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PRELIMINARIES FOR THE THEORY OF
PREHOMOGENEOUS VECTOR SPACES

AKIHIKO GYOJA

Department of Fundamental Scienées, Faculty of Integrated Human Studies,
: Kyoto University, Kyoto 606-01, Japan

Recently the theory of prehomogeneous vector spaces depends on more and more
various fields including (1) D-modules and their microlocal analysis, (2) algebraic
geometry, especially geometric invariant theory and etale cohomologies. Sometimes
to learn these materials needs a lot of effort, especially when the material is assumed
to be well known among experts, without references accessible for non-experts. The
subsequent notes are included here with the hope that they might be of some use
when the situation is such. These notes are written on various occasions; some are
for my personal use. Let me explain about each note.

1. On affine open subsets. Here a proof of the following fact is given in a most
general setting. A Zariski open subset U of an affine space A™ is an aoffine variety
if and only if it can be expressed as U = A™\ f~1(0) with some polynomial function

f.

2. On Matsushima’s theorem. Various proof of this theorem can be found in
the references cited at the end of this note. Unfortunately the most transparent
one is only alluded in the introduction of Richardson [Ri] as a quote from a letter
from A.Borel : “ . it is clear that the proof! given in my joint paper with Harish-

Chandra goes over verbatim in arbitrary characteristic, using étale cohomology

-7 The purpose of this note is to afford the detail.

3. On Radon transformation. In [DG, 3.3.10], we have indicated how our
Radon transformation given in (3.3.9) in loc. cit. relates to the one given in [Br,
9.13]. Here I record the detail of the proof.

4. On non-characteristic pull-back of D-modules. Without doubt, the non-

characteristic pull-back for D-modules is well understood. But I could not find a

reference except for [SKK, pp.406-418], where only a version for microdifferential

equations is given, the zero section of the cotangent bundle being excluded from
* the consideration. Here T give a D-module version with a detailed proof.

1See 3.6 of A.Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math.
75 (1962), 485 535.

Typeset by ApS-TEX



134

5. On D-modules associated to a complex power of a function. In (5.4)
of “A.Gyoja, Theory of prehomogeneous vector spaces, II, a supplement; to appear
in Publ. RIMS, Kyoto University”, I gave a lemma without proof because it seems
standard. In fact, in Ginsburg [Gi], this lemma is attributed to A.Beilinson and an
outline of the proof is given. This note is emerged from my effort to understand it.
The proof given in my note is by no means elegant nor transparent.

1. ON AFFINE OPEN SUBSETS

(1) Let A be a normal domain (i.e., a noetherian domain which is integrably closed
in its fractional field), X = spec A, Ox the structure sheaf, and U C X an open
subset. If (U,Ox|U) is an affine scheme, then X \ U is purely of codimension one.
(2) If further A is a regular ring (i.e., a noetherian domain such that every local
ring A, (p € specA) is a reqular local ring), then for each x € X, there exist
frge Asuchthat Xy NU =X;NXy andz € X5. (X5 ={z e X| f(z) #0}.)

Proof. (1) Let Z be an irreducible component of X \ U whose codimension is > 2,
and z its generic point. Then for any point € X of codimension one such that
{z} 5 2, B:=T(U,0x) C Ox,. Since A is normal, B C Ox .. Let mx  be the
maximal ideal of Ox ,. Since U = spec B is affine and since mx ., N B is a prime
ideal of B,

(3) mx,. N B =mxgN B for some z € U.

Assume that there exists 0 # h € T'(X, Ox) such that h|U = 0. Then X, NU = ¢
and X # ¢, contradicting the irreducibility of X. Hence I'(X,Ox) — T'(U, Ox|U)
is injective, i.e., A C B. Thus it follows from (3) that mx.N A = mxz N 4,
contradicting z # .

(2) follows from (1). O
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2. ON MATSUSHIMA’S THEOREM

In this note, we shall give a detailed account of the following theorem due to
‘Matsushima.

