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- On semi-reduced quadratic forms,
continued fractions and class number

Claude LEVESQUE !

§1. Introduction

~ Let. m be a square-free integer > 1 and let A be the discriminant of the real
quadratic field A(Q(y/m). Define

alm™ 52 >+ 3v/m, " mfl (mod 4),
4m, vm, m=2,3 (mod 4),

(0 if m=1 (mod4), £even and 2 fky/s,

m=1 (mod4), £odd,

7 m=1 (mod4), £even and 2|kys,
1 if
m=2,3 (mod4), £even and 2 fky2,

?

9 if m=2,3 (mod4), £even and 2|ky»,
m=2,3 (mod4), £odd.

\

Write & asa continued fraction:
& = [ko, k1, e -
Let A1(m) (resp. A2(m)) be the number of solutions of
2>+ 4yz = A (resp. z°+ 4> = A)

with z, y, 2 € IN = {0,1,2,...}. Then H. Lu [Lu] proved the following result.

Theorem (Lu). The class number ha of Q(y/m) is equal to 1 if and only if

6+ ik, = Al(m) + )\z(m)

i=1

1Written version of a lecture (based on a joint work with E. DUBOIS) given in Kyoto at RIMS
on November 27, 1996, during the symposium Algebraic Number Theory and Related Topics. Let me
take this opportunity to express my deepest gratitude to professor Dr. Masanobu KANEKO for his
kind invitation and his support: “Kanekosensei, arigato gozaimasu”. Thanks are also due to professor
Toru NAKAHARA and to professor Hiroki SUMIDA.
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Problem. Generalize Lu’s result. More precisely, use continued fractions to list
- the elements of the set

{aX2+bXY+cY2: a,b,c € Z, b® — dac= A with 0§b<\/Z}

of semi-reduced quadratic forms of discriminant A and relate hY (resp. ha) to the
cardinality of this last set, i.e., to the cardinality of the set

{(a,b,c) € Z%: A =1b®— 4dac with 0<b<VA}.

§2. Preliminaries

A quadratic form f is a homogeneous polynomial of the form
f=1(X,Y) =<a,b,c>= aX* 4+ bXY +c¥?, with a, b, ¢ € Z,

which we may write in matrix form as

fxyY)=(x Y)( “b ’i"cb)(if)

We say that the matrix of f is
=

By deﬁnitio'n, the discriminant of f is

b

b=
o o
v

A =A; =b% - 4ac
moreover f is primitive if pged (a, b, c) = 1; f is definite posztwe ifA<0,a>0,c>0;

and f is indefinite if A > 0.
Consider

Fa = {primitive quadratic forms of discriminant A}.

We need
GLAZ):{(; 2) T8t u €L, ru—st::l:l},

SL2(2)={(: 2) s, t,u € Z, ru—st:—l—l}.
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We can define an action of A € GLy(Z) on f by stating that
g = Af where M, = AMA*.
Moreover we say:
f ~ g (f is equivalent to g) <= g = Af for some A € GL:(Z),

f~ g (f is strictly equivalent to g) <= g = Af for some A € SLy(Z).

It turns out that the class group (resp. strict class group) of Q(vA is Fa/ ~ (resp.
Fa/ =), its cardinality being denoted the class number ha (resp. the strict class number
hf) of Q(VA).

We are extensively working with the matrices

E(u)#((l) "{) A@):((l) “i)

We associate to f the quadratic numbers

b+ VA 4 a=q()=ttVA

w=wlf) =g . 2a

and define
. o(f) = sign(a).
Gauss defined the right neighbour R(f) and the left neighbour L(f) of f:
Rf = A(e)f =<c, —b— 2ce, a + be + ce*> with e = —sign(c) [w(f)],
Lf = A(E)™'f =<c+bE + aE?% —b—2aE,a> with E = —sign(a)[Q(f)].
We say that f = <a,b,c> with A > 0 is reduced if

(i) 0<b< VA,
(@) VA -=b<2|c<VA+b,
which is equivalent to saying

{(i) 0<b<-\/Z,
(i) VA -b<2a] <VA+b

Gauss showed how to calculate the class number h}. With the continued fraction
algorithm, write the finite set of reduced quadratic forms of discriminant A > 0 as a
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union of ha disjoint cycles, by picking up a reduced quadratic form f = <a,b,c> and

taking the continued fraction of

y —w(f)—b+‘/K—P°+‘/—A—

°~ C2d T 2Q0
i.e., for 1 > 0,

w = BtVA

1 - 2Q1 -y

Py = 2kiQi— P with k; = [wi], -

A~ P,
QH—I - —TQ:'—_’

where [ | is the greatest integer function. Hence

P() Pl e Pg_l Pg P¢+1 . P21_1

Qo Q1 ... Qu1|Qr Q1 ... Qo
(Fo b1 ke [k R o by

It is well known that f is reduced if and only if w(f) is a reduced quadratic number

(i.e., the continued fraction expansion of w(f) is purely periodic).

