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Hasse principle and approximation theorems for
homogeneous spaces
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Introduction

The purpose of this note is to give a survey of M. Borovoi’s work on
Hasse principle and approximation theorems for homogeneous spaces [B2] ~
[B6). An ingenious tool to study such arithmetic is abelianization of Galois
cohomology of affine algebraic groups [B1]. |

For principal homogeneous spaces, this theme is, in the algebraic aspect,
the theory of Galois cohomology of affine algebraic groups, which has been
developed by Borel, Serre, Tate, Voskresenskii, Kneser, Harder, Platonov,
Chernousov etc ( [BS], [T], [V], [Knl-4], [Harl,2], [P], [Ch] etc). A basic

~ reference is the book by Platonov and Rapinchuk [PR]. Sansuc [Sa] discussed
these stuffs in light of the brilliant idea using the Brauer-Grothendieck group,
introduced by Manin [Mal,2] for Hasse principle and by Colliot-Théléne,
Sansuc [CTS] for weak approximation. The problem here is the uniqueness
of the Brauer-Manin obstruction.

On the other hand, Kottwitz [Kol 2] showed some analogles for reduc-
tive groups to duality theorems for Galois cohomology of abelian algebraic
groups. He described the results in terms of the Langlands dual group G.
Since the correspondence G — G is not functorial in G, his duality theo-
rems were stated in the category where the morphisms are normal. Borovoi
[B1] reconstructed Kottwitz’s results, based on the theory of non-abelian hy-
percohomology with coefficients in crossed modules, and described them in
functorial manner using the algebraic fundamental groups. So, the results
are naturally expected to be applied to some arithmetic questions on ho-
mogeneous spaces. Moreover, since the Picard group of an affine algebraic

~ group is expressed by the algebraic fundamental group, we can describe these
cohomological results in terms of the Brauer-Grothendieck group. |

In this note, I tried to explain the technical background of abelian Galois
cohomology rather precisely, and roughly touched the Brauer-Manin business
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which I hope to write up precisely in the future.

It is a pleasure to thank Takao Watanabe for useful conversations on this
topic. I am also grateful to Prof. M. Borovoi for answering my questions.

Notations. Let k be a field of characteristic zero. We denote by & an fixed
algebraic closure and by Iy the Galois group of k/k. For a connected affine
k-group G, G* is the unipotent radical, G™® = G/G*, G** is the derived
group of G™?, G*¢ is the simply connected covering of G%, G* = G/Z, Z is
the center of G. When k is a number field, V;, = V is the set of all places of
k, Vs (resp. V) is the set of all finite (resp. infinite) places of k. Forv € V,
k, denotes the completion of k at v. For a finite subset S of V, kg = [T,cg kv
and AS is the ring of adeles without S-components, the adele ring of k is
A = kg x AS. The cohomology class of a cocycle c is denoted by Cl(c).

1. Quadrics

Let @ be a non-singular quadratic form in n variables over a number field
k. Consider the affine quadric

X ={z; Qz) =a} (a€kX)
Hasse Principl;e : X(k) # @ or Tlyey X(ky) = ¢.

Weak approximation with respect to S: For any finite set S of places of
k, the diagonal image of X(k) in X (ks) is dense.

Strong approzimation with respect to S: There i3 a finite set S of places
of k, the diagonal image of X (k) in X(AS) is dense.

- The Hasse principle for a quadric over any number field was proved by
Hasse [Has]. The weak approximation property follows from that X is ra-
tional over k. On the other hand, the strong approximation property has
the group theoretic and arithmetic nature. To see this, write X = H\G
for n > 2, where G is the spinor group of Q. Then, as we shall see in 4.3,
we can take, as S, one finite prime for n > 4, and one finite prime which
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is inert or ramified in K/k for n = 3 where K is a splitting field of the torus H.

With this classical example in mind, our interest is when these proper-
ties for a homogeneous space of an affine algebraic k-group, especially, of a
semisimple, simplyconnected k-group, are satisfied. What can we say about
" the obstructions ?

2. Algebraic fundamental group and abelianization of Galois
cohomology

We recall some ingredients in Galois cohomology of affine algebraic groups
to study arithmetical properties of homogeneous spaces. A basic reference is
Borovoi’s article [B1].

2.1. Let G be a connected affine k-group, k being a field of characteris-
tic zero. First assume that G is reductive. Let G** be the derived group
of G and G*¢ the simplyconnected covering of G*° over k. Consider the
composition

p: G*¥ — G*” CG.

