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ON THE CYCLOTOMIC UNITS IN FUNCTION FIELDS

LINSHENG YIN

Department of Mathematics, Zhongshan University, Guangzhou 510275, P. R. China

1. Background.

In classical number theory, there are two famous cases in which unit index is equal to
class number up to an elementary factor for algebraic number fields. We first recall them
briefly. '

(1). Cyclotomic units. Let Q be the rational number field and let (;m = exp(%’;:i),
where m is a positive integer and m # 2(mod4). Let C be the group of cyclotomic units of
K = Q(¢m)- Let ht be the class number of the maximal real subfield of K. Let O} is the
unit group of K. It is proved by Kummer that [O% : C) = h* when m = pis a prime. It is
easy to show that Kummer’s result is also right when m = p'. What is the index of C for
general m? This was answered by Sinnott in 1978.

Theorem [S]. We have
[0k : C] = 2°ht
where a = 2°=2 — s+ 1 and s is the number of the distinct prime divisors of m.
(2). Elliptic units. Let k¥ = Q(v/—d) (d > 0) be an imaginary quadratic field. Let H,
and H,, be the Hilbert class field and the ray class field with conductor m of k, where m is

an ideal of the integral ring of k. G. Robert constructed the elliptic unit groups of H, and
of H,, and calculated their indices.

Theorem [R]. Assume m =e orp”. Let En be the elliptic unit group of Hm. Then
(O, Bw] = (128=41-1/t)h
where h is the class number of Hy and t is a positive integer such that t | 12.

Now we consider the case of characteristic p > 0. Let k be the function field of a projective
smooth curve over the finite field Fy, where ¢ = p" is a prime power. Let oo be a closed
point of the curve with degree d. Let A be the Dedekind subring of k consisting of those
functions having no pole other than co. Let Foo(= Fyeos ) be the residue field at co. Let m
be an ideal of A. Let H, be the Hilbert class field of (k,00) and let H = Hy, be the ray class
field of (k, 00) modulo m. How to describe H, and Hy, clearly? Using Drinfeld modules, we
can obviously construct the simple extensions K, and K = Ky, of H, and H,, respectively,
i.e., we have the following diagram of abelian extensions of k ,

K / K\H
e

l
k
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and H, (resp Hy) is the maximal ”real” subfield of K, (resp. Ky) in Whlch oo splits
completely Moreover we have J = Gal(K/H) ~Fg, a.nd Je = Gal(I&,/H ) = Fy /Ty

2. Drinfeld modules and cyclotomic extensions.

In this section we introduce chiefly the cyclotomic extensions arlslng in the theory of
Drinfeld modules. The reader can refer to [H] for details.

Let 2 be the completion of an algebraic closure of k. Let F' the Frobenus of € raising
each element to its g-power. Let Q{F} be the noncommutative F g—algebra generated by F
over {). A Drinfeld A-module(of generic characteristic) p is a F,~algebra homomorphism:
p: A— Q{F}. For z € A, we define degz by #(A/zA) = qdegz It is well—known that
there ex1sts a positive integer r such that for any z € A we have

‘ pxzaFrdega:_}_ § : ain
' i<rdegz

where a, a; '€ Q and a # 0. We call r to be the rank of p.

" A sign-function is a homemorphism sgn : k¥, — F*_ satisfying

(1) sgn(a) = a for a € F,.

(2) sgn(U(l)) =1, where ST s the 1-unit group of ke

There are W, — 1 sign functions. We fix one such function sgn. A rank 1 Drinfeld
A-module p is called sgn—normalized, if for all € A the coefficient u,(z) of the highest
order term of p; is a twisting of the sign function sgn, i.e., there exists 0 € Gal(Fs /F,)
such that p, = o osgn. In each isomorphism class of rank 1 Drinfeld A-modules there
exist k = (¢%= — 1)/(q — 1) sgn-normalized modules. Totally there exist xh sgn-normalized
modules, where h = h(A) is the class number of A. Let X denote the set of these normalized
modules. The normalizing field K, of (k,00,sgn) is generated over k by the coefficients of
pr for any p € X and any z € A — Fg. It i1s independent of p or z. For p € X, let
An ={a € Q| ps(a) = 0 for £ € m} be the m-torsion points associated to p, Which is an
A-module via p isomorphic to A/m. Let Am = UpexAn. Then K = K (Ah) = K¢(An) is
abelian over k and is called the cyclotomic extention of £ with conductor m. Analogy to the
case of cyclotomic number fields, we give the following definition.

