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THE ORDERS OF THE REDUCTIONS OF A POINT IN

THE MORDELL-WEIL GROUP OF AN ELLIPTIC CURVE

J. CHEON AND S. HAHN

ABsTRACT. We prove elliptic analogue of Bang’s theorem. Consider an elliptic curve E over a number field
K. For any non-torsion point M € E(K), the order of the reductions M mod p runs through all but finitely
many positive integers as p runs through all good primes. Moreover, it runs through all positive integers for all

but finitely many points M € E(K). At last, we present some examples to deduce N\ Imfys for M € E(Q).

1. Introduction
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To begin with, we introduce the famous Bang’s theorem. Let a be a fixed rational number in Q —

{0,%1}. Then a can be written as a — ¢/d for some integers ¢ # 0 and d > 0 with (c, d) = 1. Let D,

denote the set of positive prime numbers which do not divide c¢d and N the set of natural numbers. We

define the function f, as a map
fo: Dg — N

such that for any p € D,
fa(p) = the multiplicative order of (a mod p) in the finite field Fp, .

Then we can state Bang’s theorem as follows :

Theorem (Bang). Using the same notations as above, the set N \ Im f, is finite for any a € Q—{0, +1}.

This famous theorem was proved by Bang first [2], and by various other mathematicians. In particular,

.

Zsigmondy proved the stronger version presented here [11] [15]. We say that a prime p is a primitive

divisor of A™ — B™ if p|A™ — B™ and p{ A™ — B™ for any m < n, i.e. fo(p) =n.
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Theorem (Zigmondy). Let A, B be integers with A > B-> 1 and ged(A,B) = 1 and let n > 1.
(a) A™ — B™ has a primitive divisor with the following exceptions : ‘
()n=1,A-B=1. -
(ii) n =2, A+ B is a power of2.
(i) n=6 A=2 B=1.
(b) A™ + B™ has a primitive divisor with the following exceptions :

n=3,A=2, B=1.
More general theorem over algebraic number fields. by Schinzel is as follows 9):

Theorem (Schinzel). If gcd(A, B) =1 and A/B is not a root of unity, then A™ — B™ has a primitive

divisor for all n > no(d), where d is the degree of A/B and ny(d) is effectively computable.

In particular, the first special formulation of Theorem (Bang) was presented by Y. Thara in [4] [5]
together with the sketch of proof using cyclotomic polynomials; ‘which motivated us to study the elliptic
analogue replacing cyclotomic polynomials by division polynomials of elliptic curves. The analogue on
elliptic curves over Q was proved by J. Silverman [12]. In this paper, we extend the result to the cases of
number fields and show that fj is surjective for all but finitely many points M of an elliptic curve, which
is the stronger result than Schinzel’s original theorem over number fields since we have only finitely fnany
exceptional cases. However, we don’t have yet any effective method to compute the number of points M

for which fs is not surjective.
2. Some Preliminaries

We introduce some notations to use in this paper.

N : the set of natural numbers.

Q : the set of rational numbers.

K : a number field

R : the ring of integers of K

Mk : the complete set 6f normalized absolute values on K.
M§? : the set of archimedean absolute values in Mg

M}, : the set of non-archimedean absolute values in Mg
v(z) = —log |z|, for v € Mk

py = {z € R|v(z) > 0} for v € Mg
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K, : the completion of K at v for v € Mg

For My, we use the specific normalization as follows :
To begin with, Mg consists of the followings.

(i) Mg contains one archimedean value, given by
|z]oo = usual absolute value = max{.z:, —z}.
(ii) For each prime p € Z? Mg pqntains one non-archimedean absolute value, given by
|p"%|p =p " fora, b€ Z, ged(p,ab) =1.

Mk consists of all absolute values on K whose restriction to Q is one of the absolute values in Mg.

Consider an elliptic curve E over K given by a Weierstrass equation:
E:y?®+ajzy+ agbybz 23 + agz? 4 agz + ag; a; € R.
Let S be a finite subset of Mk containing
| M3 U{v € M{|E has bad reduction at v} U {v € M{|v is ramified at K/Q or divides 2 }.

Define the local height function h; , for v € Mg \ S as follows :

hen : E(K)\ {0} — R
(1)

(y) = %max{—v(:c),O}.

Note that there is a constant C, depending only on E, such that
. 1
@) [h(M) = Sha(M)] < C

for all M € E(K) and

1
K:Q

© She(M) = 3 muheu(M)

vE Mg
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where n,, denotes the local degree [K, : Q,] [10] [11].
For v € M%, M mod p, denotes the image of M of the reduction map E(K) — E(R/p.).