Let T be a maximal torus of G defined over k and set T°¢ = p~}(T). We
then define .
| m(G) = X.(T)/p X.(T*)

where X, denotes the cocharacter group of a torus. It is easy to see that I'y-
module 7;(G) does not depend on the choice of T'. For a connected k-group
G, we set m1(G) = m;(G/G") and call it the algebraic fundamental group of
G. Then my(-) is an exact functor from the category of connected affine k-
groups to I'y,-modules generated finitely over Z. We see that an inner twisting
does not change my, and if £ C C, m;(G) is isomorphic to the topological
fundamental group of the complex Lie group G(C) as abelian groups. Let
Z(G) be the center of the connected Langlands group G of a connected
reductive group G. Then, m(G) and the character group X*(Z(3)) are
isomorphic as I'y-modules.
Next, we define the abelian Galois cohomology of a connected reductive
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k-group G by -_ |
H:(k,G) = H'(k,T* - T) (i>-1)

Here, H* means the Galois hypercohomology of the complex
0-T*—=>T—0

where T is in degree -1 and T is in degree 0. Noting that X,(T%¢) —
X.(T) — m(G) is a short torsion free resolution of 71(G) and that S(k) =
X.(S) ®k for a k-torus S, we see that Hi;(k,G) depends only on I'y-module
m1(G). For a connected k-group G, we set H:, (k,G) = Hi (k,G/G*). On
the other hand, for a connected reductive k-group G, p : G** = G is a
crossed module where the action of G on G* is given via G — G* =
(G*)*4 C Aut(G*°). So, we can define, in terms of cocycles, the non-abelian
hypercohomology
H'(k,G* = G)
forz = —1,0, 1 in functorial way. Using the morphism (1 — G) — (G*¢ — G)

and the quasi-isomorphism (7°%¢ — T) — (G* — G) of crossed modules, we
define the abelianization maps

ab': Hi(k,G) — Hiy(k,G)

for ¢ = 0, 1. For a connected k-group G, the abelianization maps are defined
by the composition

H'(k,G) — H'(k,G/G*) ™ Hi;(k,G/G") = Hiy(k,G)

For the center Z of G and Z*¢ = p~!(Z), we see that (Z°¢ — Z) — (T*¢ — T)
is a quasi-isomorphism and so H:,(k,G) = H!(k, Z* — Z).

Example. Let Gbeasemlslmple k-group. Then, m(G) = Kerp(-1), Ha,,(k G) =
H*(k,Kerp) and ab, i = 0,1 are connectmg homomorphlsm attached to
the exact sequence 1 — Kerp — G*¢ 5 G — 1.

2.2. We recall non-abelian H? and its abelianization. The references are [B5]
and [Sp]. Let G be a connected affine E—group Let SAut(G) denote the group
of semi algebraic automorphisms of G and set SOut(G) = SAut(G) /Int(G),
Int(G) is the group of inner automorphisms of G. Let L = (G, k) be a
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k-kernel, where k : Iy — SOut(G) is a homomorphism satisfying certain
conditions. A 2-cocycle with coefficient in‘ L is a pair (f,u) of continuous
maps |

[ :Tx — SAut(G), f mod Int(G) = &,

u:T x Ty — G(k)

satisfying 2-cocycle conditions.
The Galois cohomology set H2(k, L) is defined to be the quotient of the set of
all 2-cocycles under the action of the group of continuous maps I'y — G(k).
A neutral element of H2(k, L) is the class of a cocycle of the form (f,1). A
typical example of k-kernel is given as follows. Let G be a k-group. Each
o induces a semialgebraic automorphism fg(o) = 0, of G = G ® k. Set
ke = f¢ mod IntG. Then, (G,kg) is a k-kernel and the class of (fg,1)
determines the neutral element n(G) in H*(k,G, kg). In fact, it is shown
that any neutral element in H?(k, L) is of the form n(G) for some k-form G
of G.
Our aim is to construct an abelian group H2,(k, L) and a map ab? : H*(k, L) —
- H%/(k,G) having the property that 5 € H?(k, L) is neutral if and only if
ab?(n) = 0. In fact, it is possible when k is a local or a number field.