Definition. Let P = P, be the subgroup of K* generated by Am — {0} and by F:, . Let
C =PNO%. CalC (resp. P) the group of cyclotomic units (resp. cyclotomic numbers) of
K. ' '

3. Conclusions.

For a finite extension F/k, we denote O the integral closure of A in F, O} the unit
group of F, h(Or) the ideal class number of Op, h(F) the divisor class number of F. We
have h = h(A) = dh(k). Let G, = Gal(H./k) ~ Pic(A) and let N = N,, be the subgroup
of G generated by the Artin symbols 7, = (p, H./k) for all primes p | m. Let e = [G} : Ny]
be the inde’x., We first calculate the rank of C [Sect. 2, Y1]. .

(1). rankC =[H : k] —e.

. Thus the rank of C is less than that of O} unless Ny, = G;. The reason is that C does
not contain enough unramified units if Ny, # G1. This means that the rank of C N K, is less
than that of Of in this case. We then construct the group E of unramified elliptic units of
K, with maximal rank in K, and naterally extend C by C = C - E. We chiefly explain the
construction of £ here. Using the ¢-invariant of Drinfeld modules, we first constructed a
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Gal(K. /k)—submodule Q of K, and let E = QN Oj,. We proved that E = EV4-Y) C K,
Let s be the number of distinct prime divisors of m. We regard K,.as the cyclotomic
extension with conductor e and understand that s =0 means m = e. Let C.= E Our next
conclusion gives the indices of E and C respectively. '

(2) Assume (h,q—1) = 1 when s > 3. Then
| [0k : C] = (¢— 1)*h(On)
where a =0 if s =0 or 1, anda=e(2°"2-1)—(s—2) if s > 2.

We conJecture that the restrictive hypothesis above is unnecessary. Our last conclusion
is an application of the index formula in the case when the conductor is a prime ideal. In
the classical theory of numbers, the Kummer criterion is a very important result on the
p-divisibility of the class number of the cyclotomic field Q(¢p), where p is a prime and (p is
a primitive p-th root of 1. The last conclusion gives the analogue and generalization of this
criterion to function fields. We first defined Bernoulli ideals of A (cf. [Sect 5, Y2]). Let B;
be the i-th Bernoulli ideal of A. By using the index formula in (2), we got (cf. [Sect 6, Y2])

(3). Letm =yp be a prime and let d = degp > 1. If p divides h(Og, ) then there is an ideal
B,,z_O(mod(q—l)) and 1 <i<¢? — 2, such that p | B;. :

We also proved these Bernoulli 1dea.ls above are non-zero [Sect. 7, Y2].

4. Outline of the calculation of the indices.
In this section, we only give an outline of the calculation of the indices. For the details and
the proofs of the other conclusions, we refer to [Y1], [Y2]. We first explain three definitions

used in the calculation.
(1). lattice index. Let G = Gal(K/k). For a subset T of G, write s(T) = 3 ,cp 0. Let

et = (1/Ww)s(J) and let e; = (1/]|G])s(G). Let Y = (1 - e1)etQ[G]. It is a Q- subspace of
Q[G] with dimension r = [H : k] — 1. A lattice in'Y is a finitely generated subgroup of ¥
with the maximal rank. Let L and L’ be two latticesin Y. Then there exists a nonsingular
linear transformation A : Y — Y such that A(L) = L’. Sinnott [Si defined the index
(L : L") to be (L : L') = |detA|. Clearly (L : L') does not depend on the choice of A. When
L' C L one sees the index is equal to [L : L’]. Let L” be another lattice of Y. It is easy to
see (L: L") = (L : L')(L' : L").

(2). Logarithm map. The logarithm map is deﬁned to be the map [ : K* — Q[G] such

that
I(z) = Z 1)00(.’1:")0'_1

: oeG :
for ¢ € K*, where vy, is the extension to Q of the normalized valuation of ke at co. We
also write I* = (1 —eg)l.

(3). Some G-modules. For a prime ldea.l p of A, let T, be the 1nert1a group of p in G
and let Fp be any Frobenius automorphism for p, which is well defined modulo T,,. We set
op = F; s(Tp)/ |T,|. Notice that &, is the unique element in C[G] satisfying x(7p) = x(p)
for any x € G, the character group of G with complex values.

