow Xarrow Tarrow X’arrow 0$

such that $T\in\omega$ and $X’\in X$ . If we have $\omega\subset\chi\perp$ moreover, then we say
that $\omega$ is an injective cogenerator of $\mathcal{X}$ .

The following is a digest of a series of theorems due to M. Auslander
and R. O. Buchweitz [5]. Some of them are taken from [6] in the context of
representations of algebras.
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Theorem 10.4 (Auslander-Buchweitz) Let $A$ be an abelian category,
and $\mathcal{X},$ $\mathcal{Y}$ and $\omega$ full subcategories of A. Assume that the following con-
ditions are satisfied:
AB 1 $\mathcal{X}$ is closed under extensions, direct summands and epikernels.

AB 2 $\mathcal{Y}\subset\hat{\mathcal{X}}$ , and $\mathcal{Y}$ is closed under extensions, direct summands and mono-
cokernels.

AB 3 It holds $\omega=\mathcal{X}\cap \mathcal{Y}$ , and $\omega$ is an injective cogenerator of $\mathcal{X}$ .

Then, the following hold:

1 $\hat{\omega}=\mathcal{Y}$

2 If $\omega’\subset \mathcal{X}$ is an injective cogenerator of $\mathcal{X}$ , then we have add $\omega’=\omega$ .

3 If we have $M\in\hat{\mathcal{X}}$ , then the following hold:

$i$ ( $\mathcal{X}$ -approximation) There is an exact sequence in $A$

$0arrow Yarrow X^{p}arrow Marrow O$ (2)

such that $X\in \mathcal{X}$ and $Y\in \mathcal{Y}$ .
\"u ( $\mathcal{Y}$ -hull) There is an exact sequence in $A$

$0arrow M^{\iota}arrow Y’arrow X’arrow 0$ (3)

such that $X’\in \mathcal{X}$ and $Y’\in \mathcal{Y}$ .

4 For $M\in\hat{\mathcal{X}}$ , the following are equivalent:

$iM\in \mathcal{X}$ \"u $M\in\perp_{\mathcal{Y}}$ \"u’ $Ext_{A}^{1}(M, y)--0$ \"ui $M\in\perp_{\omega}$ .

In particular, $p$ in the exact sequence in (2) is a right $\mathcal{X}$ -approximation
of $M$ .

5 For $N\in\hat{\mathcal{X}}_{Z}$ the following are equivalent.

$iN\in \mathcal{Y}$ \"u $N\in \mathcal{X}^{\perp}$ $ii’ Ext_{A()}^{1}\mathcal{X},$$N=0$ .

In particular, $\iota$ in (3) is a left $\mathcal{Y}$ -approximation of $M$ .

6 For $M$ $\in$
$\hat{\mathcal{X}}$ , we have that $\mathcal{X}-\Gamma esol.\dim(M)$ $=$ $\mathcal{Y}-P^{roj}.\dim(M)$ $=$

$\omega- proj.\dim(M)$ .

7 For $Y\in \mathcal{Y}$ , we have $\omega- reSol.\dim(Y)=\chi_{- r}eso1.\dim(Y)$ .
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8 If $0arrow M_{1}arrow M_{2}arrow M_{3}arrow 0$ is an exact sequence in $A$ and two of $M_{1\prime}$,
$M_{2}$ and $M_{3}$ belong to $\hat{\mathcal{X}}$ , then all of them belong to $\hat{\mathcal{X}}$ .

We call the exact sequence (2) the $\mathcal{X}$ -approximation of $M$ . It is said to
be minimal when $p$ in (2) is right minimal. We call the exact sequence (3)
the $\mathcal{Y}$ -hull of $M$ . It is said to be minimal when $\iota$ in (3) is left minimal.

Definition 10.5 If the conditions AB 1-3 are satisfied, then the triple
$(\mathcal{X}, \mathcal{Y}, \omega)$ is called a weak Auslander-Buchweitz context (weak AB context,
for short) in the abelian category $A$ . If it holds $\hat{\mathcal{X}}=A$ moreover, then it is
called an Auslander-Buchweitz context (AB context, for short) in $A$.

If $(\mathcal{X}, \mathcal{Y}, \omega)$ is an AB context in $A$ , then any of $\mathcal{X},$ $\mathcal{Y}$ and $\omega$ determine
others.

We exhibit some examples of weak AB contexts in commutative ring
theory. Let $R$ be a noetherian commutative ring, and $A_{R}=R$ IM$f$ den.ote the
category of finitely generated R-modules.

Projective modules We define

$\mathcal{X}_{R}^{pr\circ pr}=\omega_{RR}:=addRo=\perp A=$ { $R$-finite projective modules},

and

$\mathcal{Y}P^{roO}R:=\hat{\mathcal{X}}^{pr}R=$ { $R$-finite modules of finite projective dimension}.
Then, $(\mathcal{X}_{R}^{P}ro, \mathcal{Y}_{R}^{por}, \omega)pRro$ is a weak AB context with $\hat{\mathcal{X}}=y_{R}$ . It is an
AB context if and only if $R$ is regular.

Modules of Gorenstein dimension $0$ Let $M\in A_{R}$ . We say that $\lambda,I$ is
of Gorenstein dimension $0$ if $M$ is reflexive (i.e., the canonical map
$Marrow M^{**}$ is an isomorphism), and $M,$ $M^{*}\in\perp_{\omega_{R}^{pr}}\circ$ , see [4]. We set

$\mathcal{X}_{R}^{gor}:=$ { $R$-finite modules of Gorenstein dimension $0$ }.

Then, we have that $(\mathcal{X}_{R}^{g\circ r}, \mathcal{Y}P^{r}R’\omega_{R}POro)$ is a weak AB context, which is
essentially proved by Auslander and Bridger [4]. This weak AB context,

is an AB context if and only if $R$ is Gorenstein.