Assume G is reductive and let p : G~ — G C G be the composition
map. Note that & defines k-forms Z, Z** and Z* of the centers of G,G
andf?sc, respectively. We then define the second abelian Galois cohomology
group by | o

H>(k, L) = H*(k, Z°° — Z)
where we regard Z*¢ — Z as the complex of I'y-modules with degree -1 for
Z*¢ and 0 for Z. | |
To define ab?, we need two facts. First, the abelian group H2(k,Z) acts on
H?*(k, L) by Cl(p) + CIl(f,u) = CI(f,pu). It is shown [Sp] that the action is
simply transitive. The second one is Douai’s theorem [D] which guarantees
the existence of a neutral element in H?(k, L). So, for z € H*(k,L) and a
neutral element y € H2(k, L), there is a unique element z € H2(k, Z) such
that x = z + 1. The short exact sequence of complexes
1-(1-2)-(2%—>2)>(Z2*—>1) -1

gives rise to the exact sequence

oo s HA(K, Z%) 25 H2(k, Z) * HO,(K,L) — -+
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We then define the abelianization map
2 . H*(k,L) — H%(k,L)

by ab?(x) = i,(z). It is checked the definition does not depend on the choice
of n. For a connected k-kernel L, H%(k, L) and ab?® are defined in the similar
way as in the case H!

Now, suppose k is a local or a number field. Assume that ab?() = 0,
nE Ha(k L). Then, there is a k-form G of G so that 7 — n(G) = p.(x) for
some x € H*(k,Z "") By Kneser and Harder, x comes from H(k, (G’"“)‘"’) =
H'(k,G*®) under the connecting map. It yields 7 is neutral.

Theorem 2.2.([B5]) Let k be a local or a number field. Let L = (G, k) be a
connected k-kernel. Then, n € H*(k, L) is neutral if and only if ab?(n) =

3. Kottwitz-Borovoi duality and Hasse principle for H?

3.1. Let G be a connected reductive k-group. By definition in 2.1,
Hgy(k,G) = H'(k, T* — T) = H'(k, (X.(T*) - X.(T)) ® k7).

So, the computation of abelian Galois cohomology for a local or a number
field & is essentially Tate-Nakayama theory. The surjectivity of ab! below is
proved using fundamental tori and all main results of Galois cohomology of
affine algebraic groups.

Theorem 3.1.1.([Ko2|,[B1]) Let G be a connected affine group over a local
field k of characteristic zero. Then, the map ab® is surjective and functorial
n G.

If k 1is nonarchimedean, ab! is bijective and there is a canonical, functonal
in G, isomorphism

H;b(k, G) = Wl,(G)I‘k,tors

where the r.h.s is the torsion subgroup of the coinvariant quotient of m1(G)
under I'y.
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If k = R, there is a canonical, functorial in G, isomorphism
HY(R,G) ~ H'(R,m(G)) = H™'(R,m(G)).

When k is a number field, the 1st non-abelian Galois cohomology can be
computed in terms of abelian and real cohomology.

Theorem 3.1.2.([Bl]) Let G be a connected affine group over a number
field k. Then, we have a commutative diagram

H(k,G) L HL(k,G)
locy | loce, |

1
I Bk,0) =% ] Hyk.C)
v€Vo vEVo

where all the maps are surjective.

By Theorem 3.1.1, for each v € V, we have a cé.nonical, functorial in G,

map
Hv - Hl(k!nG)v - 7rl(G’)I‘k‘,,f‘”"’

Composing it with the corestriction
Ay 1 M (G)I‘kv,tors ——+' ™ (G)l"k,tors
and taking the sum, we get |
[T EBvele(kv,G) — Wl(G)r,,,tors-

Let loc : H l(k, G) — @pecvH'(ky, G) be the localization map. Then we
have the following global duality.

Theorem 3.1.3. ([Ko2],[B1])
H(k,G) £ @vevH (ko, G) -5 m(G)rystors

i3 exact and functorial in G.
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3.2. Let L = (G, k) be a connected k-kernel. Then s defines a k-form

Gtr of G = '-C—fed/C’”. Let Z,Z%% and Z*¢ be as in 2.2. The short exact
sequence of complexes

1= (25 2%) (2> 2) - (1-G") -1
gives the exact sequence
o = H3(k,Kerp) — H2,(k, L) — H*(k,G*") — -

So, if k is a nonarchimedean local field, we have the inclusion H%(k, L) —
H?*(k,G""). Theorem 2.2 and Tate-Nakayama duality yields the following

Theorem 3.2.1. ([B5]) Let L = (G, k) be a connected k-kernel, where k
s a nonarchimedean local field of characteristic zero. Assume that G*°T is
k-anisotropic. Then, any element of H%(k, L) is neutral.

Now suppose k is a number field. By [B1], H3(k, L) is the fiber product
of H*(k,G'*") and [yey, HZ(kv, L) over [Tyey, H?(ky, G'"). By Theorems
2.2, 3.2.1, we have the Hasse principle for H?