Let I; = Gal(K/Kj) for f | m. Note that I, = Gal(K/K ) ~ (A/m) We deﬁne V to be
the R - Z[G}- submodule of Q[G] genera.ted by '

ap = S(If)H(l - ffy)

plf
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with f | m, f #e. We alsoset U =V + s(I.)R and U’ = (¢ — 1)V + s(I.)R.
For any R-module M, we denote by M; the submodule of elements killed by s(G).
Obviously Vo =V, Uy = V + s(I.)Ry and U}y = (¢ — 1)V + s(I.)Ro. |
Now we can explain the outline of the calculation of the indices. In the following we.
permit m = ¢ (i.e. s = 0) and assume P, = C, = [F;,. We also assume V =0 and e = hin

this case. Let P/ = IF;OP;(J’)Q.; and let C' = P' N O%. We have C' = F5,C? . Thus

[0k : Cl=(g-1)7"[O0k : C"] = (g - 1)~ [(0%) : I(C")]
(*) |
=(g— 1)""((0Ok) : e" Ro)(et Ry : et Ug) (et Up : eTUL) (et Uy : I*(P))(I*(P') : I(C)).

To calculate the index, we need compute the five indices in the right hand side of (¥). Here
we only explain their calculations briefly and write the values. For details we refer to [Y1]

and [Y2].

(4.1). It is easy to see that (e Ry : {(O%)) is equal to the regulator R(K) of K. Using
a property of the extension K./H,, we get the relation of R(K) with R(H) [Cor.1.6, Y2].
We have

1/(k"~*R(H)) if s =0

(a) ((0%) : et Ro) = 1/R(K) = { Qo /(WL R(H)) Ffs>1

where k = (qd —1)/(¢—1) and Qo = [Ok : OF], which is equal to 1 if s =1 and ¢ — 1 if
s> 1. Here H= K H.

(4.2). First we proved that etV is a free subgroup of Q[G] with rank r —e+1 {Lem.3.1,
Y1]. We also showed that [Lem.3.1, Y2 etV Nnets(I)R = (¢ — etV nets(I, )R
Thus e*Up/e* Uy ~ e*V/(q — 1)€+V and we have

(b)  [etUs et U] = (g - YEHe = (g - 1)7 et

Obviously the equality is also valid when m = e.
(4.3). We define

‘w:Woo Z Li(0,x)ey

X#1, real

where e, € C[G] is the idempotent associated to x, and Li(s, x) is the Artin L-function
associated to the character x. Here ¥ is the inverse of x. By [Prop.4.1 and Lem.4.2, Y1],
we have [*(P') = wU} = wetU}. Using the analytic class number formula, we get

R(H)h(OH)

(c) (e+U6 :*(P")) = detw = H Weo L1 (0, %) = W, —

1#£x€G/J

(4.4). To compute [I*(P) : I*(C")] we write P = (P')* = IF;P;(J)Q‘(J') and C =
PNO% = ]F;C_'W‘”. Regard P Nker I* /F; as a subgroup of P/C. We have

[*(P") : I(C)) = [I*(P) : {(C)] = [B/C : Pnkerl*[F;] = [P/C : QNE].
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Using the property [Prop.2.4, Y2] Q/(Q N k)E' Gy, where Q=0Q*V) and £ = E*Ue) we
can compute the last index. We have ' A

(d) | [P UC) = (g - )T R(m)k

where s be the number of distinct prime divisors of m and ®(m) = #(A/m) is the Euler
®-function. Notice that the result is also valid when m = e.

(4.5). At the last, we need calculate the lattice index (et Ry : et Up). To do this we need
to decide some J-cohomologies. In Sinnott’s case they are trivial Gal(Q((m)/Q)-modules.
But in our case they are non-trivial Pic(A)-modules. We can not decide them compleyely

This produces the condition in our conclulation.
Assume (h,q — 1) = 1 when s > 3. Then

(@-1)¢/a(m), ifs=1

e | et Ry : et :{ 2
) (TR U=\ (- jam), s> 2.

Clearly (et Ry : etUp) = 1 when m = e. By substituting (a)-(e) into (*), we get the indices
at once.
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