
ON CRYSTALLINE FUNDAMENTAL GROUPS
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. 1. INTRODUCTION

In arithmetic geometry, many cohomology theories, such as Betti,
etale, de Rham, and crystalline ones, have been studied and various
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{i}_{\mathrm{S}\mathrm{o}\mathrm{n}}$

. theorems have been proved. In view of these, A. Grot-hendieck
proposed the philosophy that cohomology theory is motivic and most
mathematicians believe his philosophy now.

His philosophy was extended by P. Deligne to the one that the the-
ory of pro-unipotent quotient of rational fundamental groups are also
motivic. Historically, Quillen studied on usual rational fundamental
groups (and homotopy groups). It was Grothendieck who defined etale
$\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{d}\backslash$amental groups. De Rham fundamental groups were defined by
Sullivan and Chen independently. The mixed Hodge structure were
constructed by Morgan and Hain independently. Deligne constructed
these rational fund.amental groups by using the theory of Tannakian
categories and fiber functors.

If we follow the philosophy of Deligne, there should be a crystalline
fundamental group for a smooth. variety $X$ over a field $k$ of character-
istic $p>0$ and there should be the comparison theorem with de Rham
fundamental groups if $X$ is liftable to characteristic zero. But Deligne
defined crystalline realization of fundamental groups only for a vari-
ety which can be liftable to characteristic zero by defining crystalline
Frobenius on de Rham fundamental groups. Since crystalline funda-
mental groups should be defined for varieties which are not necessarily
liftable to characteristic zero and they should be independent of the
choice of a lifting, this is not the best possible way.

In this report, we will define crystalline fundamental groups by using
Tannakian. categories $\mathrm{a}\mathrm{n}\ldots \mathrm{d}.\mathrm{f}\mathrm{i}\mathrm{b}\mathrm{e}.\mathrm{r}..\mathrm{f}.\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}_{0}...\mathrm{r}\mathrm{S}\backslash$ ’ and state so.me property of
them.
$...\cdot-:..\cdot r.\cdot$ , $*\cdot.\cdot\sim:\cdot$ : $\overline{\prime}.\cdot...’\backslash \cdot.$ . ..
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2. DELIGNE’S DEFINITION OF FUNDAMENTAL GROUPS

In this Section, we will review on Tannakian categories and Deligne’s
definition of rational fundamental groups.

First we will review on usual (topological) fundamental groups. For
a topological space $X$ (with some conditions) and a point $x$ in $X$ , the
fundamental group $\pi_{1}(X, x)$ of $X$ with a base point $x$ is defined as
follows:

$\pi_{1}(X, x):=$ ( $1\mathrm{o}\mathrm{o}_{\mathrm{P}^{\mathrm{S}}}$ with base point $x$ ) $/(\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{i}\mathrm{e}\mathrm{s})$ .

It is not so easy to algebrize this definition. But we have the following
well-known proposition:

Proposition 2.1. Let $LS(- x)$ be the category of local systems of sets
on $X$ and $\omega_{x}$ be the functor of taking the fiber at $x$ . Then,

1. There is an isomorphism

$\pi_{1}(X, x)=\sim Aut$ ($Ls(x)arrow\omega_{x}$ (Sets)).

2. Via $\omega_{x}$ , we have an equivalence of categories

$LS(X)arrow\sim(\pi_{1}(X, X)$ -sets),

where the left hand side is the category of sets with an action of
$\pi_{1}(X, x)$ .

We can regard the theory of Tannakian categories and fiber functors
as an abstract (and rational) version of this formalism.

Now $\mathrm{w}.\mathrm{e}$ will review on the definition of Tannakian category. In
this report, we will follow the terminology of [De-Mi]. First recall the
definition of tensor category briefly.

Definition 2.2. Let $C$ be a category $\mathrm{a}\mathrm{n}\mathrm{d}\otimes:C\cross Carrow C$ be a functor.
Then a pair $(C, \otimes)$ is called a tensor category if there exist ’associativity
constraint’, ’commutativity constraint’, and the ’unit object’ $\underline{1}$ which
are compatible by ’hexagon axiom’, and so on.
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. (We will not review on the quoted words. For detailS, see [De-Mi,
(1.1) $]$ . As a feeling, a tensor category is a category with a structure of
tensor product. If we are given a tensor category $(C, \otimes)$ , we can define
the functor

$\otimes_{i\in I}$ : $c^{I}arrow C$

naturally for a finite index set I. (See [De-Mi, (1.5)].)
Next we $\mathrm{w}\mathrm{i}\dot{\mathrm{l}}1$ review on the definition of rigidity of tensor categories.