For the proof of the main theorem, we need the following famous theorem [10, p 245] :

Theorem (Siegel). Let E/K be an elliptic curve with infinite points in E(K), f € K (E) a non-constant
even function, v € Mk, and Q € E(K). Then

(4) : lim  8d(PQ) _

hs(P)—oo hf (P) 0,

where hy(P) denotes the Weil height of P and d,,(P, Q) the v-adic distance from P to Q.
If we take Q = O and f = z in the above theorem, we get the following useful corollary.

Corollary. Let E/K be an elliptic curve and M be a non-torsion point of E(K) and v € Mg. Then

(5) lim P2 (M) _

nooco hg(nM)

3. Main Theorem

Lemma. Let v € Mg \ S and M be a non-torsion point of E(K). Suppose that M mod p, = O i.e.
hz (M) > 0. Then

(6) hew(nM) = h; (M) + v(n)

for any positive integer n.

Proof. Let MM = {z € K,|v(z) > 0}, E the formal group associated to E and G.(9M) the additive group

O with its usual addition. We have an isomorphism (10, IV, Theorem 6.4 (b)],
(7) ~ logg : E(ON) — Go (M)

such that v(z) = v(logg z) for z € M. Hence we can identify E(90) with G, ().
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Moreover, if we let
Ei(K,) = {M € E(K,)|M mod p, = O},

we have an isomorphism [10, VII, Proposition 2.2],
(8) ‘ z: Ey(K,) — E(N)

such that v(z[M]) = —2v(z(M)) for any M € E;(K,)\ {O}, where z[M] denotes the z-coordinate of M.
By (7) and (8), we get v(z[nM]) = v(z[M]) — 2v(n) for any non-torsion point M € E1(K.)\ {0},

because
v(z(nM)) = v(logg 2(nM)) = v(nlogg 2(M)) = v(n) + v(z(M)).
We complete the proof by (1). O

Now we define a function fys as a map
fM . MK \ S — N

such that
Fu(v) = the order of M mod p,, in E(R/p,).

Theorem. For any non-torsion point M € E(K), N\Imf is finite. In particular, fy is surjective for

all but finitely many M € E(K).

Proof. Given a positive integer n, put n = [T;-, ¢i" for distinct primes ¢; and positive integers r; and let
S(n,M) = {v € Mg \ S|nM mod p, = O in E(R/p,)}. Note that n belongs to the image of fj if and
only if there exists a prime p € S(n, M) — UfZIS(%, M). (If n =1, let UfZIS(%, M) = ¢ by notation.)

Suppose that S(n, M) = UleS(%, M). For v € Mg \ S, there exists ¢ with 1 < ¢ < s such that

(9) heo(nM) = hz,v(%M) + v(g)
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by Lemma. Hence we get

2 n
(10) (M) < 3 e o(-M) + v(a)}
. i—1 1
For v € S, Siegel theorem (5) implies that for any € > 0,
(11) : : heu(nM) < €hg(nM)

for all sufficiently large integer n.

If we let N = (gig 2oves s by (3), (10) and (11),

1 1 > n 1 ‘ .
Ehz(nM)g[K—:@ > nv{zhz,v(aM)Jrv(q,-)Hménvehz(nm

(12) ’UEMK\S =1

< Nehg(nM) + g %hz(q%M) +logn
since TEI@ > vemg, "wv(g:) = logg;. Hence we get
(13) L - Nor (i) < X ihz(ﬂM) +logn.
: 2 2 %
On the contrary, if we take € < &, for all sufficiently large integer n

iN»

1 n
3 ;hZ(q_zM) +logn

*\son
< Zh(&:M) +(1+2C)logn - (by(2) and s < 2logn)

=1
*\ n?, ’ . >
14) = ;{Eh(M)} +(14+2C)logn  (by quadraticity of h)
1 o 1 1.
< 5n*h(M)+ (1+2C)logn (- > 7 < 5)

p:prime

< (1-2Ne)(n?h(M) - C) (.-1—2Ne> %andn>>0)

< %(1 _ONOha(nM).  (by (2) )