Let .

: 7= ¢ if £ is even,

T | 2¢ if £ is odd.
The cycle of f is

[fl) f27---1‘f2]?
where ‘
f = fl = <a, b) > = <U(f)Q07P1a —U(f)Q1>

and where for: =1,...,/ -1,

firn = R(fi)

(~1)'o(£)@s, Piys, (1) 0(£)Qira)
= Aif;

with '
Ai = A(o(fi)k) = A((-1)'o(f)k:) .
In symbols, _
{ fir1 = Rf; for 1<i<{ with fi=Rfp

fi = Lfj for 0<j<€ with f;=Lf,
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and k; = [w(fi)]- .
Fact: hf is the number of cycles. Moreover hy = ha (resp. hX = 2ha) if the
length of the continued fraction of w(f) for any reduced quadratic form f is odd (resp.

even).
See section 7 for examples of calculations of cycles.

§3. Semi-reduced forms

A quadratic form f =<a,b, > of discriminant A is semi-reduced if
0<b< VA,

and f is said to be intermediate if f est semi-reduced without being reduced.

In each of the following examples, we give the list of semi-reduced quadratic forms,
the reduced forms being written in boldface, the intermediate forms appearing in roman
style.

Example 3.1. Let m = 14. There are 24 semi-reduced quadratic forms of discrim-

inant A = 56:
<1,0,—14> <-1,0,14> <2,0,-7> <2,0,7>  <7,0,-2> <-7,0,2>
<1,2,-13> <-1,2,13> <14,0,-1> <-14,0,1> <13,2,-1> <-13,2,1>
<1,4,-10> <-1,4,10> <2,4,-5> <-2,4,5> <5,4,—-2> <5,4,2>
<10,4,-1> <-10,4,1> <1,6,-5> <-1,6,5> <5,6,—1> <-5,6,1>

Example 3.2. Let m = 19. There are 36 semi-reduced quadratic forms of discrim-

inant A = 76:
<1,0,-19> <-1,0,19> <19,0,-1> <-19,0,1> <I1,2,-18> <-1,2,18>
<2,2,-9> <=2,2,9> <3,2,-6> <-3,2,6> <6,2,-3> <-6,2,3>
<9,2,—-2> <-9,2,2> <18,2,-1> <-18,2,1> <1,4,-15> <-1,4,15>
<3,4,-5> <-3,4,5> <5,4,-3> <5,4,3> <15,4,—-1> <-15,4,1>
<1,6,—10> <-1,6,10> <2,6,-5> <-2,6,5> <5,6,-2> <-5,6,2>
<10,6,—-1> <-10,6,1> <1,8 -3> <-1,8,3> <3,8-1> <-3,8,1>

Example 3.3. Let m = 26. There are 36 semi-reduced quadratic forms of discrim-

inant A = 104: '
<1,0,-26> <-1,0,26> <2,0,—-13> <-2,0,13> <13,0,-2> <-13,0,2
<26,0,—1> <-26,0,1> <1,2,-25> <-1,2,25> <5,2,-5> <5,2, 5>
<25,2,—1> <—=25,2,1> <1,4,-22> <-1,4,22> <2,4,-11> < 2 4,11>
<11,4,-2> <-11,4,2> <22,4,-1> <=22,4,1> <1,6,-17> 1 6, 17>
<17,6,—-1> <-17,6,1> <1,8,-10> <-1,8,10> <2,8,~5> <—2,8 5>
<5,8,-2> <-5,8,2> <10,8,-1> <-10,8,1> <1,10,-1> 1 10,1>
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Example 3.4. Let m = 33. There are 20 semi-reduced quadratic forms of discrim-
inant A = 33: SR ‘

<1,1,-8> <1,1,8 <2,1,-4> <-2,1,4> <4,1,-2>
<-4,1,2> <8,1,-1> <8, 1,1> <1,3,-6> <-1,3,6>
<2,3,-3> <-2,3,3> <3,3,-2> <3,3,2> <6,3,-1>
<-6,3,1> <1,5,-2> <-1,5,2> <2,5 -1> <-2,51>