To do this, we will recall the definition of internal $\mathrm{h}\mathrm{o}\mathrm{m}$ objects.

Definition 2.3. Let $(C, \bigotimes_{\backslash })$ be a tensor category and $X,$ $\mathrm{Y}$ be objects
in $C$ . If the functor

$T\vdash+Hom(T\otimes X, \mathrm{Y});C^{o}arrow(\mathrm{S}\mathrm{e}\mathrm{t}\mathrm{s})$

is representable, we denote the representing object by $\mathcal{H}om(x, \mathrm{Y})$ and
call it an internal $\mathrm{h}\mathrm{o}\mathrm{m}$ object of $X$ and $Y$ . We will write the object
$\mathcal{H}om(x, \underline{1})$ simply by $X^{*}$ .

Definition 2.4. A tensor category $(C, \otimes)$ is called rigid when an inter-
nal $\mathrm{h}\mathrm{o}\mathrm{m}$ object $\mathcal{H}om(x, \mathrm{Y})$ exists for any $X,$ $Y\in C$ , and the canonical
$\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\backslash \mathrm{m}\mathrm{S}$

$Xarrow X^{**}$

and
$\otimes_{i\in I}\mathcal{H}om(x_{i}, \mathrm{Y}_{i})arrow \mathcal{H}om(\otimes_{i\in Ii}X, \otimes i\in IYi)$ ,

which are induced by definition of internal $\mathrm{h}\mathrm{o}\mathrm{m}$ objects, are always
isomorphic, where $I$ is a finite index set and $X,$ $X_{i}’ \mathrm{s}$ , and $\mathrm{Y}_{i}’ \mathrm{s}$ are
objects in C.

Definition 2.5. A tensor category $(C.’\otimes)$

. is called an abelian tensor
category if $C$ is an abelian category $\mathrm{a}\mathrm{n}\mathrm{d}\otimes \mathrm{i}\mathrm{s}$ a $\mathrm{b}\mathrm{i}$-additive functor.

Now we can define a Tannakian category as follows:

Definition 2.6. Let $k$ be a field. A rigid abelian tensor category $(C, \otimes)$

is called a Tannakian category over $k$ if End$(\underline{1})=k$ holds and there
exists a field $K$ and a fiber functor ( $:=\mathrm{a}\mathrm{n}$ exact faithful tensor functor)
$\omega$ : $Carrow Vec_{K}$ , where $Vec_{K}$ is the category of finite-dimensional
vector spaces over $K$ . If we can take $K=k,$ $(C, \otimes)$ is called a neutral
Tannakian category.

143



Example 2.7. Let $k$ be a field and $G$ be a group scheme over $k$ . Then

the category $Rep_{k}(G)$ of finite-dimensional representations of $G$ over $k$

is a neutral Tannakian category over $k$ .

Conversely, we have the following structure theorem for neutral Tan-
nakian categories.

Theorem 2.8 (Saavedra, Deligne-Milne). Let $k$ be a field, $C$ be a neu-
tral Tannakian category over $k$ , and $\omega$ : $Carrow Vec_{k}$ be a fiber functor.
Then the functor

$(k- \mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{s})arrow(\mathrm{G}\mathrm{r}\mathrm{o}\mathrm{u}_{\mathrm{P}^{\mathrm{s})}};Rrightarrow Aut^{\otimes}(carrow V\omega eckarrow Mod_{R})$

is representable by a group scheme over $k$ . Here, $Aut^{\otimes}$ is the group
of automorphisms which preserves tensor structures and $Mod_{R}$ is the
category of $R$-modules. If we denote the representing group scheme by
$G(C, \omega)$ , the functor $\omega$ induces an equivalence of categories

$carrow$
. $Repk(c(c, \omega.))$ .