It contradicts with (13). Therefore for each sufficiently large integer n, there exists v € Mk \ S such

that v € S(n, M) \ UfZIS(%, M), i.e. the order of M mod p, in E(R/p,) is n.
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For the second statement, take € with 0 < € < 7. If ko (M) is sufficiently large, he(nM) < €he(nM)
foralln>1andallveS. Hence for all but finitely many Me E(K), (13) holds for all n > 1. Also, if

fz(M ) is sufficiently large, then
(15) %nzfz(M) + (14 2C)logn < (1 — 2Ne)(n*h(M) - C)

for all n > 1 so that for all but finitely many M € E(K), (14) holds for all n > 1. Therefore for all
but finitely many M € E(K), S(n,M) — Uf:IS(%,M) # ¢ for all n > 1, which implies that fps is

surjective. [

4. Some Examples

In this section, we introduce some examples to deduce N \ Imfys for an elliptic curve defined over Q.

Consider an elliptic curve E over Q.given by a Weierstrass equation:
¥ =z3+Az+B; A,Be€Z.

For any non-zero M = (z,y) € E(Q) and an integer n, the z-coordinate of the point nM is given by

- ¢a(M)

(16) cinM] = S

where ¢,,(M) and 12(M) are polynomials in Z{z|, relatively prime in Q[z] [10, plO’f].

When we write M = (%, 3%-) for a;b and d € Z with ged(a,d) = 1 and d > 0, we set the following
notations ; $m(M )= 4z’ Om(M); Ym(M) = dm’—lwm(M ) , where we take tfzm(M ) as a positive integer.
Then (16) becomes |

_ 6a(M) _ du(M)
Y2(M)  d242(M)

an z[nM]

so that

(18) .~ nM = O if and only if ¥,(M) =0
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for a non-zero point M € E(Q). Hence for a non-zero point M € E(Q), we have
(19) fum(p) = n if and only if ple), (M) and D1 %m (M) for any integer m < n.

Ezample 1. Let E : y* = 2® + 4z + 20 and M = (1,5) € E(Q). Ag = —27-167. From (19) and the

following calculation, we may expect that N\ Imfy = {1}.

P (M) =1
Yo(M) =2-5
Pa(M) = 251

Pa(M) = —22.3.5.23.47

Ps(M) = —97 - 831683

Ye(M) = —2- 5251 - 122741447

Pr(M) = 3311717 - 438695947

PYg(M)=2-3-5-23-47-307- 3019 - 4558056703

PYo(M) = 19 - 251 - 94621387

P10(M) =2-5- 97 - 4261 - 831683 - 3504419 - 2372245029989

ah1 (M) =7-53-71- 417493 - 13430089 - 18006074321808164774557

$12(M) = —2-3-5-23-47- 251 - 5743 - 11057 - 61224103 - 122741447 - 4895634495812861
P13(M) = —3083 - 3967 - 1290001702772707986533036597725024991050866886591
1a(M) = 2-5-13- 3311717 - 438695947 - 34305428644587863980370679502875987956020839061

1&15(M ) = 97-251-3727-831683-680611988239249298432146956724186986216473592705367902544337

Ezample 2. Let E :y? =23 —z+1and M = (1,1) € E(Q). Ag = —2%-23. From (19) and the following

calculation, we may expect that N\ Imfy = {1,2, 3,4,5,6,9}.

P1(M) =1
Pa(M) = 2
pa(M) = 28
Ya(M) = 2°
hs(M) = —28
de(M) = —2'3
Br(M) = —216 .3



Po(M) = —277
t/A’m(M) =923.11
Y1 (M) =2%.19
Pra(M) =250 .7
Pra(M) = 2% . 53
Pra(M) = —205.3.17
Pr15(M) = —275.223
Pre(M) = —285.5.103
Pr7(M) = —2% . 1381
Prg(M) = —2199. 419
Pro(M) = 212013509
Pao(M) = 213811 . 1861
P (M) =2147.32. 4903
Paa(M) = 2161 .19.23 . 347
Pos(M) = —2176 . 119417-
Poa(M) = —2195.5.7. 4931
Pos(M) = —2208..71 . 137 - 521
das(M) = —275 . 4353 - 9281
Par(M) = —2243 . 29485343.
Pas(M) = 2261 . 3. 17 . 4231459
Yoo (M) = 2250 . 1243809367
Pao(M) = 2301 . 11 .59 - 223 - 13597
e (M) = 257 . 23663249429
| Paa(M) = —2341.5.61.103- 173 - 1319
Paa(M) = —2%63.19. 1213 - 20517719
Yo (M) = —2385. 149 . 701 - 1381 - 19801
Pas(M) = ~2408 . 3. 31 . 63649 - 3046601
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