2.1.1 Theorem. Let H be a closed subgroup of a reductive group G. Then the
following conditions are equivalent:
(1) G/H is an affine variety.

(2) H is a reductive group.

‘Here we understand the quotient G/H in the sense of [Bo §6]. (In particular,
see (6.1), (6.3) and (6.8) in loc. cit.) We do not assume the connectedness for a
reductive group. Note tha_t the base field is of an arbitrary characteristic.

2.1.2. Remark. For the history of this theorem, see the introduction of [Ri]. See
also [Ha).

2.1.3. Convention We fix always an algebraically closed field k. Every variety,
say X, is assumed to be over k, and identified with the set X (k) of its k-rational
points. We write k[X] for ['(X, OX)

2.2. Proof of (1)=-(2).
2.2.1. Let [ be a prime number, # char(k). For any variety X over k, put
m(X) := max{i | H*(X, Q;) # 0},

where H* is the [-adic étale cohomology.

2.2.2. Lemma. For a linear algebraic group G, we have m(G) < dim G, and the
equality holds if and only if G is reductive. :

Proof. We may assume that G is connected.
(I) First assume G reductive. Then

H*(G, Q) = A*(I(Sym*(X ® Q,(~1)[-1))")),

[De, 8.2], and hence m(G) = dimG. (Here A*( ) denotes the Grassmann
dl‘rebrd I( ) denotes the totality of “indecomposable elements”, Sym®( ) denotes
the symmetric algebra, X denotes the character lattice of the maximal torus of G,
and ( )V denotes the invariant part under the Weyl group action.)

(II) Consider the general case. Let U be the unipotent radical of G, and 7 : G —
G/U be the projection. Then the spectral sequence

EY = H(G/U, F'r,.Q) = HY (G, Q)
degenerates. Hence we get H*(G, Q,) = H(G/U, Q) and

m(G) = m(G/U) = dim G/U.
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Therefore
m(G) =dimG & dimU =0« G is reductive. O

2.2.3. Proof of (1)=-(2). Let 7 : G — G/H be the projection. Consider the
spectral sequence

(1) EY = H(G/H,Rm.Q)) = H™(G, Q).
Assume that G/H is affine but H is not reductive. Since G/H is affine, we have
(2) Ey =0 unless 0 < i < dim G/H.

Since 7 is smooth, we hcwe (R7.Qy), ~ H(H, Q) for all z € G/H. Hence (2.2.2)
yields that

(3) | EZ’,J =0 unless 0 < j < dimH.
Combining (1)-(3), we get

H*(G,Q;) = 0 unless 0 < i < dim G.
Hence G is not reductive by (2.2.2). O
2.3. Proof of (2)=(1).

We start with the following lemma.

2.3.1. Lemma. Let f : X — Y be a surjective morphism of varieties over an
algebraically closed field k with finite fibres. Assume that Y is affine and f* :
k[Y] — k[X] is an isomorphism. Then f is an isomorphism.

Proof. By Zariski’s Main Theorem [EGA, IV, (8.12.6)], there exists a commutative
diagram of morphisms of varieties

X inclusion Y
N7
Y

where X C X is an open dense subset, and where f is a finite morphism. Since Y is
an affine variety and since f is an affine morphism, X is also an affine variety. From
the above diagram, and from our assumption, we get the following commutative
diagram.
’C[X] injection ]ﬁ[Y]
o~ AN /" T
kY]
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Hence f is an isomorphism, f is an isomorphism (X aJnd Y being affine), X = X
(f being surjective), and finally we get the result. [

2.3.2. Proof of (2) =(1). Assume that G is any linear algebraic group and H
is reductive. (The reductivity of G is not necessary for this half of the prof.) Let
H act on G by the right multiplication. Put Y := Speck[G]¥. (Cf. (2.1.3).) Let
@ : G — Y be the morphism corresponding to the inclusion k[G]® — k[G]. By the

universal property of 7 : G — G/H [Bo, 6.3], we get the morphism G/H Ly,
By the definition in [Bo, 6.3], the points of G/H are in one-to-one correspondence
with {gH | g € G}. On the other hand, by [Ri, 1.3], the points of Y are also in one-
to-one correspondence with the same set. Hence § is bijective. By the definition
in [Bo, 6.1, (2)] (with K =k, U=V = G, and W = G/H in the notation in loc.
cit.), we can identify

k[G/H] = {p € k[G] | p is constant on each gH (g € G)} = k[G]¥ = k[Y].