We can define several fundamental groups by using this theorem.
Let \‘us recall the definitions of (the unipotent quotient of) rational
fundamental groups by Deligne:

Definition 2.9 (Deligne). 1. Let $X$ be a topological space and $x\in$

X. Let $C$ be the category of nilpotent local systems of $\Phi \mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}_{0}\mathrm{r}$

spaces on X. (Here, an object is called ’nilpotent’ if it can be
written as a successive extension by trivial local system $\mathbb{Q}$ on
$X.)$ And let $\omega$ : $Carrow Vec_{\mathbb{Q}}$ be the functor of taking the fiber
at $x$ . Then we define (the pro-unipotent completion of). Betti
fundamental group $\pi_{1}^{B}(x, X)$ of $X$ with base point $x$ by

$\pi_{1}^{B}(x, X):=G(C,.\omega)$ .

2. Let $X$ be a variety over an algebraically closed field $k$ and $x\in$

$X(k)$ . Let $C$ be the category of nilpotent smooth $\mathbb{Q}$ -sheaves on
X. And let $\omega$ : $Carrow Vec_{\mathbb{Q}_{p}}$ be the functor of taking the fiber

at $x$ . Then we define (the pro-unipotent completion of) l-adic

fundamental group $\pi_{1}^{l}(X, x)$ of $X$ with base point $x$ by

$\pi_{1}^{l}(x, X):=G(C, \omega)$ . $\mathrm{h}$ .

144



3. Let $X$ be a smooth variety over a field $k$ of characteristic zero
and $x\in X(k)$ . Let $C$ be the category of coherent sheaves with
integrable connections which are regular singular along boundaries
and nilpotent. And let $\omega$ : $Carrow Vec_{k}$ be the functor of taking the
fiber at $x$ . Then we define de Rham fundamental group $\pi_{1}^{dR}(X, x)$

of $X$ with base point $x$ by

$\pi_{1}^{dR}(X, x):=c(c,\omega)$ .

3. CRYSTALLINE FUNDAMENTAL GROUPS

In this Section, we will define crystalline fundamental groups in sev-
eral ways and state some properties of them.

Let $k$ be a perfect field of characteristic $p>0^{4},U$ be a smooth variety
over $k$ , and let $x$ be a $k$-valued point of $U$ . As we can see from the
previous section, what we should do is to choose a Tannakian category
and a fiber functor, but what category should we use? In view of
Deligne’s definition (Definition 2.9), We should use the category of ’p-
adic’ objects which correspond to smooth $\mathbb{Q}$ -sheaves in $l$-adic theory.
There are some candidates for this category, so we will consider some
definitions.

First we will consider the definition by means of the category of
nilpotent isocrystals on $\log$ crystalline site. Suppose we are given a
compactification $X$ of $U$ such that $D:=X-U$ is a normal crossing
divisor in $X$ . We will write the $\log$ structure on $X$ defined by $D$ also
as $D$ , and so regard a pair (X, $D$ ) as a $\log$ scheme naturally. In this
report, the $\log$ structures are always in the sense of Fontaine-Illusie-
Kato. For a basic definitions and properties on $\log$ structures, see [Ka].
First we will recall the definitions of $\log$ crystalline site and a crystal
on it.

Definition 3.1. Let $W$ be a Witt ring of $k$ and $\gamma$ be the canonical
$\mathrm{P}\mathrm{D}$-structure on $W$ . Denote $W/(p)^{n}$ by $W_{n}$ . Then for a pair (X, $D$)
as above, we define the $\log$ crystalline site $((X, D)/W)_{C}rys$ of (X, $D$ )
over $W$ as follows: Objects are 5-tuples $(\mathrm{Y}, T, L,\dot{i}, \delta)$ , where $Y$ is a
scheme etale over $X,$ $(T, L)$ is a fine $\log$ scheme over $W_{n}$ for some $n$ ,
$i$ : $(\mathrm{Y}, D|_{Y})arrow(T, L)$ is an exact closed immersion over $W_{n}$ , and $\delta$ is a
$\mathrm{P}\mathrm{D}$-structure on the ideal of definition of $\mathrm{Y}$ in $\mathcal{O}_{T}$ which is compatible
with $\gamma$ . Morphisms are defined as morphisms of $\log$ schemes which
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are compatible with the above structures. And coverings are the ones
induced by the etale topology of $T$ . We will frequently denote a 5-tuple
$(\mathrm{Y}, \tau, L, i, \delta)$ simply by $T$ . : ..

And we will define the structure sheaf $\mathcal{O}_{X/W}$ of the site $((X, D)/W)_{crys}$

by $\mathcal{O}_{X/}W(T):=\Gamma(\tau, \mathcal{O}_{T})$ .

