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ON THE LARGEST NONTRIVIAL
'POLE OF THE DISTRIBUTION |f|°

J. DENEF, A. LAEREMANS AND P. SARGOS

1. Introduction

Let f € R[zy,...,2z5] be a polynomial which is non degenerate (over R) with respect to
its Newton polyhedron I'(f) at the origin (see [AVG] and [DS1,1.1]). Assume also that
f(0) = 0 and that 0 is a critical point of f. Fix n € (N\ {0})" and let ¢ : R™ — R be
a C'™ function with compact support contained in a sufficiently small neighbourhood of
0. We are interested in the integral

25) = [ Il p(e)da,

for s € C,Re(s) > 0, where 271 = w?l_lw;"z_]...;v:i"—l with n = (91,..,7). It is
well-known that the function s — Z(s) has an analytic continuation to a meromorphic
function on C which we denote again by Z(s).

Put 59 = ;—01 where ¢y € R is the smallest value of ¢ such that ¢ty € T'(f). Denote by 7
the intersection of all facets of I'(f) which contain ¢¢7, and let pg be the codimension
of 7o in R*. We will always suppose that sq ¢ Z. ‘

It is well-known [V2, 1.4] that all poles of Z(s) are real and < s, except possibly
some poles which are integers. (These exceptions do not “contribute” to the asymptotic
expansion of [o, o(z)e*™ /(g1 dz for T — +o0 cof. [V2, 0.4], and we consider them
as “trivial”). Moreover if Z(s) has a pole at s¢ then its multiplicity is < pg,

see [V2, 1.4] and [DS1, 1.3]. ‘ :
One expects that “usually” sy is a pole of Z(s) with multiplicity py for suitable ¢, but
there are however exceptions as is shown in [DS2, § 6.2]. It is an open problem to
determine these exceptional cases. ,

Instead of working with Z(s) we will often consider the integral

1) = [ 1@l (oo

for s € C, Re(s) > 0, where Ry = {t € R|t > 0}; Z(s) and I(s) being related as explained
in [DS1,1.16]. The function s — I(s) has an analytic continuation to a meromorphic
function on C which we denote again by I(s). Similarly as for Z(s), if I(s) has a pole
at so then its multiplicity is < pg. :




The principal result of this paper is a formula (Theorem 2.1) for lnn (Q —50)P°I(s). As

a consequence of this formula and [DSQ §6 2] we obtain in §5 the followmg result which
was conjectured in [DS2, Conjecture 3] :

Theorem 1.1 Suppose that the face 7o 1s unstable. If Z(s) has a pole at so then its
multiplicity 1s < pyg.

As in [DS2, §1] we call a face 7 of I'(f) unstable if there exists an index j (1 < j < n)
such that the following two conditions are satisfied :
(1) 7 C {(a1,.r,,) ER*M0< ; <1} and 7 & {(aq,..., ) € R?|a; = 0},

and

(ii) for each compact face o of I'(f) contained in 7 N {(a,...,a,) € R™|a; = 1}, the
polynomial f, does not vanish on (R\ {0})", where f, is defined as follows :

For any face o of I'(f) we put fo := 3 c,ann @at®, Where f(z) = 3 cyn Ga®.

We tried for a long time to prove Theorem 1.1 by using only the methods of [DS2], but
we never succeeded in this way.

The authors of the present paper first proved Theorem 2.1 by using methods of [DS1]
and [S]. But here Theorem 2.1 is proved by using toroidal resolution of singularities and
ideas of Langlands [La]. Some more details can be found in [L].

2. Statement of the principal result

Let Fi,...,F; be the facets of I'(f) that contain ¢on. Let £ép, be the vector, with com-
ponents relatlve prime in N, orthogonal to F;, and let Ng, be min{(z, {F, )|J; e(f)}.

Put 79 = Yoo Rikp,.