Theorem 3.2.2. ([B5]) Let L = (G,k) be a connected k-kernel where k
s a number field. Assume |

Ker®(k, G") := Ker(H?(k, G*") — [ H2(ky,G*")) = 0.

vey

Then n € H*(k, L) is neutral if and only if loc,(n) € H?(ky, L) is neutral for
allveV.

4. Hasse principle and approximation theorems for homoge-
neous spaces. Cohomological obstructions

4.1. Hasse principle. Let X be a homogeneous space of a semisimple, sim-
plyconnected group defined over a number field k. Fix z € X (k) and assume
the stabilizer H of z is connected. For o €I}, suppose 2° = g4, go € G(k)
Set

f(o) = Int(g,) o0, k= f mod Int(H).
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Thus we get a k-kernel L = (H, k). Let H*" be a k-form of H™" defined by .
After Springer [Sp], consider the element n(X) = CI(f,u) € H?*(k, L) defined
by Usr = gor-° gy -g; ! which is the obstruction to the existence of a principal
homogeneous space over X. Namely, 7(X) is neutral if and only if there is
a principal homogeneous space, defined over k&, over X. On the other hand,
we know a cohomological criterion 3.2.2 for 17(X) to be neutral. Thus we have

Theorem 4.1. ([B5]) Notation being as above, assume Ker(k, H®") = 0.
Then the Hasse principal holds for X.

Example 1. ([Ha2]) A projective homogeneous space of semisimple simply-
connected k-group, i.e. H is a parabolic subgroup.
In fact, H'*" is a quasi-trivial torus.

Example 2. ([Ku]) A spherical affine homogeneous space of a semisimple,
simplyconnected k-group.

For an indecomposable affine homogeneous space, dimH*" < 1 from the
~ classification of such spaces (|Br],[Kr]).

4.2. Weak approximation. Let X be a right homogeneous space of a con-
nected k-group G. Assume that X has a rational point z and the stabilizer
H of z is connected. Let S be a nonempty finite subset of V. Assume that
G is semisimple and simplyconnected for simplicity. Then it is easy to see
that X (k) is dense in X (ks) if and only if X (ks) = X (k)G(ks). Hence, we
are led to study the image of the map

X(K)/G(k) — X(ks)/G(ks).

This is done using Theorem 3.1.3 and the following commutative diagram
with exact columns:

X(k)/G(k) — X(ks)/G(ks)

Nl ’ ni
H'(k,H) — H'(ks,H)
1 !

H'Yk,G) — H'(ks,G)
Using the notations in 3.1, we set |

C'(H) = the image of @,cvd,, C5(H) = the image of @ygsAy
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Then the obstruction is the group

C'(H)/CS(H) =~ Cok(Hl(k, HY) —»"Hl(ks,H?"'))' —: Cokl(k, H*")

Theorem 4.2. ([B3]) Notations and assumptwns being as above, X has the
weak approrimation propeerty with respect to S if and only if Cokg(k, H'") =
0.

Example 1. Let K be a splitting field of H'°". If any local extension Ky/ky,
wlv € S, is cyclic, X has the weak approximation property with respect to
S. In fact, Cokg(k, H*") = 0 by Tate-Nakayama duality.

Example 2. A projective homogeneous space of a semisimple, simplycon-
nected k-group.

Example 3. A spherical affine homogeneous spacé of semisimple, simply-
connected k-group.

4.3. Strong approzimation. Let X,G,H and S be as in 4.2. We assume
that G has the strong approximation property w1th respect to S. By Kneser
and Platonov, it is satisfied if and only if

l) Gred Gse

ii) For any SImple k-factor G; of G™4, G;(ks) is non-compa,ct

Then it is easy to see that X has the strong approximation property with
respect to S if and only if X(AS) = X(k)G(AS). Assume further S C V¢
and define Cg(H) to be the image of @ycs),. The obstruction is

C'(H)/Cs(H) ~ Cok(H"(k, H*") — H'(AS, H**")) =: Cok"S (H'"")

Theorem 4.3. Notationa and assumptions being as above, X has the strong
approzimation property with respect to S if and only if Cok(k, H*T) = 0.



112

Example 1. Let K be a splitting field of H*", finite Galois over k, and
G, denotes the decomposition group of a chosen w|v € V in K/k. If for any
v &€ S with G, # 1, there is v/ € S such that G, = Gy, then X has the strong
approximation property with respect to S. A particular case is that K/k is
cyclic. A sufficient condition for a quadric to have the strong approximation
property given in section 1 follows from thls

- Example 2. A spherical homogeneous space of an absolutely almost sim-
ple, simplyconnected k-group has the strong approximation property with
respect to S, #S > 1..