Cohen-Macaulay approximation We say that an $R$-module $K$ is point-
wise dualizing, if $K$ is $R$-finite, $E_{Xt_{R}^{i}}(K, K)=0$ for $i>0$ , the canonical
map $Rarrow Hom_{R}(K, K)$ is isomorphic, and for any prime ideal $\mathfrak{p}$ of $R$ ,
$K_{\mathfrak{p}}$ is of finite injective dimension. We say that an $R$-module $M$ is nlax-

imal Cohen-Macaulay (MCM, for short), if $M$ is $R$-finite, and for any
$\mathfrak{p}\in SpecR$ , it holds depth $M_{\mathfrak{p}}=\dim R_{\mathfrak{p}}$ . We assume that a pointwise
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dualizing module $K_{R}$ exists. This implies that $R$ is Cohen-Macaulay
[51]. Now we set:

$\mathcal{X}_{R}^{cn1}$ $:=$ {MCM R-modules},
$\mathcal{Y}_{R}^{cn1}$ $:=$ $\{Y\in A_{R}|inj.\dim R_{\mathfrak{p}}Y_{\mathfrak{p}}<\infty (\mathfrak{p}\in S_{P^{eC}}R)\}$ ,
$\omega_{R}^{cm}$ $:=$ add $K_{R}$ .

As a matter of fact, $(\mathcal{X}_{R}^{Cm}, \mathcal{Y}_{R}cm,n))\omega^{C}R$ is an AB-context [5]. It follows
that $\omega_{R}^{cnt}$ is independent of the choice of $K_{R}$ (see [25]). An $\mathcal{X}_{R}^{cm_{-}}$

approximation is called a Cohen-Macaulay approximation.

11 Split reductive group

Soon after the works of Auslander-Buchweitz [5] and Auslander-Reiten [6],
another important example of Auslander-Buchweitz context was found in
representation theory by Ringel. His result was proved as a theorem on
quasi-hereditary algebras [48], and applied to the representations of reductive
groups by Donkin [20].

In this section, we briefly review the theory of split reductive groups.
Let $R$ be a noetherian commutative ring.

Definition 11.1 An R-complex

$F$ : $0arrow F0s^{0}arrow F1^{\delta^{1}}arrow F^{2^{\delta}}arrow 2\ldots$

is said to be universally acyclic if $H^{i}(F\otimes M)=0(i>0)$ , and the canonical
map

$\rho_{M}$ : $H^{0}(F)\otimes Marrow H^{0}(F\otimes M)$

is an isomorphism for any $R$-module $M$ .

Lemma 11.2 Assume that $gl.\dim R\leq 1$ . If $F$ is an $R$ -flat complex with $F^{0}$

being $R$ -projective, then the following are equivalent.

1 $F$ is universally acyclic, and $H^{0}(F)$ is $R$ -finite projective

1’ $F$ is acyclic, and $H^{0}(F)$ is R-finite
2 For any $\mathfrak{p}\in SpecR$ , it holds that $H^{i}(F\otimes\kappa(\mathfrak{p}))=0(i>0)$ , and

$\dim_{\kappa(\mathfrak{p})}H0(F\otimes\kappa(\mathfrak{p}))<\infty$ is a locally constant function on $S_{P^{eC}}R$ .

Let $k$ be an algebraically closed field. A $k$-group scheme $G$ is said to be
reductive, if it is non-trivial, an affine variety as a $k$-scheme, and the radical
(maximal connected normal solvable subgroup of $G$) is a torus (a k-group
scheme which is isomorphic to $G_{m}^{n}$ for some $n\geq 0$), see [31].
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Let $R$ be a noetherian commutative ring again. An $R$-group scheme $G$ is
called reductive, if it is flat, affine and has reductive geometric fibers. Clearly,
a reductive $R$-group scheme is $R$-smooth and has connected geometric fibers.

$G$ is called split reductive, if it is reductive, and it has a closed subgroup
$T$ such that:

1 $T$ is a split maximal torus of $G$ . That is to say, $\tau\cong c_{v_{m}^{n}}$ for some $n\geq 0$ ,
and any geometric fiber $k\otimes T$ of $T$ is a maximal torus of $k\otimes G$ .

2 As $G$ is $R$-smooth, Lie $G:=(I/I^{2})^{*}$ is an $R$-finite projective G-module,
induced by the adjoint action of $G$ on itself. As $T$ is a split torus, Lie $G$

as a $T$-module is an $X(T)$-graded $R$-module. We set

$\Sigma_{G}:=$ { $\alpha\in X(T)|\alpha\neq 0$ , (Lie $G)_{\alpha}\neq 0$}. (4)

What we require is, $($ Lie $G)_{\alpha}$ is (rank-one) $R$-free for $\alpha\in\Sigma_{G}$ .

A reductive group over an algebraically closed field is split reductive.
More generally, a reductive group over a strictly Henselian local ring (i.e., a
Henselian local ring whose residue field is separably closed) is split reductive.

General linear group $GL_{n}$ , special linear group $SL_{n}$ , a split torus, sym-
plectic group $Sp_{2n}$ , special orthogonal group $SO_{n}$ , and their direct products
are typical examples of split reductive groups.

Let $G$ be an $R$-split reductive group. Then, an element in $\Sigma_{G}$ in (4) is
called a root of $G$ . The set of roots $\Sigma_{G}$ of $G$ is an abstract root system [31], and
we fix a base $\Delta(G)$ of $\Sigma_{G}$ . Then, the set of dominant weights $X_{G}^{+}\subset X(T)$ ,

positive roots $\Sigma_{G}^{+}$ are determined. Note that we have $\Sigma_{G}=\Sigma_{G}^{+}11\Sigma^{-}G$
’ where

$\Sigma_{G}^{-}:=-\Sigma_{G}^{+}$ is the set of negative roots.
The set of weights $X(T)$ is an ordered set by the dominant order. We

say that $\lambda\geq\mu$ for $\lambda,$ $\mu\in X(T)$ if $\lambda-\mu$ is a linear combination of $\Delta(G)$ ,
with coefficients in the set of non-negative integers. Note that $\angle\lrcorner\backslash \neg+G=\{\alpha\in$