After a permutation of the coordinates we may assume that the standard basis eq, ..., e,
of R” satisfies R® = 70 + Zl po-t1 Re; and e;41,...€, are those among ey, ..., e, Whlch

0
are parallel to 7y, where 79 is the vectorspace spamled by 7¢.
Let K be conv{0, i, ,ﬁ,—?’—, €po+1y -+-€n }, Where conv indicates the convex hull. 'We
denote by Vol(K) the volume of K. '

Theorem 2.1. With the above notation and assumptions, we have that

§— 8

(2.1.1) lim (9 — 89)P° / 1f(@)) 2" Yo(x)dx
L
equals

n—p

(2.1.2) .

i—1
H y;h dypo-f-l A Ndyy.
J=potl

n! Vol (K) PV/ 0|f,.0(1,...,1,yp0+1,...,yn)]3°c,o((),...,O,y,,l+1,...,yn)



Here the Principal Value Integral PV fRi—po ... 18 by definition the value at (s9,0) of the

meromorphic continuation to C? of the function

I(s,0) := /}R"“’O [Fro (1, oy L Ypotts oo Un) 1700, o5 0, Yimg 1y ooy Yn )
+

(2.1.3) n m
: ;-1 ' —¢
H y;-” H (y;" + D)7y, A e A dyn,
j?ﬁo+1 J=pot+1 ,
Re(0)

defined for Re(s) > 0 and Re(s) sufficiently big. This meromorphic continuation to C?
ezists and s indeed holomorphic at (s9,0). Moreover if so > —1, then the integral in
(2.1.2) converges absolutely and equals its principal value (i.e. the value at (sg,0) of the
meromorphic continuation of I(s,X)).

Theorems 1.1 and 2.1 remain valid with |f| replaced by fy := max(f,0) and fy,
by (fro)+. Indeed the proofs remain the same. If 79 is simplicial and if each term in
fry corresponds to a vertex of 7y, then we moreover obtained, by using Theorem 2.1,
an explicit formula for lim,_,s (s — $9)?°Z(s) in terms of special values of the gamma
function (see [L].)

3. Toric manifolds

Let L be a lattice in R", for example Z". A cone A in R" is called L-simple if it is
generated by a set of vectors which are part of a basis for L. Let F be a fan (see [AVG,
p. 192- 193 ]) consisting of L-simple cones in R™ (i.e. a L-simple fan). To the pair
(L, F') one associates in a canonical way a real analytic manifold X, g (called the toric
manifold associated to L, F) see [AVG, p. 193-196]. Each n-dimensional cone A € F
yields an open subset Uy g a of X1 g which is a copy of R" (called a standard chart!),
and each ordered basis {&1,...,£,} of A yields affine coordinates (y1,...,y,) on U L.F.A
(called the standard coordinates associated to. the basis {{1,...,£,}). A fan F} is finer
than a fan F3 (notation Fy < F), if each cone of F} is contained in a cone of F,. To fans
F < F' and lattices L C L' in R™ one associates in a canonical way an analytic map
Xrp— Xy, (see [AVG, p. 197] when L = L'). Even when L is not contained in L/,
there is a natural map 7 : X p(Ry) — X1/ p/(R4) which is given on corresponding
charts by monomials with nonnegative rational exponents. (With X g(Ry) we mean
the set of points on Xy, r which have nonnegative standard coordinates). More precisely
let A€ F,A" € F', be n-dimensional with A C A" and let {1, ...,&,}, resp. {&,..., €'}
be ordered sets of generators for A, resp. A’. Then the restriction of the natural map =
to Uy ra takes values in Uy pr ar and is given in the standard coordinates (associated

to {€1,...,6a}, resp. {€1,...,€,1) by v = [[iey y;? for j =1,...,n, where ¢;; is given by
i =D <)

1The standard charts cover the manifold X L,F



4. Proof of Theorem 2.1

o . . . . .
We assume that 7o is Z™-simple. The general case is left to the reader and is obtained
. . R o . .
by making a sum over the cones in a subdivision of 7¢ in Z"-simple cones. For ease of
notation we also suppose that n = (1,1,...,1).

Let Ly = Z"™ and F} be a Ly-simple fan subordinated (in the sense of [AVG, p. 199]) to
the Newtonpolyhédron I'(f) of f at 0. Then the natural map 7 : Xp,,r, @ R*isan
embedded resolution of singularities of f in a neighbourhood of the origin in R™ [AVG,
p. 201 Théoréme 2].

Varchenko [V2] has studied the meromorphic continuation of fp, |f|*¢-27~'dx by using
the resolution 1, pulling back the integral by ;. We assume the reader is familiar with
this work. '

Next we define the closed submanifold Y of X, g, (with codimension pg), by requiring
for every n-dimensional A € F; that

U, roaNY =¢, if7g €A
Up, ri,aNY = locus (y; =y = ... = y,, =0), if 70 C A

where (y1, ..., yn ) are the standard coordinates associated to an ordered basis {{1, ..., &, }
of A with &;,...,&p, € 7o. It is easy to verify (and well-known in the theory of torie
varieties [Da, 5.7] and [F, 3.1]) that Y = X, p, where the lattice Ly and the fan Fp
in R®"770 are constructed as follows : Let 14:’1 be the set consisting of all A € Fy which
contain 7. Then the lattice L, and the fan F, are obtained by projecting Ly and F 1
parallel to 7§ onto Repo+1+...+Re,, =R™77P°. Note that the cones of ) are Lq- simple.