Now apply (2.3.1) to 8: G/H — Y. Then we see that 4 is an isomorphism. Since
Y is an affine variety, G/H is also so. O
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3. ON RADON TRANSFORMATION

This note is a detail of [DG, (3.3.10)]. We cite [DG, (a.b.c)] simply as (a.b.c).
In this note, we describe, when x = 1, how our Rddon transformation R( )’ given
in (3.3.9) relates to the one given in [Br, 9.13]. '

Let V = A§_, VV be the dual space of V, and ) : VXV o AL, the natural
pairing. Let VX := V' \ {0}, VV*:=VV\ {0}, P :=V*/G,,, PV :=VV¥/G,,,

v
VX P VVX g Y% pr_, VX

| H
PV B pVgyx P, px
R

Fd - 7
pV —— PVXP —— P

be the natural morphisms, Z := {(g¥(vV),g(v)) € PV x P | (vV,v) =0}, R :=
P> x P\ Z, and pr, ete. the restriction of pr etc. to Z ete. In this paragraph, we
always assume that

(1) K € DV, Q) is the zero extension of K|y, and K|yx = g*K for some
K € DY(P,Q)).

In [Br, 9.12], the Radon transform <I)(K ) € D¥(PV,Q)) is defined to be

2)  B(E) = R Y(5r5) Kn - 2.

Then under the assumption (1), we have a distinguished triangle

(3) gV* R pr* K[n — 1] = R(K) — gV*®(K)(-1) *5 .

Proof. Let ¢ : VX(F,) — Qi be a function such that o(tv) = ¢(v) for all ¢t € Fx
and v € V*(F), i.e., such that o(v) = $(g(v)) for some & : P(F,) — Q. Consider
the following calculation:

S e Y~ 1)

vEV X (F,),teF,

= Y He@WE( Y v) - s)

vEV X (Fy),teF, s€FY

= > Fgw)

vEV X (F,)
(vV,0)#0

Here >.* means the sum over the equivalence classes of (v,t,s) or v with respect
to (v,,8) ~ (Av, A7, As) or v ~ dv (X € F). Following this calculation, we get

(4) R (n*K ® a*Ly)lvvx = ¢"*R(#7 g)i(p7 ) K (—1)[-2].
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in place of the first term of (3.3.7, (1)). As for the second term of (3.3.7, (1)), we
have
Rpr/pr*K|yvx = g"*Rpry (1 X 9)*pr* K
(5) =g"* R(pr' pR(1 x gh(1 x g)* 7K
=gV*R(p7")1(RLe(Gm, Qi) ® 57 K).

Now we obtain the following commutative diagram in D%(VVX,Q;), whose rows
and columns consisting of three terms are distinguished.

(6) , o
gV*R(prV)priK[-1] = gV*R(pr¥)pr*K[-1]

N ~

gV R(FrR) FrRK (-1)[-2] — Rprpr*K - R(K)-n

“ W w

9V R R (~1)[=2) — g% RG)pr R(-1)[-2] — ¢ 8(B)(-Dl-n] >

+1 +1

W hd

Indeed, we get the first horizontal triangle from (3.3.7), (4) and (3.3.9). The second
horizontal triangle is the obvious one. From the distinguished triangle

Q1] = RLo(Goy Q) — Ti(-1)[=2] 5

and (5), we get the first vertical triangle. Then by [BBD, 1.1.11], we get the second
vertical triangle. O
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4. NON-CHARACTERISTIC PULL-BACK OF D-MODULES

4.1. Differential operators.

4.1.1. Definition. Following [SKK], we define the sheaf of (algebraic) differential
operators on a smooth variety X by

DX = {RF[X](OXXX)[dlmX] ‘®Z‘\:®Ox (ZX wa)} IXa

where X is identified with the diagonal of X x X, and where wx is the invertible
sheaf of differential forms of highest degree.