$\Sigma_{G}|\alpha>0\}$ .
For each $\alpha\in\Sigma_{G}$ , the root subgroup $U_{\alpha}$ is determined [33]. We denote the

subgroup of $G$ generated by $U_{\alpha}$ for all $\alpha\in\Sigma_{G}^{-}$ by $U$ . We set $B:=TU$ .
What is important is, not only that a split reductive group $C_{T}$ is defined

over the ring of integers $\mathbb{Z}$ , but the construction above are all done over $\mathbb{Z}$ ,
see $[17, 33]$ . In particular, any split reductive group is IFP by Corollary 5.11.
For any reductive group $G$ over $R$ and any geometric point $x$ of $SpecR$ , there
is an \’etale neighborhood $V=SpeCR$’ of $x$ such that $R’\otimes G$ is $R’$-split. Thus,
as remarked in [52], we have:

Proposition 11.3 Assume that $R$ is Nagata. Let $G$ be a reductive R-group
scheme, $B$ a $C_{T}$-algebra which is offinite type over $R_{f}$ and $M\in G,B$NI$f$ . Then,
we have that the invariance $B^{G}$ is an $R$ -algebra of finite type, and $M^{G}$ is a
$B^{G}$ -finite module.
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When $G=GL_{n}$ , the only case what we need later for application, the
description of items appeared above is done very explicitly as follows:

Example 11.4 Let $G=GL_{n}$ .

1 As $T$ , we may and shall take the subgroup of diagonal matrices in $GL_{n}$ ,
so we have $X(T)\cong \mathbb{Z}^{n}$ . With this identification, the character

$\mapsto t^{\lambda}=t_{1}t_{2}2\ldots t_{n}\lambda_{1}\lambda\lambda_{n}$

corresponds to $\lambda--$ $(\lambda_{1}, \lambda_{2}, \ldots , \lambda_{n})\in \mathbb{Z}^{n}$.

2 With the identification above, we have

$\Sigma_{G}=\{\epsilon_{i^{-\epsilon_{j}}}|1\leq i,j\leq n, i\neq j\}$ ,

where $\epsilon_{i}=$ $(0, \ldots , 0,1,0, \ldots , 0)$ with 1 at the $ith$ entry. We may and
shall fix the base

$\Delta(G)=\{\alpha i:=\epsilon_{i^{-}}\epsilon_{i+}1|1\leq\dot{i}<n\}$ .

Then, we have
$\Sigma^{+}--\{\epsilon_{i^{-}}\epsilon_{j}|i<j\}$ ,

and

$X^{+}=\{\lambda=(\lambda_{1}, \lambda 2, \ldots, \lambda_{n})\in \mathbb{Z}^{n}|\lambda_{1}\geq\lambda_{2}\geq. .. \geq\lambda_{n}\}$.

3 The subgroup $U$ is the subgroup of unipotent lower triangular matrices
(lower triangular matrices with all diagonal entries 1). Note that $B=$

$UT$ is the subgroup of invertible lower triangular matrices.

4 In general, the Weyl group $W(G):=N_{G}(T)/T$ acts on $X(T)$ . In our case
$G=GL_{n}$ , we have $W(G)=\mathfrak{S}_{n}$ , the $nth$ symmetric group, and the
action on $X(T)=\mathbb{Z}^{n}$ is the canonical permutation. In general, $W(G)$

has the longest element $w_{0}$ , which interchanges $\Sigma_{G}^{-}$ and $\Sigma_{G}^{+}$ . In our
case, $w_{0}\in \mathfrak{S}_{n}$ is given by $w_{0}(\dot{i}):=n+1-i$ .

We return to the general situation. As $B$ is a semidirect product of $[T$

and $T$ with $U$ normal, any $T$-module is a $B$-module, letting $U$ act trivially.
The rank-one free $B$ module obtained from $\lambda\in X(T)$ is denoted by $R_{\lambda}$ .
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Definition 11.5 For $\lambda\in X^{+}$ , we denote $ind_{B}^{G}R_{\lambda}$ by $\nabla_{G}(\lambda)$ and call it the
induced module of highest weight $\lambda,$

$whereinR[cJd^{G}B=ind_{R[}R[G]B1$ is the right adjoint
of the canonical restriction $res_{B}c=res_{R}[B]$ ’ see section 2 and [33]. We denote
$\nabla c(-w_{0}\lambda)^{*}$ by $\triangle_{G}(\lambda)$ , and call it the Weyl module of highest weight $\lambda$ .

Lemma 11.6 Let $\lambda\in X^{+}$ . Then, the following hold.

1 (Kempf’s vanishing). We have $R^{i}ind^{c}(BR_{\lambda})=0$ for $i>0$ .

2 (Universal freeness). We have $\nabla_{G}(\lambda)$ is $R$ -finite free. If $R’$ ,is a commu-
tative $R$ -algebra, then we have that the canonical map $R’\otimes\nabla_{G}(\lambda)arrow$

$\nabla_{R’\otimes c(\lambda)}$ is an isomorphism.

For the proof, we may assume that $R=\mathbb{Z}$ , and we utilize Lemma 11.2,
using Theorem 5.9, Kempf’s vanishing over a field, and Weyl’s character
formula over a field [33]. By the lemma, we have $\triangle c(\lambda)$ is also universally
free.

12 Donkin’s Schur algebra and go$od$ filtrations over arbitrary base

In this section, we generalize some part of the theory of good filtrations of
representations of reductive groups, including Ringel’s approximation in the
version of reductive group representations. Ringel’s approximation, origi-
nally proved as a theorem on quasi-hereditary algebras, is another important
example of (weak) AB contexts.

An ordered set is called a poset, for short. Let $P$ be a poset. A subset $Q$

of $P$ is called a poset ideal of $P$ if $\lambda\in Q,$ $\mu\in P$ , and $\mu\leq\lambda$ together imply
$\mu\in Q$ .

Lemma 12.1 Let $P$ be a poset. Then, the following are equivalent.

1 $P$ is finite, or there is an order-preserving bijective map $f$ : $Parrow \mathbb{N}$ , where
$\mathbb{N}$ is the well-ordered set of positive integers.