Definition 3.2. Let the notations be as above.

1. A sheaf of $\mathcal{O}_{X/W}$-modules $\mathcal{E}$ on $((X, D)/W)_{C}rys$ is called a crystal

if the morphism . $-$ .
$f^{*}.\mathcal{E}_{T}arrow \mathcal{E}_{T’}$

induced by a morphism $T’arrow T$
.
in $(.(x_{J}, D)/W)_{C}rys$ is isomorphic

for any $T,$ $T’$ . Here, $\mathcal{E}_{T}$ is the sheaf on $T$ induced by $\mathcal{E}$ .

2. We define the category of isocrystals on $((X, D)/W)_{C}rys$ as fol-

lows: Objects are the crystals on $((X, D)/W)_{crys}$ . We will define
morphisms by

$Hom_{iso}c(\mathcal{E}, F):=K\otimes_{Ws}HomCry(\mathcal{E}, F)$

for crystals $\mathcal{E},$
$\mathcal{F}$ . We will denote the category of isocrystals on

$((X, D)/W)_{crys}$ by $K_{\dot{i}S}oc((X, D)/W)$ . For a crystal $\mathcal{E}$ , we will

write it as $K\otimes \mathcal{E}$ when we regard it as an isocrystal.

3. An object of $K\dot{i}soC((X, D)/W)$ is called nilpotent if it can be

written as a successive extension by $K\otimes \mathcal{O}_{X/W}$ . We will denote the

full subcategory of $K\dot{i}soC((X, D)/W)$ which consists of nilpotent

isocrystals by NKisoc,$((X, D)/W)$ .

In the above situation, we can prove the category NKisoc$((X, D)/W)$

is Tannakian ([Shl], [Sh2]). So we can define a crystalline fundamental
group as follows:

Definition 3.3 (Definition of $\pi_{1}^{C}rys(\mathrm{I})$ ). Let the notations be as above.

Then. we define the crystalline fundamental group $\pi_{1}^{C}(rys(x, D)\mathit{1}^{W,X})$

of. ($X,$ $’$ D.)- over $W,\mathrm{w}$ith $\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}x$
by

$\pi_{1}^{C}(rys(x, D)/W,$ $x):=G(NKiSoc((x, D)/W),$ $\omega_{x})$ ,

where $\omega_{x}$ is the fiber functor

$NK\dot{i}soC((X, D)/W)arrow NK\dot{i}Soc(x/W)\simeq VeC_{K_{0}}$ .

(Here $K_{0}:=FraCW.$ )
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Next we will give another definition by using the category of nilpotent
isocrystals on $\log$ convergent site. Let (X, $D$ ) be as above. Then we
define the $\log$ convergent site and isocrystals on it as foliows:
Definition 3.4. Let $V$ be a complete discrete valuation ring of mixed
characteristic with residue field $k$ and $K$ be the fraction field of $V$ .
Then we define the convergent site $((X, D)/V)_{CO}nv$ of (X, $D$ ) over $V$

as follows: Objects are triple $(T, L, z)$ , where $(T, L)$ be a $p$-adic for-
mal $V$-scheme over $SpfV$ and $z$ : $(T_{0}, L)arrow(X, D)$ is a morphism
over $SpfV$ , where $T_{0}$ is the scheme $($ Spec $\mathcal{O}_{T}/(p))_{red}$ . Morphism are
morphism of $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\dot{\mathrm{l}}\log$ schemes which preserves the above structures.
And coverings are the ones induced by the etale topology of $T$ . We
frequently write a triple $(T, L, z)$ simply by $T$ .

And we define the structure sheaf $\mathcal{O}_{X/V}$ by

$\mathcal{O}_{X/V}(T):=\Gamma(T, O_{\tau})$ .

Definition 3.5. 1. A sheaf $\mathcal{E}$ of $K\otimes_{V}O_{x/}V$-modules on $((X, D)/V)_{conv}$

is called an isocrystal if the morphism

$f^{*}\mathcal{E}_{T}arrow \mathcal{E}_{T’}$

induced by a morphism $T’arrow T$ in $((X, D)/W)_{conv}$ is isomor-
phic for any $T,$ $T’$ . Here, $\mathcal{E}_{T}$ is the sheaf on $T$ induced by $\mathcal{E}$ .
We will denote the category of isocrystals on $((X, D)/W)_{CO}nv$ by
$c_{\dot{i}SOC}((x, D)/W)$ .