4.1.2. Example. In order to understand this definition, let us take up the case
where X is an open subset of A!. Consider the distinguished triangle

RT(x(Oxxx) = Oxxx = Rlpoxx\x)(Oxxx) =,
and then consider (a part of) the associated long exact sequence

1 A
——_x’] - H[IX](OXXX) — 0,

0 - Oxxx = Oxxx [:r
where = (resp. z') is the coordinate function of the first (resp. second) factor of
X x X. Let 6(x —z') € H[1X]((’)Xxx) be the image of 1/(x — z’). Note that any
local section of Oxxx[=2=] can be umquely expressed in a neighbourhood of a
point of the diagonal as

with & € Ox xx and with a regular differential operator I’(X, 9) in the usual sense.
(An eagsy exercise.) Hence we get an isomorphism

{diﬁerential operators in} =, Dy, P(ﬁc,@z) — P(z,8,)8(z — z')dz’
the usual sense

If the base field is C, the action of Dx on Ox can be described as follows: For
any ¢ € Ox, we have :

P(z,0.)0(z) = P(,,) ( L[ He) dm')

2mi Jo, ¥ —

-1

1
— ! : N !
=371 ) ((I)(a‘:r ) + P(a‘,&)—m — m,) p(z")dx’,

where C, is a small circle turning around z in the positive direction. Note that
according to this definition, it is natural to define

/é =L &__
27!"& |z|=¢ T
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The product structure of Dx ‘can be described in a similar way.

4.1.3. The above definition of D x gives the following expression for Dy _, x. For a
morphism f : Y — X of smooth varieties, we get :

DY—»X = Oy ®f—1bx f_l'DX = a"l{RI‘[y](OyXX)[dimX] ®z, RO, (Zy X wx)},

where the morphism (f~10x), = Ox,f(y) — Oy, is given by ¢(z) — ¢(f(y)), and
Y is regarded as a subvariety of Y X X by a: y — (y, f(v)).

4.2. Non-characteristic restriction.

4.2.0. Notation. For a smooth varieties Y C X, T3 X (C T*X) be the conormal
bundle, P*X and Py X the projective bundles corresponding to T*X and v X.
For a subset C of T*X, put C, := CNT*X and C|y = ey Cy. For a subset of
P*X, we use the similar notation. Let

T*X|y & T*Y, (P*X -PiX)ly 5 P*Y, and T*X —T3X 5 P*X

be the natural morphisms. For 0 # £ € Tx X (resp. C' C Ty X, resp. C C T*X),
put ¢ := 7(£) (resp. C' :=7(C' = {0}), resp. C:=~(C - TXX))
4.2.1. Lemma. Let A be a conic closed subvariety of T*X. Consider the following
conditions. (The morphisms pp, p% and p% are those induced by p and j. )

() ANTEX C TEX]y.

(i) AN PEX = ¢.

(iiif) % Aly — T*Y is a finite morphism.

(ivy) pA Aly ~Ty X - T*Y - T}Y is a finite morphism.

(ve) R : Aly — PEX — P*Y is a finite morphism.
Let (#p ) be the condition obtained from. (#¢) by replacing ‘finite’ with ‘proper’
(#=tii, v, or v). Then we have the implications

(1) & (i)« (iiy) ¢ (iii,)
= (197) & (i%5) & (v7) & ().

Moreover, if every irreducible component of Aly contained in T{‘iX 1S also contamed
in Tx X, then all the above conditions are equivalent.