2 $P$ is countable, and $(-\infty, \lambda]:=\{\mu\in P|\mu\leq\lambda\}$ is finite for any $\lambda\in P$ .

We say that a poset $P$ is of $\omega$-type, if the equivalent conditions in the
lemma is satisfied. Any subset of a $\omega$-type poset is of $\omega$-type again.

Let $R$ be a commutative noetherian ring, and $G$ an $R$-split reductive
group with a fixed data $T$ and $\Delta(G)\subset X(T)$ defined over Z. Restricting the
order of $X(T)$ to $X^{+},$ $X^{+}$ is an ordered set. A saturated subset of $X^{+}$ is a
poset ideal of $X^{+}$ by definition. Note that the poset $X^{+}$ is of $\omega$-type [32].

Definition 12.2 Let $V$ and $W$ be $G$-modules. We say that $W$ is u-acyclic
with respect to $V$ if for any $R$-module $M$ , the following hold:
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1 $Ext_{G}^{i}(V, W\otimes M)=0$ for $i>0$

2 The canonical map $Hom_{G}.(V, W)\otimes Marrow Homc(V, W\otimes M)$ is an isomor-
phism.

We say that a $G$-module $V$ is $u$-good if $V$ is $u$-acyclic with respect to $\Delta_{G}(\lambda)$

for any $\lambda\in X^{+}$ .

Note that if the condition in 2 in the definition holds, then $Ho\ln_{G}(V, W)$

is a pure $R$-submodule of $Hom(V, W)$ . The following is a sort of universal
coefficient theorem.

Proposition 12.3 Let $V$ be an $R$ -finite projective $G$ -module, $W$ an R-flat
$G$-module, and $M$ an $R$ -module of finite flat dimension. Then, there is a
spectral sequence

$E_{2}^{p,q}=Tor^{R}-p(M, EXt_{c}^{q}(V, W))\Rightarrow Ext^{p+}q(GV, M\otimes W)$ .

Corollary 12.4 Let $V$ be an $R$ -finite projective $G_{-}modulef$ and $1’V$ an R-flat
$G^{t}$ -module. If $Ext^{i}(c)V,$$W=0$ for $\dot{i}>0$ and $R$ is regular, then $u\prime e$ have tfiat
$W$ is $u$-acyclic with respect to $V$ , and $Hom_{G}(V, W)$ is R-flat.

Lemma 12.5 Let $\lambda,$ $\mu\in X^{+}$ . Then, the following hold:

1 $\nabla_{G}(\mu)$ is u-good.

2 $Hom_{G}(\triangle_{G}(\lambda), \nabla c(\mu))=0$ unless $\mu=\lambda$ .

3 $Hom_{G}(\Delta c(\mu), \nabla c(\mu))\cong R$ , as an R-module.

This lemma is known as Cline-Parshall-Scott-v.d.Kallen vanishing over a
field, see [33]. The general case is proved utilizing Lemma 11.2. Using this
lemma, we can construct a nice family of subcoalgebras of $R[G]$ .

Theorem 12.6 There exists a unique family of $R$ -subcoalgebras $(C(\pi))_{\pi}$ of
$R[G]$ , parameterized by all finite poset ideals of $X^{+}$ , subject to the $foll_{0}u$)$ing$

conditions:

a $C(\emptyset)=0$

$b$ If $\pi’\supset\pi$ , then $C(\pi’)\supset C(\pi)$ .

$c\lim_{arrow}C(\pi)=R[G]$
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$d$ For any finite poset ideal $\pi$ of $X^{+}$ and any maximal element $\lambda$ of $\pi$ , the
cokernel of the inclusion map $C(\pi-\{\lambda\})rightarrow C(\pi)$ is isomorphic to
$\nabla_{G}(-w_{0}\lambda)\otimes\nabla_{G}(\lambda)$ as a $G\cross G$-module, where we regard $R[G]$ as a
$G\cross G$ -module by $((g, g’)f)(g^{\prime;}):=f(g^{-1}g’$

; for $g,$ $g’,$ $g”\in G^{Y}$ and
$f\in R[G]$ (two-sided regular representation), and $C(\pi-\{\lambda\}),$ $C(\pi)$ as
its submodules. $\cdot$

It is easy to see that $C(\pi)$ is $R$-finite free for any finite poset ideal $\pi$

of $X^{+}$ . We define the Schur algebra of $G$ with respect to $\pi$ as the dual
algebra $C(\pi)^{*}$ , and denote it by $S_{G}(\pi)$ . The proof of the theorem depends
on Donkin’s construction over a field [19], and use Lemma 11.2 again (the
$cor\perp struction$ is done over $\mathbb{Z}$ , then we change the base). On the other hand,
Donkin $(1oc. cit.)$ constructed the Schur algebra over arbitrary base using
hyperalgebra method.

For a (possibly infinite) poset ideal $\pi$ of $X^{+}$ , we set $C( \pi):=\lim_{arrow}C(\rho)$ ,

where $\rho$ runs through all finite poset ideals of $\pi$ . It is easy to see that $C(\pi)$

is an $R$-subcoalgebra of $R[G]$ . A $C(\pi)$-comodule, viewed as a $C_{J}$-module, is
called a $G$-module which belongs to $\pi$ .

For a poset ideal $\pi$ of $X^{+}$ , we set $\Delta_{G}(\pi):=\{\Delta_{G}(\lambda)|\lambda\in\pi\}$ , and
$\nabla_{G}(\pi):=\{\nabla c(\lambda)|\lambda\in\pi\}$ .

By the condition $d$ in Theorem 12.6, we see that $C(\pi)\in \mathcal{F}(\nabla_{G}(\pi))$ for
a finite poset ideal $\pi$ of $X^{+}$ . In particular, $C(\pi)$ is $u$-good. Combining this
fact with a simple observation $ind_{R[G]}^{C(}\pi$

)
$= \lim_{arrow}ind_{R[cJ}c(\rho)$ for any poset ideal $\pi$ of

$X^{+}$ , we have that $C(\pi)$ is $u$-good for any poset ideal $\pi$ of $X^{+}$ .
Note that $ind_{R1^{G}]}^{C(}\pi$

)
$\cong Homc(s_{G}(\pi), ?)$ for finite $\pi$ . The following for the

case $R$ is a field are in [19].