Put Ly = Zeyo41 + ... + Ze,, C R*7P° and let Fy be the fan in R"77° consisting of all
octants (i.e. all the connected components of (R \ {0})"~ p°) Then X, r, = (P§)" %,
where P denotes the real 1)1()JPCt1VP line. ‘

By reﬁmng the fan 7 we may suppose that 5, < F3. Then there Is a natural map

T2 Y(R+) = XLZ’F2(R+) - XL3>F3(R+) = (P’}&F)n—po,
as explained iil 3. (Here Pﬂh = P} \ { the negative real numbers }.)

We are going to study the meromorphic continuation of the integral I(s, £) in (2.1.3) by
pulling it back through 7 to an integral on Y(R. ).
Let v on (Pl )P0 be given by

Y= If,-o(l o ?"’P0+13 . .,Zn)[b‘O(’O(O,...,0,Z7n+l,...,Z,l)ld2p0+1 AN dZnI,

where z,,41,..., 2, are the standard affine coordinates on R*7°°, and put

m

hi = |fro(1,.., 1, 2p041, oes 2n)| and hy := H (,, +1)”
J=pot1



Note that I(s,0) = fR:—po [ha]*%0 |hy|ty = fY(R.,_) |y o mp|57%0 | hy o ma [P 13 ().

= . . . 0
Let A € Fy be n-dimensional and generated by 1, ..., &, with &;,...,&,, € To.
Put N; = min{(z, &)z € T'(f)} and v; = sum of the coordinates & ; of &. It is a
straightforward excersise to verify that on Y N Uy, p, o we have

T2, yslmi (el f]*0lda])
|dy1 A A dypol

PO
(*) (n! Vol (K) [ Ni)m3(v) =
l:-"l Y1=yY2=...=ypg =0
where (y1,...,yn) are the standard coordinates associated to {£;,...,£,}. (Note that
Niso+v;=0fore=1,...,pg.)

Formula (x) is really the key of the proof of the Theorem. It relates PV fRn—po v to
_+_

a principal value integral on Y (Ry) of the right side of (*). But Langlands’ work [La]
implies that a differently defined principal value integral on Y (R ) of the right side of
(*) equals the limit in (2.1.1). So to prove Theorem 2.1 it suffices to show that the
two definitions of the PV coincide, which is not difficult. However we prefer to give a
selfcontained proof of Theorem 2.1, without using Langlands’ theory.

From [V1, p.260] it follows that at each point P € V(R4 )NUL, p, a which is contained
in a sufficiently small neighbourhood of 7;71(0), there exist local coordinates YLy ooy YUn
on Up, r, A centered at P such that locally at P we have :

(1) yi = yi for i = 1,...,pp and for any i in {p; + 1,...,n} with y;(P) = 0; thus Y
is given by y; = ... = Yp, = 0 and the positivity of all standard coordinates on
UL, ,F,a 1s equivalent to the positivity of these y! for which y;(P) = 0.

(i) wf(IfI*1de]) = Jor*Joa] TLicy, o lWEI VT2 dyl A A dyl
where vy and vy are nonvanishing analytic functions, (N}, v}) = (N;, ;) for any i
with y;(P) = 0 and (N/,v]) € {(1,1),(0,1)} if y;(P) # 0.

71
(i11) 73(v) = (n!Vol(K) fi] NI ly! Nisotvi—1y
=0|dy:)o+1 Ao Ady .

(Jor[*°fvz|(¢ 0 m1))|

[ i
Y=Yy

This follows from (*) and (ii), and holds for any C*°-function ¢ on R™.

. _ n Ia; _ n rb; -

(iv ) [hy o ma| = |u] Hi=po+1 lyi|®, |hg 0 my| = |w] Hi:po+l lyil®,
where a;,b; € Q and u,w are nonvanishing functions with « analytic and with w
analytic in y!“ for suitable ¢; € Q,¢; > 0,7 = po+1,...,n. This follows easily from
(iii) and the nature of m,. Moreover one can take ¢; = 1 when y;(P) # 0.