Proof. The implications (i) < (ii) = (v,) are obvious. Since
(T*X —T3X) N A)ly —— ((P*X - PpX) N )y
pgl _ lﬁ% |
T"Y = T3Y -1 Py

1s a cartesian bqudre since «y is faithfully flat, and since p9 is an affine morphism,
Py is also an affine morphism. Hence we get the implications (ivy) < (ivp) &
(vp) ¢ (v5). Similarly, we get (iiif) < (iiip)-
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Let us deduce (i) assuming (iiif). Since for each y € TyY (= Y), prt(y) =
(Ty X N A)y is a closed conic subvariety of Ty X, the finiteness of py implies that
(Ty X NA), ={0}forally €Y, ie., (i). ,

Let us deduce (iiif) assuming (1) It suffices to show that for each irreducible
affine open subset ¢ # Yy C Y and for each irreducible component Z of Aly,, the
morphism pp|z : Z — T*Y} is finite. In other words, it suffices to show that each
@ € I'(Z,072) satisfies an equation of the form

(1) @+ (ptan)e" T -+ (p*an) = 0

with some regular functions a; on T*Yy. Since Z is conic, we may assume from
the beginning that ¢ is homogeneous of degree d > 0 with respect to the natural
G.-action on the fibres of Z — Yj. Since we have already proved the implication
(i) = (ivy), ¥lz-T: x satisfies an equation of the form (1) with some regular func-
" tions a; on T*Y, — 1y Y. Considering the G,.-action, we may assume that a; is
homogeneous of degree di. Since di > 0, every a; is regular on T*Yy. Hence, if

@ o Z¢TEX

then ¢ satisfies the same, equation satisfied by ¢| z-T; x, and hence Z - Y, is
finite. If (2) is not satisfied, then Z C Ty X N A, and hence from (i) follows

(3) ‘ ~ Z CcTxX.
Hence Z — Y} is finite, being the composition of

inclusion o inclusion ;
7 RN, 72 Xy, Ty, Yy 25, Ty,
P .

Now the last assertion is obvious from the above argument. O

4.2.2. Remark. The above conditions are not necessarily equivalent to each other
in general. For example, consider the case where A = Ty, X with some smooth Y’
such that Y c Y’ C X.

4.2.3. Definition. (1) For a conic closed subvariety A of T*X, we say that a
subvariety Y of X is non-characteristic for A if the equivalent conditions (i), (ii),
(iiip), and (iiip) of (4.2.1) are satisfied. |

(2) For a coherent Dx-module M, we say that Y is non-characteristic for M if Y
is so for the characteristic variety SS(M) of M.

4.2.4. Lemma. Let X be a smooth variety with global coordinate system (z1,-- ,Zx)
(i.e., an étale morphism X — A™), and Y the subvariety defined by x, = 0. Let
P =DP(z,0) = 8™ + Py (x,0)0]" ™ + - + Pn(x,0') be an (algebraic) differential
operator of order m, where 8' means (8,--- ,0n). Put M = Dx[Dx . Letu e M
be the section of M corresponding to 1 € Dx. Then

(1) Dy _.x ®rf‘;x M=Dy_x Qp, M= Mly, and
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(2) M|y is a free Dy -module with basis {ly_.x ® 8iu |0 < i < m}

Proof. (1) Since'Dy_,x = Dx/z1Dx, it is enough to prove that M =25, M
is injective. Assume that z;Q(z,0)u = 0. Note that Q(z,d) can be uniquely
expressed as :

m—1

Q(z,9) = G(2,8)P(z,8) + > _ S;(z,8)d].

=0

(An easy exercise.) Since 2:Q = 0 mod Dx P we have S; = 0 by the uniqueness
of the above expression, which implies Qu = 0. Thus we get the injectivity.
(2) Since

Dy _.x ®p, M = M/le = DX/($1DX +DXP).~

this assertion is an easy exercise. O

4.2.5. Lemma. Let ¢ : Y — X be an inclusion mapping of smooth varieties.
Assume that ¢ is non-characteristic for a coherent Dx-module M. Then

(1) Dyx ®{5X M=Dy_x Qp, M =: p*M, and

(2) *M is a coherent Dy -module. : .

Proof.' :
(I) Let Y C Z C X be smooth varieties. Since Dy_ x is a locally free left
Dz-module [Bo, VI, 7.3, (7)], we get

Dy_x =Dy—z ®p, Dz.x = Dy_z ®%, Dz_x.