Proposition 12.7 Let $\pi$ be a poset ideal of $X^{+}$ , and $M$ a $C(\pi)$ -comodule.
Then, we have $R^{i}ind_{R\iota]}^{c_{()}}G\pi(M)=0$ for $i>0$ .

Corollary 12.8 For any $C(\pi)$ -comodules, the canonical map

$Ext_{c(\pi}^{i})(M, N)arrow Ext^{i}(c)M,N$

is an isomorphism.

Corollary 12.9 If $M$ and $N$ are $R$ -finite $C_{7}$ -modules, then $Ext_{G}^{:}(M, N)$ is
R-finite.

Let $\pi$ be a finite poset ideal of $X^{+}$ . Now it is not so difficult to show that
$S_{G}(\pi)$ is a quasi-hereditary $R$-algebra of split type, in the sense of [16].

Let $P$ be a finite poset. The rank of $P$ , denoted by rank $P$ , is $r-1$ , where
$r$ is the maximum cardinality of totally ordered subsets in $P$ . Utilizing the
theory of quasi-hereditary algebras, we can show the following:
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Corollary 12.10 Let $\pi$ be a finite poset ideal of $X^{+}rf$ a non-negative inte-
ger, and $M$ an $R$ -finite $S_{G}(\pi)$ -module with proj. $\dim_{R}M\leq r$ . Then, we have
proj. $\dim_{S_{G}(\pi)}M\leq r+2$ rank $\pi$ .

Proposition 12.11 For a $G$-module $V$ , the following are equivalent.

1 For any $\lambda\in X^{+}$ , it holds $Ext_{G}^{1}(\Delta_{G}(\lambda), V)=0$ .

1’ For any $\lambda\in X^{+}$ and $i>0_{f}$ it holds $Ext^{i}G(\Delta G(\lambda), V)=0$ .

2 For any finite poset ideal $\pi$ , it holds $R^{1}$ ind $R_{R[}^{C(\pi_{1})}GV=0$ .

2 For any poset ideal $\pi$ and $i>0$ , it holds $R^{i}$ ind $R_{R1^{c}}^{C(\pi_{J})}V=0$ .

3 There exists a filtration $0=V_{0}\subset V_{1}\subset\cdots$ of $V$ such that:

a $\lim_{arrow}V_{i}=V$

$b$ There exists a bijective map $f$ : $\mathbb{N}arrow X^{+}$ such that $f^{-1}$ preserves the
ordering, and that for any $i\geq 1$ , there is an isomorphism

$V_{i}/V_{i-1G}\cong\nabla(f(i))\otimes Hom_{G}(\triangle G(f(i)), V)$ .

We say that $V$ is good if the equivalent conditions in the proposition hold.
This notion was originated by S. Donkin, as modules with good filtrations.
When $R$ is a field, we say that $V$ has a good filtrations if $V$ is good and $V$

is of countable dimension (cf. [22]).
Note that the category of good $G$-modules agrees with $\Delta_{G}(X^{+})^{\perp}$ in $cM$ .

Obviously, a $u$-good module is good. An example shows that the converse
is not true. However, if $R$ is regular and $V$ is an $R$-flat good module, then
it is $u$-good, by Corollary 12.4. A good module is $u$-good if and only if
the filtration in the proposition can be taken so that each $V_{i}$ is an R-pure
submodule of $V$ .

The following is proved using Ringel’s result and nlethod in [48].

Proposition 12.12 Let $R$ be a field or a principal ideal domain. Let $\pi$ be
a finite poset ideal of $X^{+}\lambda f$ a maximal element of $\pi$ , and $V$ an $R$ -finite free

$C_{\tau}$ -module which is $u$-acyclic with respect to $\triangle_{G}(\mu)$ for any $\mu\in X^{+}\backslash \pi$ . Then,
we have $Ext_{G}^{i}(\Delta C(\lambda), V)--0$ for $i\geq 2$ . Moreover, there is an exact sequence

$0arrow Varrow V’arrow Darrow 0$

of $G$ -modules in which $D$ is a finite direct sum of $\Delta_{G}(\lambda)_{f}$ and $V’$ is u-acyclic
with respect to any $\triangle c(\mu)$ for $\mu\in X^{+}\backslash (\pi\cup\{\lambda\})$ .

Utilizing this proposition, we have the following:
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Lemma 12.13 Let $R$ be a principal ideal domain or a field. For $\lambda\in X^{+}$ ,
there is an exact sequence

$0arrow\Delta_{G}(\lambda)arrow Tarrow Darrow 0$ (5)
in which $D\in \mathcal{F}(\Delta_{G}((-\infty, \lambda)))$ and $T$ is $u$ -good. If $R$ is local (a $DVR$ or
a field) moreover, then we can take $T$ so that $k\otimes T$ is indecomposable as a
$k\otimes G$ -module for any field extension $k$ of the residue field $R/\mathfrak{m}$ of $R$ .

Note that we have the exact sequence of the form (5) over arbitrary $R$ ,
as we can base change the one over $\mathbb{Z}$ to $R$ .

Now we set $A_{G}:=G$NI$f$ , the category of $R$-finite $G$-modules. We also set:
$\mathcal{Y}c:=$ { $V\in A_{G}|V$ is good, and proj. $\dim_{R}V<\infty$ },

$\mathcal{X}_{G}$ $:=$ add $F(\Delta_{c}(X^{+}))$ , and $\omega_{G}$ $:=\mathcal{X}_{G}\cap \mathcal{Y}c$ .

Theorem 12.14 The triple $(\mathcal{X}_{G}, \mathcal{Y}_{G,c}\omega)$ is a weak Auslander-Buchweitz
context in $A_{G}$ , and we have

$\hat{\mathcal{X}}_{G}=$ { $V\in A_{G}|$ proj.dim$RV<\infty$ }.
In particular, $(\mathcal{X}_{G}, y_{G}, \omega_{G})$ is an Auslander-Buchweitz context $\dot{i.}f$ and only if
$R$ is regular.