5. Brauer-Manin obstruction

Let X be a smooth variety defined over a field k. The Brauer-Grothendieck
group Br(X) is defined to be the group of certain equivalence classes [A] of
sheaves of Ox-algebras, locally free as ()x-modules such that A ®g, k(z) is
a central simple algebra over the residue field x(z) of any z € X ([G]). So,
we have the pairing

X(k) x Br(X) — Br(k); (z,b) — b(z)

defined by b(z) = [A ® k(z)] for b = [A].
Suppose k is a number field. We set

Br,(X) = Ker(Br(X) — Br(X ® k))/Im(Br(k) — Br(X))
For a finite subset S of V, set

B3(X) = Ker(Bra(X) — [[ Bra(X ® ky))
vES

Bs(X) = Ker(Bra(X) — [] Bra(X ® k.))
v¢dS ‘

B,(X) = UsBs(X).

By local, global classfield theory, we have an exact sequence
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*) 0 — Br(k) — @ocvBr(ky) 25, frme Q/Z — 0

Hasse principle: By (*), we have the following well-defined pa.iring
[T X(ko) x Bu(X) = ((z0),) — Zznv,,b(:c,,)

vEY
which is zero on X (k) x B,,(X). Here we simply use b(a:,,) for b(z,,) for a repre-
sentative b € Brq(X) of b. Let ([T, X (kv))? denote the set of (z,) € [T, X (kv)
such that Zv invyb(z,) = 0 for all b € By(X).

We say that the Brauer-Manin obstruction to the Hasse principle for X
is unique if ([T, X (k,))? # ¢ implies X (k) # ¢.

Weak approzimation with respect to S: Suppose there is z € X (k). Then
we have the following continuous pairing which does not depend on the choice
of z;

X(ks) x Bs(X) = Q/Z ; ((zv),b) — Zs(inv.,(b(:cv)) — invy(b(z)))

which is zero on X (k) x Bg(X), where X (k) is the topological closure of
X(k) in X(kgs). Let X(ks)® be the left kernel.

We say that the Brauer-Manin obstruction to the weak approximation
with respect to S for X is unique if X (ks)? = X(k).

Strong approzimation with respect to S: Suppose there is z € X (k). Then
we have the following continuous well-defined pairing (cf [Sa, 6.2])

X(AS) x BS(X) = Q/Z ; ((z0),0) = 3 (invy(b(z,)) — inv,(b(z)))
: vgS

which is zero on X (k) x B5(X), where X (k) is the topological closure of
X (k) in X(AS). Let X(AS)® denote the left kernel.

We say that the Brauer-Manin obstruction to the strong approximation
with respect to S for X is unique if X(AS)B = X (k).
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Now let X be a homogeneous space of a connected affine k-group G and
S is a non-empty subset of V.

Theorem 5.1.([B6]) Let T € X (k) and assume the stabilizer of T is con-
nected. Suppose [ cp X (kv) # ¢. Then, the Brrauer-Manin obstruction to
the Hasse principle for X is unique.

Theorem 5.2.([B6]) Assume there is z € X (k) and the stabilizer of z 1is
connected. Then, the Brauer-Manin obstruction to the weak approzimation
with respect to S for X ts unique.

Theorem 5.3. Assume that there is © € X (k) and the stabilizer of T is
connected. Assume further that S C Vy and the strong approzimation prop-
erty with respect to S for G holds. Then, the Brauer-Manin obstruction to
the strong approzimation with respect to S for X is unique.

To prove Theorem 5.1, 5.2, note that we may assume G*** is simply-
connected ([B6 5.1]), G*** = Ker(G — G'"). Then we use the fibration
X — X/G*** to reduce to the case of a homogeneous space of a torus or sim-
plyconnected group. The latter cases were already treated by Voskresenskii,
Sansuc and Borovoi. For more details, consult [B6}

Assume G is semisimple and simplyconnected. As Borovoi showed for the
weak approximation in [B3], we can express the cohomological obstruction
Cokg(k, H*") in terms of the Brauer group of X, owing to the isomorphism

1 (H)ry tors = Pic(H)? = dual of Pic(H)

for a connected affine k-group H and relating the Picard group with Brauer
group by Sansuc’s sequences [Sa,6.c]. The similar argument also works for the
strong approximation property under certain assumptions and yields Theo-
rem 5.3.
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