Example 3.5. Let m = 35. There are 40 semi-reduced quadratic forms of discrim-
inant A = 140:

<1,10,-10> <-1,10,10>

<19,8,-1> <-19,8,1> <1,8,—-19>
<1,8,19> <1,0,-35> <-1,0,35> <5,0,-7> <-5,0,7>
<7,0,—-5> <17,0,5> <35,0,-1> <-35,0,1> <1,2,-34>
<1,2,34> <2,2,-17> <-2,2,17> <1,4,-31> <-1,4,31>
<17,2,-2> <-17,2,2> <34,2,-1> <-34,2,1> <31, 4,-1>
<-31,4,1> <1,6,-26> <-1,6,26> <2,6,—13> <-2,6,13>
<13,6,-2> <-13,6,2> <26,6,—1> <-26,6,1> <2,10,-5>
<-2,10,5> <5,10,-2> <-5,10,2> <10,10,—1> <-10,10,1>

Let f =<a,b,c> be a reduced form of discriminant A such that e = o(f)[w(f)]-
Consider the quadratic forms associated to f and given by the following two cases (the
first may be empty):

Case (i) Case (ii)

E(u)f =<a+ bu+ cu?, b+ 2cu,c>
- with

Lol < g

A(u)f =<c,—b—2cu,a + bu + cu®>>
with

b %c' < o(f)u < of)e = [w(f)]

We can show that the quadratic forms of Cases (i) and (ii) are all semi-reduced
(i.e., are either reduced or intermediate) and that the intermediate forms <a’, V', ¢’> of
Cases (i) and (ii) respectively verify the following properties:

add <0, ad <0,
Case (i) ¢ |a/| > ||, Case (ii)§ |d'| < ||,
R<d,V,d>= Rf, L<d b, d>=f.

These last properties characterize intermediate quadratic forms. We can show that
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intermediate forms come from reduced forms. More precisely, let g =<a’,b’,c> be an
intermediate quadratic form. Then the following properties hold true:

(¢) If |a'| > ||, then the forms f; = Rg and f = Lf; =<a,b,c> are both reduced
and

g= (u)f = <a+ bu + cu®,b + 2cu, >
with

1<o(flu < = IR

(41) If la/| < |¢|, then the form f = Lg = <a, b, c> is reduced and
g=A(u)f =<c,—b—2cu,a+bu+ cu®>
with 5 v
g Sl < olf)e = (1)
We can now state our first result.

- Theorem. (1) For each reduced form f = <a b, c> of discriminant A, the quadratic
forms associated to f and defined by

E(u)f mm1gagmgﬁp

o < o(fu < [w(f),

are all different from one another and form a set I(f) of cardinality

#I(f) = { [w(f)] if (2c) b,

A(u)f ﬁn’th

1+ [w(A] & (20)fb.

(2) If f and g are two different reduced forms, then I(f).N I(g) = ¢.
(3) Moreover the (disjoint) union of the I(f)’s when f runs through the set Red(A)
of reduced forms is a set equal to the set of semi-reduced forms and is of cardinality

(A —t?
2| v T( - ) ,
0<t<va
t=A (mod?2)

where T is the number of divisors function.
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~ §5. The palindrome level

Suppose that the continued fraction of a quadratic number « is purely periodic (i.e.
a is reduced):

o= [kl,kz,..‘,kl]
with ¢ minimal. We associate to a the word
w(a) = klkz' ‘e kl

and say that it is defined up to a cyclic permutation (of order £).

Recall that a palindrome (KA I BU N) is a word which once read from left to rlght
or from right to left is the same.

Examples. In french, english, german and japanese:
(i) ELU PAR CETTE CRAPULE

() NAME NO ONE MAN
(i) EIN NEGER MIT GAZELLE ZAGT IM REGEN NIE

) 2D OLXLEDIZT BAHXAE
BPIIHhELE b0OORIELE

OTEREDOL VWEFLWL FEVLOBET
ORI

When £ is odd, we say that o has 1 (resp. 0) central element if w(a) is (resp.
is not) a palindrome, the central element being the center of w(a). When £ is even,
we say o has 2 central elements (resp. 0 central element) if after an eventual cyclic
permutation, w(e) is (resp. is not) the concatenation of a palindrome of length ¢ — 1

and of a palindrome of length 1, the two central elements being the two centers of the
concatenated palindromes.