Corollary 12.15 For an $R$ -finite projective $G$ -module $V$ , the following are
equivalent.

1 $V$ is u-good.

2 $V$ is good.

3 For any maximal ideal $\mathfrak{m}$ of $R,$ $V\otimes\kappa(\mathfrak{m})$ is good as a $G\otimes\kappa(\mathfrak{m})$ -module.

4 $V^{*}\in \mathcal{X}_{G}$ .

Definition 12.16 An object in $\omega_{G}$ is called a tilting module of $G$ .

For the origin of the name ‘tilting,’ see [20]. If $R$ is a field, then a $G^{t}-$

module $T$ is tilting if and only if $T$ is a direct summand of a finite dimensional
tilting-cotilting module (in the sense of [42]) of $S_{G}(\pi)$ for some finite poset
ideal $\pi$ of $X^{+}$ , see [48].

Let $(R, \mathfrak{m})$ be local. Then, by Lemma 12.13, we have a base-changed
$\mathcal{Y}c$-hull (5) for any $\lambda\in X^{+}$ , in which $\hat{R}\otimes T$ is indecomposable as an $\hat{R}\otimes G-$

module, where $\hat{R}$ is the $\mathfrak{m}$-adic completion of $R$ . It is easy to see that $End_{G}T$

is local (we recall that $T$ is $u$-good). This shows that (5) is minimal, and
such a $T$ is unique up to isomorphisms. We denote $T$ in the exact sequence
(5) by $T_{G}(\lambda)$ , and call the indecomposable tilting module of highest weight $\lambda$ .
If $Rarrow R’$ is a local homomorphism of local rings, then we have $T_{R’\otimes c(}\lambda$ ) $\cong$

$R’\otimes T_{G}(\lambda)$ . Hence, $T_{G}(\lambda)$ depends only on the characteristic of the residue
field, essentially.
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Theorem 12.17 Let $(R,\mathfrak{m})$ be a local ring. Then, $\hat{\mathcal{X}}_{G}$ has both minimal
$\mathcal{X}_{G}$ -approximations and minimal $y_{G}$ -hulls. Any tilting $G$ -module is uniquely
a direct sum of $T_{G}(\lambda)fs$ .

The proof is reduced to the complete case, in which $\overline{t}he$ Krull-Schmidt
theorem holds and $Prop_{0}$,sition 10.2 can be used.

13 Relative Ringel’s approximation

Let $R$ be a commutative noetherian ring, and $G$ an $R$-split reductive group.
We assume that there is a fixed subgroup $G_{m}-Z(G)$ , where $Z(G)$ is the
center of $G$ . By assumption, any $G$-module $M$ is a $G_{m}$-module, and we have
a decomposition $M=\oplus_{i\in \mathbb{Z}}M_{i}$ . By the assumption $G_{m}\subset Z(G)$ , we have
$M_{i}$ is a $G$-submodule of $M$ for any $\dot{i}$ . We shall always consider the grading
so obtained for a $G$-module $M$ .

For a split reductive group $G_{0}$ , when we set $G:=G_{0}\cross G_{m}$ and consider the
natural inclusion $G_{m^{\mathfrak{c}}}arrow z(G)$ , then $G$ is split reductive, and the category of
$G$-modules is canonically isomorphic to the category of $\mathbb{Z}$-graded $G_{0}$-modules.

Let $S$ be a $G$-algebra, flat of finite type over $R$ . We assume that the
graded $R$-algebra $S$ is positively graded. That is to say, $S=\oplus_{i\geq 0}S_{i}$ and the
canonical map $Rarrow S_{0}$ is isomorphic.

We say that a poset ideal $\pi$ of $X^{+}$ is $t$-closed if $C(\pi)$ is an R-subalgebra
(hence is a subbialgebra) of $R[G]$ . We fix a $t$ -closed poset ideal $\pi$ of $X^{+}$ .

We set $A_{G,S}(\pi)$ to be the full-subcategory of $G,S$NI$f$ consisting of the
objects which belong to $\pi$ . We also define:

$\mathcal{X}_{G}^{P^{r_{S}}},o(\pi)$ $:=$ { $M\in A_{G,S}(\pi)|M$ is $S$-projective and $Hom_{S}(M,$ $S)$ is good},
$\mathcal{Y}_{G,S}^{pro}(\pi)$ $:=$ { $N\in Ac,s(\pi)|N$ is good, and proj. $\dim_{S}N<\infty$ },

and $\omega_{c,s}^{P^{ro}}(\pi):=\mathcal{X}_{G}^{P^{r_{S}}},o(\pi)\cap \mathcal{Y}^{po}c^{r},s(\pi)$ . When $\pi=X^{+}$ , we omit $(\pi)$ , and simply
denote by $A_{G,S},$ $x_{G,S}pr\circ,$

.
$d$an so on.

Theorem 13.1 Assume that $S\in\omega_{c^{r}s}^{po},(\pi)$ , that is to say, $S$ is good and be-
longs to $\pi$ . Then, $(\mathcal{X}_{c^{r}s}^{P},o(\pi),$ $yG,S(pro)\pi,$ $\omega^{p\circ}c^{r},S(\pi))$ is a weak Auslander-Buchweitz
context. Moreover, we have:

$\hat{\mathcal{X}}_{G,S}^{pro}(\pi)$ $=$ $\{M\in A_{G,S}(\pi)|proj.\dim s^{M}<\infty\}$ ,
$\omega_{c,s}^{pro}(\pi)$ $=$ { $T\in A_{G,S}|\exists T_{0}\in\omega_{G}^{P^{r_{R}}},(o\pi)$ such that $T\cong S\otimes T_{0}$ }.

In particular, this weak AB context is an AB context if and only if $S$ is
regular (by Theorem 9.1).