Note that the exponents N;sy + v; — 1 for i = py + 1,...,n are among the numbers
(**) S0 €Z, 0, Njso+v;j—1>—1forj=py+1,..,n,
becausé Niso +v; = Niso + v; > 0 when y;(P) = 0,7 > py.

Hence we see that the integrand of I(s,£) = fY(lR+) [hq o w5720 | hy o mo|* 73 () locally
looks like the integrand in the integral J(k,¢) in Lemma 4.1 below, with k replaced by
s — 80, v by v, 8 by |va](¢ 0 m1) and (N;,v;) by (N!,v!). Because I(s,/) converges
absolutely for any compactly supported C*-function ¢ on R", whenever Re(s) > 0 and



g:ég is sufficiently big, we see that b; > 0,a; > 0if b; =0 and N.sy +v; > 0 if
ai = b; =0, for all i = pg +1,...,n. Thus by using a suitable partition of unity® on
X1, r (and the properness of 71) we obtain by Lemma 4.1 below that (2.1.1) equals
(2.1.2), and that the meromorphic continuation of I(s,¥) is analytic in (so,0). Finally
the last assertion of the Theorem follows from (##*) which implies that

fRi_pO v = fY(]R{_,.) 75(y) converges when so > —1. El

‘Lemma 4.1. Let N;j,v; € R,N; > 0,v; > 0, fori = 1,...,n. Let sp € R,50 < 0.
Suppose that Niso +v; =0 for i = 1,...,p0 < n and that N;so + v; & —N for ¢ > py.
Let 6 be a C* function on R™ with compact support, and v an analytic nonvanishing
function on a neighbourhood of the support of 8. Then

(i) the meromorhpic continuation of

(s — 30 ”0/ 6v|*® (HyN stvi— dy A ... N dy,

s holomorphic in sy with value say A.

(1) Moreover let a;,b; € R for ¢ = po + 1,...,n and let u,w be real valued functions
of Ypot1s--->Yn € R which do not vanish and which are analytic in |y;|% for suitable
c; € Qi >0 for i =py+1,...,n, on a neighbourhood of the support of 6. Consider
the integral

H yN iSo+v;— 1+aik+biﬂ)|u|k|w|l’dypo+1/\,,./\dyn-
= po+1

J(k,6) := /R_ (6]v]**)]

¥1=---=Yp

Suppose that b; > 0,a; 2 0sfb; =0 and Njsg +v; > 0 3f aj = b; = 0, for all
t=po+1,...,n. Assume that N;s¢ + v; > 0 whenever ¢; ¢ N. Then for Re(k) and
%(% euﬁiczently big, the integral J(k,l) converges absolutely to an analytic function
which has a meromorphic continuation to C*. Moreover this meromorphic continuation

is holomorphic at (0,0) with value AT]52, N;

Proof. Consider the integral

n

(8, k. €) := (5—50)" / Olv]* HyN T[T wifetr e G * lwldy, A- - -Ady.
R%

i=po+1

It 1s clear that this integral converges absolutely to an analytic function G on the open
connected set '

Dy :={(s, k,£) € C*|Re(s) > s, Re(Nis +v;+a;k +b£) > 0for i = po+1,...,n} #£0,

ZNote that lims_,,(s — s0)P0 fXLl P (Ky) 71 (|f|*|dz])§ = 0 whenever 6 is a ("°°-function with

compact support disjoint with Y.



because N;so +v; = 0 for ¢ = 1,...,pg. There exists € in R,e > 0, such that G has a
continuation to an analytic function, again denoted by G, on the open connected set

D :={(s,k,£) € C*|Re(s) > .90—6;Re(Ni.9+1/i+aik+bi€) > 0 for 2 = po+1,...,n} D Dy.

This follows from integration by parts with respect to the variables yq,. .. yYpo, to raise
the exponents of these variables. Moreover the function G on D has a meromorphic
continuation [G],. to C3. Indeed this follows again by partial integration when all ¢;
are integral and one reduces to this case by a change of variables y; = yéd with de N.
Moreover [G],. is holomorphic at (sg,0,0) because it follows from N;sq + v; ¢ —N, for
t > po, that integration by parts with respect to the variables y;, for which ¢; €N,
ralses the exponent of y; without introducing a pole at (s, 0, 0). (Note that we avoid
integration by parts with respect to the variables y; for which ¢; ¢ N. An integration
by parts with respect to one of these variables could cause problems and is not needed
because we assume N;so + v; > 0 for these i, which implies that the exponent of such
y; has not to be raised.)