Definition. The palindrome level s = s(a) € {0,1,2} of a reduced quadratic
number is equal to the number of even central elements.

In examples 7.1 to 7.5, s is respectively equal to 2, 1, 1, 0, 0.

§6. The main results

We can now relate the class number ha of Q(v/A) to the cardinality of the set of
semi-reduced forms by writing this cardinality in terms of the partial quotients of non
equivalent reduced quadratic numbers.
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Theorem. Let A be the discriminant of a real quadratic field Q(VA). Put

0 if A=1 (mod 4),
g 2t if A=40ul2 (mod 16),

2t2 if A=8 (mod 16),
where r is the number of odd primes dividing A. Then the class number ha of Q(\/Z)
is equal to hg if and only if there exist hy reduced quadratic numbers ofV), @, ..., alto)

associated to hy quadratic forms non equivalent to one another such that the number
of all semi-reduced forms of discriminant A 1is

hoe ¥4 ;
2 (SA + Z Zk?)) ?

7j=1 t=1

where for 7 =1,..., hy,

o) = [k(j) ONS k(")]

with £; minimal, and where the palindrome level sp of A, deﬁned as the sum of all the
palindrome levels of the oY) ’s, is equal to

ho
Z (J)

Theorem. Let A be the discriminant of a real quadratic field Q(v/A). Put

0 if A=1 (mod 4),
g 2" if A=4o0ul2 (mod 16),
ol if A =8 (mod 16),
where r is the number of odd primes dividing A. Then the class number hy of Q(VA)
is equal to hy if and only if there exist h; reduced quadratic numbers 1), ), ... A1)

associated to hy quadratic forms non equivalent to one another such that

#{(A,B,C) e N?®: A = Bz+4AC}—3A+ZZJk(J)

j=1t=1

where for 7 =1,...,h,

4 = [k{j),‘ PON _,k(a_')]

with £; minimal, and where the palindrome level sA of A defined as the sum of all the
palmdrome levels of the IB(J)

h,y
Sp = Zs(ﬁ.m) = g1.

i=1
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87. Five examples
One has a chance of verifying the last theorems with the following ekampleé.

Example 7.1. Let m = 14, so A = 56. Here A} = 2 and ha = 1. The continued

fraction expansion of w = 422 [2 1,6, 1]
4 4 6 6|4
____2+2\/10 9 5 1 5|9
23 [2 1 6 1]2

Since w(w) = 1,@, 1, , we have s(w) = 2. There are two cycles of reduced forms

—_—— =
(in boldface) to which are attached the intermediate forms:

<-7,0,2> :]- <—5,4,2> = <2,4,-5>
<2,0,-7> ft 4
<1,6,—-5> « <-5,6,1> —— <-10,4,1>
<-13,2,1>
<—14,0,1>
<1,0,—14>
<1,2,-13>
<1,4,-10>

T 111D

<7,0,—2> :]— <5,4,-2> = <-—2,4,5>
<—2,0,7> 1t Y

: <-1,6,5> < <5,6,—-1> —— <10,4,—-1>
<13,2, —1>
<14,0,—1>
<-1,0,14>
<-1,2,13>
<—1,4,10>

U R A A A
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Example 7.2. Let m = 19, so A = 76. Here h} = 2 and hs = 1. The continued
fraction expansion of w = Y78 jg [1, 3,1,2,8, 2]: '

25
| 46 6 4 8 8[4
w=4;*g76(_>5253135...
' [1 312 8 2[1 ...|

Sincé w(w) = 1,2,, 2,1, , we have s(w) = 1. There are two cycles of reduced
—_—

forms (in boldface) to which are attached the intermediate forms:

<9,2,—2> T <5,6,-2> = <—2, 65>
<-2,2,9> 1t )

<-3,4,5> <5,4,-3> — <—3,2,6>

f J

<6,2,-3> «— <1,8,-3> <= <-3,8,1> — <-10,6,1>
<-15,4,1>
<-18,2,1>
<-19,0,1>
<1,0,-19>
<1,2,—18>
<1,4,—15>
<1,6,—10>

U AU A A A

<-9,2,2> :’— <-5,6,2> = <2,6,-5>
<2,2,—-9> i [} ,
<3,4,-5> <-35,4,3> — <3,2,-6>
f 4 _
<-6,2,3> — <-1,8,3> < <3,8,-1> — <10,6,—1>
<15,4,-1>
<18,2,—1>
<19,0,-1>
<-1,0,19>
<-1,2,18>
<-1,4,15>
<-1,6,10>