Note that Theorem 13.1 is a canonical extension, or a relative version of
Theorem 12.14. For the proof, the following theorem due to O. Mathieu [37]
is important.
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Theorem 13.2 (O. Mathieu) If $V$ and $W$ are $u$-good $G$ -modules, then so
is $V\otimes W$ .

It is easy to see that we may assume that $R$ is an algebraically closed field,
$V=\nabla_{G}(\lambda)$ , and $W=\nabla_{G}(\mu)$ , for the proof. This theorem was proved for the
case the characteristic of $R$ is not two, or $G$ does not have any component of
type $E_{7}$ or $E_{8}$ by S. Donkin [18], and finally proved by O. Mathieu completely.
Note also that a characteristic-free explicit construction of a good filtration
of $\nabla_{G}(\lambda)\otimes\nabla_{G}(\mu)$ was done for $GL_{n}$ by G. Boffi [8].

Proposition 13.3 Assume that $R$ is local, and $S$ as in Theorem 13.1.
Then, any object in $\omega_{c^{r},s}^{po}(\pi)$ is uniquely a direct sum of $(G, S)$ -modules of
the form $S\otimes T_{G}(\lambda)$ with $\lambda\in\pi$ . Moreover, $\hat{\mathcal{X}}_{G,S}^{pr\circ}(\pi)$ has minimal $\mathcal{X}_{G,S}^{pr\circ}(\pi)-$

approximations and minimal $\mathcal{Y}^{p\circ}c^{r},s(\pi)$ -hulls.

For an $S$-module $M$ , we denote ht ann $M$ , the height of the annihilator
of $M$ , by $co\dim M$ . The following is a consequence of Theorem 10.4.

Theorem 13.4 Let $S$ be as in Theorem 13.1, $h$ a non-negative integer, and
$M\in Ac,s$ , with $0\neq M$ and $co\dim M\geq h$ . Then, the following are equiva-
lent:

1 $M$ is a good $G$ -module which belongs to $\pi,$ $M$ is perfect of codimension $fi$

as an $S$ -module, and $Ext_{S}^{h}(M, s)$ is good.

2 $\omega_{c,S}^{pro}(\pi)-reso1.\dim(M)=h$ .

If $R$ is local and $M$ satisfies the conditions 1 and 2 moreover, then there
exists a $\omega_{c^{r}s}^{p\circ},(\pi)$ -resolution $F$ of $M$ which satisfies the condition

3 If $G$ is a (possibly infinite) $\omega_{G}^{po},(r_{S})\pi$ -resolution of $M$ , then $F$ is a direct
surnmand of $G$ , as a $(G, S)$ -complex.

Such an $F$ is unique up $t\dot{o}$ isomorphisms of $(G, S)$ -complexes, and has length
$h$ .

14 Resolutions of Buchsbaum-Rim type

Let $R$ be a noetherian commutative ring, and $t,$ $m,$ $n$ positive integers with
$t\leq m\leq n$ . We set $V:=R^{m},$ $W:=R^{n},$ $G:=GL(V)\cross GL(W)$ , and
$S:=Sym(V\otimes W)$ , where Sym denotes the symmetric algebra. As $V\otimes W$ is
a $C_{\tau}$-module by $(g, g’)(v\otimes w)=gv\otimes g^{l}w,$ $S$ is a $G$-algebra. When we fix bases
of $V$ and $W$ , then we have an $R$-algebra isomorphism $S\cong R[x_{ij}]1\leq i\leq m,$ $1\leq j\leq n$ .
The ideal of $S$ , generated by all $t$ -minors of the matrix $(x_{ij})$ is denoted by
$I_{t}$ , and called a determinantal ideal. This ideal $I_{t}$ is a $G^{v}$-ideal of $S$ , and

101



is independent of the choice of the bases of $V$ and $W$ . We set $A:=S/I_{t}$ .
M. Hochster and J. A. Eagon [29] proved that $I_{t}$ is perfect of codimension
$(m-t+1)(n-t+1)$ .

Consider the following problem.

Problem 14.1 Construct a finite free S-resolution

$0arrow F_{h}arrow\cdotsarrow F_{1}arrow Sarrow Aarrow 0$ (6)

which is also a $(G, S)$ -resolution.

We call such a resolution $G$ -equivariant finite free resolution. An advan-
tage of $G$-equivariance is explained as follows.

Let $AX$ be a noetherian $R$-scheme, $\mathcal{V}$ and $\mathcal{W}$ locally free coherent sheaves
over $X$ of well-defined ranks $m$ and $n$ , respectively. Although we have not
mentioned anything about representations of group schemes over non-affine
schemes, there is a canonical functor $E$ : $cNIarrow GL(v)\chi GL(\mathcal{W})M$ . We denote
$E(M)$ by $M(\mathcal{V}, \mathcal{W})$ . What is important here is, $M(\mathcal{V}, \mathcal{W})$ is a quasi-coherent
$\mathcal{O}_{X}$-module, and that if $M$ is $R$-finite (resp. $R$-finite projective), then it is
coherent (resp. locally free). Hence, the $r$.esolution (6) is lift to a locally free
resolution

$0arrow F_{h}(\mathcal{V}, \mathcal{W})arrow\cdots F_{1}(\mathcal{V}, \mathcal{W})arrow O_{\overline{X}}arrow \mathcal{O}_{Y}arrow 0$,

where $\overline{X}$ is the vector bundle $H_{om}(\mathcal{V}, \mathcal{W}^{*})$ , and $Y$ is the zero $of\wedge^{t}\emptyset$ , where
$\phi$ is the generic map of $\tilde{X}$ .

As we have a canonical inclusion $G_{m}carrow Z(G)$ given by $t\mapsto(t1_{V}, t1_{W})$ ,
any $(G, S)$-resolution is graded with respect to the associated grading. Note
also that $S$ is positively graded, with each $x_{ij}$ of degree one.

If $R$ contains the rationals, then the graded minimal $S$-free resolution,
which is also a $(G, S)$-complex exists, uniquely up to $(G, S)$-isomorphisms.
Such a resolution was constructed explicitly by A. Lascoux [35] and Pragacz-
Weyman [46].