We recall the following principle which follows easily from the basic properties of
meromorphic functions in several variables [GF]. Let G be a holomorphic function on a
nonempty open connected subset D of C* which has a meromorphic continuation [Glac
to C". Let L be an affine subspace of C* with L N D # 0. Then the restriction G|Lnp
of G to LN D has a unique meromorphic continuation [G|rnplec to L and [G\LnDplac 18
holomorphic at P with value [G],.(P) at each point P€ L where [G]ac 1s holomorphic.

By applying this principle with L = {(s,k,1) € C}|k = [ = 0} and P = (s,0,0), we
see that assertion (i) of lemma 4.1 is true with A=[G].c((50,0,0)).

Because of the assumption on a;, b;, there moreover exist N M in N such that

{s0} x W C D, where

W= (k) € C*|Re(k) > N, 222

> M}.

The principle above with L = {s¢} x C? and P = (50,0,0) yields that G|{so}xw has
a meromorphic continuation to L = {s¢} x C? which is holomorphic at (sg,0,0) with
value [G]4c((50,0,0)) = A. Thus to prove assertion (ii) of lemma 4.1, it suffices to prove
that Jjw equals (J]52, Ni)G|(so}xw- But since Ns + v; = Ni(s — s9) for i = 1,...,po,
this follows easily from the well-known formula

p

lim (s — 59)°° (s ) T Netemeor=1 By, = 2L0:0.,0)
s =8¢ $5Y15- -+ Ypo Hy,- yi A Ndy,, = N
0,110 = i

8—8g =1

which holds for any continuous function % on R x [0,1]Fe. O

5. Proof of Theorem 1.1

Applying Theorem 2.1 to both f and f,, we see that lim (s —50)P°Z(s) and
s—3g

$— 389

(5.1) lim (5 — s9)*° / o ()72 ()
| | .



are equal up to a strictly positive factor (which is a quotient of volumes). Hence it
suffices to prove that the limit in (5.1) is zero, i.e. to prove that Theorem 1.1 holds for
f replaced by f,,. Since all vertices of I'(f;,) are contained in 7o, this can be done by
using material from [DS2] as follows:

Proof for f replaced by fr,. We assume that 7y is unstable relatively to the index
j=n. For any vector u in R%, we denote by F(u) the set of all x in T'(f,,) where (z,u)
is minimal. Let Hy be {x € R"|z,, = 0} and Hy be {zr € R"|z,, = 1}. By using the
material of section 4 in [DS2], it suffices to prove that there exists a decomposition of

(¥)

. i .
' in cones C; spanned by {ug ) yeees Upy 15 €n } such that for every 1

(1) NZIF(uS?) #9,

=1

)

(2) at most pg -1 of the ugz are contained in ?’0,

3) for every subset J of {1,...,n-1 } the face 7 =N, F u(-i)) satisfies
. JE ]
(a) if TN Hy = 0, then 7N Hy # 0,

(b) if 7N Hy = 0 and if 7 N Hy is compact, then f;nx,) does not vanish on

(R\{0})™

To prove the existence of such a decomposition, we will construet one. We consider the
set of cones {p® N Hy|p vertex of I'(f,,)} where p° := {u € T'(f,)|F(u) 3 p} . We refine
this decomposition of R} N Hy by dividing every cone in simplicial subcones, to obtain a
decomposition (éi)ie 1- We claim that the decomposition of R consisting of the cones
C; := conv(Ci, ey) for i in I, satisfies conditions (1),(2) and (3).

Condition (1) is satisfied since the cones C; are subordinated to T (fr,)-Since 7 is unsta-
ble relatively to z,, we have that dim(7oNHp) < dim(7¢) = po which implies (2). For an
arbitrary i € I and J subset of {1,...,n—1}, let 7 be ﬂje,]F(ugz)). Since 7 is a nonempty
face of I'(fr, ) by (1), it contains at least one vertex of I'(f-,), cf. [R, 18.5.3]. Since each
vertex of T'(fr,) is contained in 79, we conclude that 7 containg at least one vertex of
To. Since 7g is unstable relatively to z,,, all vertices of 7y are contained in Hy U Hy. Let
TN Hy =, then 7 N Hy # § which proofs (3) (a). Note that 7N Hy is a face of T'(fr,).
Suppose moreover that 7 N Hy is compact, then 7 N Hy; = conv{py, ..., p,} where the p,
are vertices of I'(fr, ), cf. [R, 18.5.1]. Since each vertex of I'( fr,) is contained in 19, we
conclude that 7N Hy C 9. Assertion (3) then follows from the unstability of ro. O
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