2. An object of $Cisoc((X, D)/W)$ is called nilpotent if it can be writ-
ten as a successive extension by $K\otimes_{V}\mathcal{O}_{X/V}$ . We will denote the
full subcategory of $C\dot{i}soc((x, D)/W)$ which consists of nilpotent
isocrystals by $NC\dot{i}SOC((x, D)/W)$ .

In the above situation, we can prove the category $NC\dot{i}SOC((x, D)/W)$

is also Tannakian ([Shl], [Sh2]). So we can give the second definition
of crystalline fundamental groups as follows:

Definition 3.6 (Definition of $\pi_{1}^{C}rys(\mathrm{I}\mathrm{I})$ ). Let the notations be as above.
Then we define the crystalline fundamental group $\pi_{1}^{C}(rys(x, D)/V,$ $x)$ of
(X, $D$ ) over $V$ with base point $x$ by

$\pi_{1}^{cry}(S(x, D)/V,$ $x):=G(Nc_{iS}Qc((x, D)/V),$ $\omega_{x})$ ,
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where $\omega_{x}$ is the fiber functor

NCisoc$((X, D)/V)arrow NCisoC(x/V)\simeq VeCK$ .

(Here $K:=FracV.$ )

Moreover, we can give the third definition by using the category of
$\mathrm{n}\mathrm{i}1_{\mathrm{P}^{\mathrm{O}}}\mathrm{t}\mathrm{e}.\mathrm{n}\mathrm{t}.,0$verconvergent isocrystals. To. explain this, we will review on
rigid analytic geometry briefly.

Let $k$ be. a perfect field of characteristic $p>0,$ $V$ be a complete

discrete valuation ring of mixed characteristic with residue field $k$ , and
$K\mathrm{b}..\mathrm{e}$ the fraction field of $V$ . Let $\pi$ be a $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{i}_{\mathrm{Z}}\mathrm{e}\mathrm{r}.\mathrm{o}\mathrm{f}V$. For a p-adic

affine formal scheme $P=SpfA$, we can introduce a structure of ringed
space in the set of maximal ideals of $K\otimes A$ ([Be2], [BGR]). We denote
it by $\tilde{P}$ .

Let $Xarrow P$ be a closed immersion o.f a $k$-scheme $X$ into $P$ , and let
$(\pi, f_{1}, \cdots , f_{n})$ be the ideal of definition of $X$ in $P$ . Then we define the

tubular neighborhood ] $X[_{P,\lambda}$ of $X$ in $P$ with radius $\lambda(0<\lambda\leq 1)$ by

$]X[_{P,\lambda}:=\{X\in\tilde{P}||fi(x)|<\lambda(1\leq\dot{i}\leq n)\}$ .

This definition is independent of the choices of a uniformizer $\pi$ and a
set of generators $f_{1},$ $\cdots$ , $f_{n}$ if $\lambda$ is sufficiently close to 1. We will denote
$]X$ [ simply by ] $X[_{P}$ .

Let $U$ be a smooth variety over $k$ and $X\supset U$ be a compactification
of $U$ . Set $Z:=X-U$. Then, locally on $X$ , there exists a p-adic

affine formal scheme $P$ and a closed immersion $Xarrow P$ such that $P$

is formally smooth over $SpfV$ on a neighborhood of $U$ . Set $U_{\lambda}$ $:=$

$]X[_{P^{-}}]z$ [ $P,\lambda$ and let $j_{\lambda}$ be an open immersion $U_{\lambda}\sim\succ$] $X[_{P}$ . For a sheaf
$E$ of $\mathcal{O}_{]X[_{P}}$-modules (here $\mathcal{O}_{]X[_{P}}$ is the structure sheaf of $]X[_{P}$ ), we
define $j^{\uparrow}E$ by $j^{\mathrm{t}}E:= \lim_{arrow^{\lambdaarrow 1}}j\lambda,*j^{*}\lambda E$ . Then for projections

$p_{i}:]X[_{P}2^{arrow][_{P}}x(_{\dot{i}}=1,2)$

and
$p_{ij}:]X[_{P}\mathrm{s}arrow]x[_{P}2(1\leq\dot{i}<j\leq 3)$ ,

we can define the functors

$p_{i}^{*}:$ $(j^{\mathrm{t}}o_{]X[_{P^{-}}}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{s})arrow$ ($j\uparrow \mathcal{O}_{]}x[_{P^{2}}$ -modules)

and
$p_{ij}^{*}$ : $(j^{\uparrow}\mathcal{O}_{]}x[P^{2}-\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{S})arrow$ ($j^{\uparrow}\mathcal{O}_{]X[P}3$ -modules)
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naturally.