Hence we can reduce the proof to the case where dim X — dimY = 1. Since
the problem is local, we may assume that X is an affine variety, X has a global
coordinate system (z1,---,%,) and Y is defined by z; = 0.

(IT) For any v € I'(X, M), SS(Dxv) C SS(M) = A. Since

Ty X ={(0,2';¢,0,---,0)} and
TxXl|y = {(0,2';0,0,---,0)}, where 2’ = (z2,--- , ),

there exists I € I'(X, Dx) such that
(3) Pv=0, ord(P’)=m, ando(P)(0,2';¢,0,---,0)=¢0,

where o(P)(z, £) denotes the principal symbol of . Since P is of order m, I’ can
be expressed as

P(z,0) = a(x)d]* + Py (z,8)07 ' + -+ - + Pp(z,8")
“with ord(P%;) < j. Since

& =a(P)(0,7';61,0) = a(0,2")¢",
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we get a(0,2') = 1. In particular, a(x) is invertible in a neighbourhood of Y. Hence
we may assume that

P(x,8) = 8™ + Py(2,8")07 " + - + Pru(2,9')

replacing X by a small neighbourhood of Y, and P by a(z)~!P. Then applying
(4.2.4) to Dx/Dx D, we can see that (1) and (2) are true for Dx/DxD.

(ITI) Let us prove (1). Let {(v1,- - ,v;)} be a generator system of the I'(X, Dx)-
module I'(X, M). From each v;, construct I’; which satisfies (3), and put £; :=
Dx/DxD;. (Here and below, we freely shrink X if necessary.) Let :

| Li=L1@ L —>M
be the natural surjection, and A be its kernel. Consider the exact sequence
(p*N — *L — p*M — 0.

Since the Dy-module p* L is finitely generated, ¢* M is also so and hence coherent.
(Here we used the fact that T'(Y, Dy) for affine Y is left noetherian. Alternatively,
we can also prove in the following way without using this fact: Since ¢*M is finitely
generated, since M is an arbitrary Dx-module satisfying a certain assumption, and
sine N satisfies the same assumption, we can conclude that ¢*N is also a finitely
generated Dy-module. Since ¢* L is already known to be coherent, we can conclude
that ¢*M is coherent.) :

(IV) Next, let us prove (2). Since Dy_,x = Dx/z1Dx, it suffices to show that
M 55 M is injective. Assume that v € M and z;v = 0. As we have seen in (II),
there is P € Dx such that (1) and (2) are satisfied. Since

[-- [Pz, 2]y ] w = (mY)u = 0,
m Eirules
we get the desired result. O

4.2.6. Lemma. Let Z CY C X be a triple of smooth algebraic varieties over C.
Then there exists a canontcal homomorphism

Cy|x — Czix[codimy Z]
Here Cyx := RI‘[}](OX)[codimX Y]. (See [Bo, p.260] for I'fy).)
Proof. We have a morphism
RT'y (Cx)[2 codimx Y] RT'z(Cx)[2 codimx Z]

H |

'CY e Cz.

(If Cx etc. are understood as the orientation sheaves, then the vertical equalities
become canonical. So if we choose the orientation of complex manifolds, e.g., so
that A; = (dz; A dz;) > 0, then the above morphism is determined uniquely.) Let

RTy)(Ox[dim X])[2codimx Y] — RT(z(Ox[dim X])[2 codimx Z]

be the corresponding morphism (via DR). Shifting it, we get the desired mor-
phism. O ‘ -



145

4.2.7. Lemma. Letp: Y — X be the inclusion mapping of smooth varieties. Let
M be a coherent left Dx-module for which'Y is non-characteristic. Then we have
a canonical isomorphism

L(/D*Dx(M) (_ff__Dy(L(p* M)
of left Dy -modules. Here
" Dx(M):= RHomp,_(M, Dx)[dim X] ®0, v,

( The left Dx -modules structure of Dx is used to define RHom, and the right Dx-
module structure of Dx is used to define the left Dx-module structure of Dx(M).
The sheaf of differential form of highest degree is denoted by wx.)