[ A A A A

b




89

Example 7.3. Let m = 26, so A = 104. Here hf = hy = 2. The continued

fraction expansion of w; =

§j’—2\21@ is [m]

8§ 8 218
w=8+2V2104< 2 5 52
71 14

Since w(w;) = 1,[4],1, we have s(w;) = 1.
N e’

The continued fraction expansion of wy = ;0%.11@ is [ﬁ]

10 + v104 1010
=—T(_-) ]. ]. “e
[10[10] .. |

Since w(w;) = [10], we have s(ws) = 1. There are two cycles of reduced forms (in
= :

boldface) to which are attached the intermediate forms:

<-11,4,2>
<—13,0,2>
<2,0,—13>
<2,4, -11>

<-5,8,2> = <2,8 —5>

: f Y
<5,2,—5> <-5,2,5>
fr 4

<-2,8,5> < <5,8 —2>

<11,4, -2>
<13,0, —2>
<=2,0,13>

<-2,4,11>




<1, 10,

|
<10,8,—1> «— <1,10,
<17,6, —1>
<22,4,—1>
<25,2, —1>
<26,0, —1>
~1,0,26>
25>
22>
17>
10>

t1 11111111

<-1
<-1,2,
<-1,4,
<-1,6,
<-1,8,

-1> = <-1,10,1>

1> & <-1,10,1>

|
<-10,8,1>

<—17,6,1>
<—22,4,1>
<—25,2,1>
<—26,0,1>
<1,0,—26>
<1,2,-25>
<1,4,-22>
<1,6,—17>
<1,8,—10>

U A A AR A A A

Example 7.4. Let m = 33, so

A = 33. Here h} = 2 and ha = 1. The continued

fraction expansion of w = §i2i13_—§ is [5,2,1,2]:
: : 5 5 3 3|5
w=5*2"/1§<__» 12 3 2[1 ..
) 5 2 1 2[5 ... |

Since w(w) = 2,- 2, 15|, we have s(w) = 0. There are two cycles of reduced forms

-
(in boldface) to Wh.lCh are attached

the intermediate forms:

)

<4,1,-2> — <1,5

<-2,3,

> = 3,3,-2> — <-2,1,4>
4

,—2> & <-2,5,11> <—6,3,1>

<-8,1,1>

<1,1,-8>

<1,3,-6>

N

90
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$<2,3,-3> = <-3,3,2> — <21 —4>
fr U

<—4,1,2> «— <-1,5,2> « <2,5,-1> <6,3,—1>
<8,1,-1>
<-1,1,8>
<-1,3,6>

Example 7.5. Let m = 41, so A = 41. We will see h{ = ha = 1. The continued

fraction expansmn of w= g_%;l@ [5 1,2,2, 1]

5 5 3 5 3|5
w=-5;‘iﬁ<_,142241...
' [6 1 2 2 1[5 ...

Since w(w) = 2, 1,, 1,2, we have s(w) = 0. There is only one cycle of reduced forms
N

(in boldface) to which are attached the intermediate forms.

<-8,3,1> <-4,5,1> = <1,5,—4>
<-10,1,1> T I -
<1,1,—-10> <2,3,—4> <—4,3,2> — <2,1,-5>
<1,3,-8> T U
<-51,2> — <-2,5,2> <2,5,-2> — <5,1,-2>
ft Y
<=2,1,5> «— <4,3,-2> <-2,3,4>
f Y
<-1,5,4> <« <4,5,-1> <8,3,—1>
<10,1,—-1>
<-1,1,10>
<-1,3,8>




92

References

[B] Buell, D. A., Binary quadratic forms, Springer-Verlag New York Inc., (1989),
x+247 pages. : o

[D-L] Dubois, E. and Levesque, C., Formes quadratiques semi-réduites, fractions
continues et nombre de classes, to be submitted to L’Enseignement Mathématique.

[F] Flath, D. E, Introduction to number theory, John Wiley & Sons, (1989),
xii+212 pages.

[Lu] Lu, H., On the class number of real tjuadmtic fields, Scientia Sinica II (special
number, 1979), 118-130.

[M] Mollin, R., Quadratics, CRC Press, Boca Raton, xx + 387 pages.

Claude LEVESQUE

Département de mathématiques et de statistique
Université Laval

Québec

Canada

G1K 7P4