Definition 3.7. Let the notations be as above. Then an overconver-
gent isocrystal on $(U, X)$ over $V$ with respect to $P$ is a pair $(E, \epsilon)$ , where
$E$ is a locally free $j^{\uparrow}\mathcal{O}_{]x}[_{P}$ -module and $\epsilon$ is an isomorphism $p_{2}^{*}Earrow p^{*}1E\sim$

which satisfies the cocycle condition $p_{13}^{*}(\epsilon)=p_{12}^{*}(\epsilon)\mathrm{o}p_{23}^{*}(\epsilon)$ .

In particular, $j^{\uparrow}\mathcal{O}_{]X[_{P}}$ is an overconvergent isocrystal on $(U, X)$ with
respect to $P$ . ..

As for the choice of $P$ as above, we have the following proposition,
which is due to Berthelot:

Proposition 3.8 $([\mathrm{B}\mathrm{e}1], [\mathrm{B}\mathrm{e}2])’.\cdot$ Let the notations be as above. Then
the category of ov.erconvergent $\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{S}\mathrm{t}\mathrm{a}\dot{\mathrm{l}}\mathrm{s}$ on $(U, X)$ over $V$ with re-
spect to $P$ is independent of the choice of $P$ as $\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{V}\mathrm{e}\sim$ up to canonical
equivalence. ’.

In general, we do not have an embedding $Xarrow P$ globally, but we
can define the notion of an overconvergent isocrystal on $(U, X)$ over $V$

by the above proposition. Moreover, we have the following proposition,
which is also due to Berthelot:
$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}^{\backslash }\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}3.9$ ([Bel], [Be2]). The category of overconvergent isocrys-
tals on $(U, X)$ over $V$ is, up to canonical equivalence, independent of
the choice of a compactification $X$ of $U$ .

So the notion of the category of overconvergent isocrystals on $U$ over
$V$ is well-defined. We will denote this category by Oisoc$(U/V)$ . And we
will denote the object in Oisoc$(U/V)$ defined by recollecting $j^{\dagger}\mathcal{O}_{]X[_{P}}’ \mathrm{S}$

by $\mathcal{O}_{U/V}$ .

Definition 3.10. An overconvergent isocrystal on $U$ over $V$ is called
nilpotent if is can be written as a successive extension by $\mathcal{O}_{U/V}$ . We will
denote the full subcategory of Oisoc$(U/V)$ which consists of nilpotent
isocrystals by $NO\dot{i}SoC(U/V)$ .

It is known that the category $No_{\dot{i}SOC}(U/V)$ is Tannakian (This is
also due to Berthelot). So we can give the third definition of crystalline
fundamental groups as follows:

Definition 3.11 (Definition of $\pi_{1}^{crys}$ (III)). Let the notations be as above
and let $x$ be a $k$-valued point of $U$ . Then we define the crystalline fun-
damental group $\pi_{1}^{Crys}(U/V, x)$ of $U$ over $V$ with base point $x$ by
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$\pi_{1}^{crys}(U/V, x):=G(NO_{\dot{i}SoC}(U/V), \omega_{x})$ ,

where $\omega_{x}$ is the fiber functor

$NO_{\dot{i}Soc}(U/V)arrow NO\dot{i}Soc(X/V)\simeq VeCK$ .

We have defined the notion of crystalline fundamental groups in three
ways. We can show that these three definitions are compatible in the
following sense:

Theorem 3.12. 1. ([Shl], [Sh2]) When $V=W$ holds, the first def-
inition of $\pi_{1}^{C}(rys(x, D)/W,$ $x)$ coincides with the second one.

2. $([\mathrm{S}\mathrm{h}2])$ Let $U$ be a smooth variety over $k$ and $X$ be a compactifi-
cation of $U$ such that $D:=X-U$ is a normal crossing divisor on
X. Then the second definition of $\pi_{1}^{cry_{S}}((x, D)/V,$ $x)$ is canonically
isomorphic to the third definition of $\pi_{1}^{cry_{S}}(U/V, x)$ .