When $R=\mathbb{Z}$ , less is known on equivariant resolutions. A graded minimal
$S$-free resolution of $A$ admits a $G$-equivariant structure when $t=1$ (the
Koszul complex) or $t=m$ (the Eagon-Northcott complex, see [21] and [11]).
There is no graded minimal free resolution of $A$ when $2\leq t\leq m-3[27,50]$ .
It is not known if there is a $G$-equivariant structure of the graded minimal
$S$-free resolution of $A$ when 1, $m-3<t<m$ , although there is a graded
minimal $S$-free resolutions this case $[1, 28]$ .

Recently, D. A. Buchsbaum and J. Weyman posed the following problem
[12].

Problem 14.2 For any $t$ with $1\leq t\leq m$ , construct a finite free S-resolution
(6) which satisfies the conditions:
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1 $F$ is G-equivariant

2 $h$ is minimal as possible, namely, $h=(m-t+1)(n-t+1)$ .

3 For any $\dot{i}\geq 1_{f}F_{i}\cong S\otimes T(i)$ with $T(\dot{i})$ being a finite direct sum of tensor
products of $G$ -modules of the $form\wedge^{i}V\otimes\wedge^{j}W$ .

Although the Eagon-Northcott resolution for $t=m$ does not satisfy the
condition 3 in general, the non-minimal resolution for $t=m$ , constructed
by D. A. Buchsbaum [10] satisfies 1,2 and 3. This resolution is called the
Buchsbaum-Rim resolution, see $[13, 14]$ .

We consider a little bit milder condition, instead of 3.

3’ For any $i\geq 1,$ $F_{i}\cong S\otimes T(i)$ with $T(\dot{i})$ being a direct summand of a finite
direct sum of tensor products of $C_{\tau}$-modules of the $form\wedge^{i}V\copyright\wedge^{j}W$ .

This is because good properties such as vanishing of cohomology are in-
herited by direct summands, and because the following lemma holds.

Lemma 14.3 For a $G$ -module $T$ , the following are equivalent.

a $T$ is a direct summand of a finite direct sum of tensor products of C;r-
modules of the $form\wedge^{i}V\otimes\wedge^{j}W$ .

$bT\in\omega_{c,R}^{pro}(\pi)$ , where $\pi$ is the set of pairs of partitions $(\lambda, \mu)$ with $\lambda_{m+1}=0$

and $\lambda_{n+1}=0$ (note that $\pi\subset X_{GL(V)}+\cross X_{GL(W)}+=X_{G}^{+}$).

We call a finite free $S$-resolution (6) is of Buchsbaum-Rim type, if it
satisfies the conditions 1,2 and 3’.

A $G$-module belongs to $\pi$ in the lemma if and only if it is a polynomial
representation. Or equivalently, $C(\pi)$ is the coordinate ring of End$(V)\cross$

$End(W)$ . Hence, $\pi$ is t-closed.

Theorem 14.4 The following hold:

a $S$ and $I_{t}$ are good, and $S$ belongs to $\pi$ .

$bExt^{h_{0}}(SA, s)$ is good, where $h_{0}=(m-t+1)(n-t+1)$ .

The assertion a has been well-known, as the straightening formula [2].
The assertion $b$ is proved using Kempf’s construction.

Now Theorem 13.4 is applicable, and we have

Theorem 14.5 There is a Buchsbaum-Rim type resolution of $A=S/I_{t}$ for
any $1\leq t\leq m$ . If $R$ is local, then there is a Buchsbaum-Rim type resolution
$F$ of A which satisfies the condition
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4 If $G$ is an $S$ -free resolution which satisfies 1 and 3’, then $F$ is a direct
summand of $G$ as a $(G, S)$ -complex,

uniquely up to isomorphisms of $(G, S)$ -complexes.

This is merely an existence theorem, and so far 1 do not have any idea to
connect the conditions 3 and 3’.

15 Equivariant Cohen-Macaulay approximation

As in section 13, let $R$ be a noetherian commutative ring, $G^{Y}$ an R-split
reductive group with a fixed $G_{m}\subset Z(G)$ , and $S$ a positively graded G-
algebra which is $R$-flat of finite type. We also assume that $S$ is good, as a
G-module.

We assume that $S$ is regular in this section. It follows that $R$ is regular,
and $S$ is $R$-smooth. Let $I$ be a $G$-ideal of $S$ , which is perfect of codimension
$h$ . We set $K_{A}:=Ext_{S}^{h}(A, \omega s/R)$ , so that $K_{A}$ is pointwise dualizing.

We define:

$\mathcal{X}_{G,A}$ $:=$ { $M\in A_{G,A}|M\in \mathcal{X}_{A}^{cm}$ , and $Hom_{A}(M,$ $K_{A})$ is good},
$y_{G,A}$ $:=$ { $N\in A_{G,A}|N\in \mathcal{Y}_{A}^{ClU}$ , and $H_{om_{A}}(I\zeta A,$ $N)$ is good},

and $\omega_{G,A}:=\mathcal{X}_{G,A}\cap \mathcal{Y}c,A$ .

Theorem 15.1 If $A$ and $K_{A}$ are good, then we have $(\chi_{c,A}, yG,A, \omega c,A)$ is
an Auslander-Buchweitz context. Any object in $\omega_{G,A}$ is of the form $K_{A}\otimes T_{0}$ ,
with $T_{0}$ tilting.

If $A$ is regular, then this theorem is essentially Theorem 13.1. Note that
the goodness conditions are void, if $G$ has linearly reductive (i.e., $c$NI $=cvr\mathbb{I}^{\perp}$ )
geometric fibers. In particular, if $G=G_{m}$ , then it is a graded version of
Cohen-Macaulay approximation. The assumption of the theorem is satis-
fied for the case $R$ is regular, when we consider the situation of section 14.
Moreover, Pfaffian ideals also satisfy the assumption of the theorem, by the
characteristic-free plethysm formula $[34, 9]$ . The author does not know any
other non-trivial examples.
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