Corollary 3.13. The first and second definitions of the crystalline fun-
damental group of (X, $D$ ) with base point $x$ is independent of the choice
of a $\mathrm{c}\mathrm{o}\mathrm{m}_{\iota}$pactification of $U:=X-D$ as above.

To prove the above theorem , first we construct a functor between
the categories considered above. Then we are reduced to the statement
concerning cohomologies. We omit the details.

Now we state some properties of crystalline fundamental groups. In
the statement of the following theorem, we will use the second definition
of crystalline fundamental groups.

Let $k$ be a perfect field, $V$ be a complete discrete valuation ring of
mixed characteristic with residue field $k$ , and $K$ be the fraction field of
V. And let $W=W(k)$ be the Witt ring of $k$ .

Theorem 3.14 ([Shl], [Sh2]). Let $U$ be a smooth variety over $k$ and
$X$ be a smooth compactification of $U$ such that $D:=X-U$ is a normal
crossing divisor. And let $x$ be a $k$-valued point of $U$ . Then:

1. $\pi_{1}^{cry_{S}}((x, D)/V,$ $x)$ is a pro-unipotent algebraic group over $K$ .
2. On $\pi_{1}^{cry_{S}}((x, D)/W,$ $x)$ , there is an action of crystalline Frobenius

operator which is Frobenius-linear, and it induces an automor-
phism.
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3. (Hurewicz isomorphism) There exists the following canonical iso-
morphism:

$\pi_{1}^{Cr}(ys(X, D)/W_{X)},ab=\sim(\mathbb{Q}\otimes_{\mathbb{Z}}H_{1\mathrm{y}\mathrm{s}}^{\mathrm{l}}(\mathrm{o}\mathrm{g}- \mathrm{C}\Gamma(x, D)/W))*$ ,

where $H_{\log- \mathrm{r}}^{\mathrm{l}}\mathrm{C}\mathrm{y}\mathrm{S}$ on right hand side is the $\log$ crystalline cohomology.
4. (Base change) Let $V’$ be a complete discrete valuation ring with

residue field $k’$ which is finite over $V$ and $K’$ be the fraction of $V’$ .
Then there exists an isomorphism

$\pi_{1}^{cry_{S}}((x, D)/V,$ $x)\cross_{K}K’=\sim\pi_{1}^{cry_{S}}((X\cross_{k}k’, D\cross_{k}k’)/V’,$ $x\cross_{k}k’)$ .

5. (Comparison with de Rham fundamental groups) Assume we are
given the following diagram:

$x_{0}$ $arrow$ $\tilde{x}$ $arrow$ $x$

$\downarrow$ $\downarrow$ $\downarrow$

$(X_{0_{\mathrm{I}}},$ $D_{0)}arrow(\tilde{x}_{\mathrm{I}},\tilde{D})arrow$ $(x_{\mathrm{I}}, D)$

Speck $arrow$ SpecV $arrow$ SpecK.

Here $\tilde{X}$ is a proper, smooth scheme over $V,\tilde{D}\subset\tilde{X}$ is a relative
normal crossing divisor, $\tilde{x}\in(\tilde{X}-\tilde{D})(V)$ , and all the rectangles in
the above diagram are Cartesian. Then there exists a canonical
isomorphism

$\pi_{1}^{cry}(S(X0, D_{0}),$ $x\mathrm{o})=\sim\pi_{1}^{dR}(X-D, x)$ .

We will comment on the proofs of the above theorem briefly. 1. is
immediate from the definition. 2. and 3. are deduced from the first
definition. 4. is proved by using the second definition and the base
change of Tannakian categories $([\mathrm{D}\mathrm{e}1])$ . 5. is shown by proving the
equivalence of categories between $NC\dot{i}Soc((X_{0}, D_{0})/V)$ and the cate-
gory of coherent sheaves with integrable connections on $X-D$ which
are regular singular along boundaries and nilpotent. We will omit the
proofs.

Remark 3.15. 1. We have the theory of tangential base points and
tangential maps for crystalline fundemental groups.
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2. We can define crystalline fundamental groups for certain $\log$ schemes
by using the category of nilpotent isocrystals on $\log$ crystalline site
or $\log$ convergent site, and we can show the similar theorems to
the above ones.
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