Proof. As right Zy X Dx-modules, we have

(By|y><x R0y xx WY xX) Opy ¢*M, (cf. (4.2.6) for By|yXX)
(== (BY|Y><X R0y x WY xX) Opyrzy (MR Zx))
= (By|yxx ®0yxx Wy xx) ®p, &y (9*M R Dx)
= (By|y xx ®0y «x Wy xx) ®pympy (Py—x ®px M) R (Dx_x ®py Dx))
= (By|yxx ®0y xx Wy xX) ®Dy xx DyxX—XxX @Dy, x (MEDx)
= (By|xxx ®0x . x WXxX) ®ODy, x (MRDx), by [Ka, Lemma (4.8)]
= (By|xxx ®0xxx WxxX) ®pymzy (MK Zx)
where MRDx := Dxyxx ®p,xrp, (MK Dx). (Here and below, we often write M
etc. for oM etc. in order to simplify notation, but we are exclusively interested
in a neighbourhood of Y (C X).) Hence as left Zy X Dx-modules, we have
(Byjyxx ®o,rzy (Wy RZx)) ®p,mz, ("MK Zx)
=(By|xxx ®oxmzy (Wx ®Zx)) ®pmzy (MR Zx).

Applying (4.2.6) to Y C X C X x X, we get

(1)

(2) Dx = Bx|xxx®0,mzx (Wx®Zx) — By |xxx®0,mzy (Wx®Zx)[codimx Y]. |
Hence we get _
M =Dx ®p, M = (Bx|xxx ®oxRzyx (Wx ¥Zx)) ®p,rz, (MR Zx)
— (By|xxx ®oymzy (Wx X Zx)) ®pymz, (MR Zx)codimxY] by (2)
= (By|yxx ®o,®z, (wy RZx)) ®p,mz, (¢*M R Zx)[codimx Y] by (1)
= Dxevy ®p, p*M[codimx Y] by (4.1.3).
By using this homomorphism, we obtain
RHomop, (¢* M, Dy)[-codimx Y]
— RHomp, (Px—y ®p, ¢*M)[codimx Y],Dxy ®p, Dy)
— RHompy (M, DX‘—Y)
= RHomp, (M,Dx) ®715X Dxcy.
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Hence we get the desired morphism. (The last morphism is the natural one. To see
that it is an isomorphism, consider a locally Dx-free resolution of D)Q_y ) O

4. 3. Non-characteristic pull-back (general case)

4.3.0. Notation. For a morphism ¢ : Y — X of smooth varieties, let
p:Y xx T*X — T*Y be the natural morphism. Put Ty X := p~}(T3Y). Define
Py X asin (4.2.0). Let p: (Y xx P*X) — Py X — P*Y be the natural morphism.
4.3.1. Lemma. Let A be a conic closed subvariety of T*X . Consider the following
conditions. '

Q)T XN (Y xxA)CY xxTX.

({) PEXN(Y xxA)=¢

- (iiiy) pA Y xxA— T*Y is a finite morphism.

(ivy) ,oA (Y xx A) -T3 X = T*Y - TyY is a finite morphzsm

(vi) B : (Y xx A) - PYX — P*Y is a finite morphism.

(vi) {(y,9(y)) | y € Y} is non-characteristic for TgY x A (CT*(X xY)).

Let (#p) be the conditions obtained as in (4.2.1). (For the notations, see (4.2.1).)
Then we have the implications

(i) & (i) <« (iiiy) « (iiip) ¢ (vi)
= (ivy) © (ivp)  (v)) & (v,).
Proof. The equivalence (i) < (vi) is obvious. If Y is identified with {(y,o(y)) |

y €Y} (CY x X), then we have Y xyxx (I3Y x A) =Y Xxx A. Therefore, the
remaining implications immediately follow from (4.2.1). O

4.3.2. Definition. (1) For a conic closed subvariety A of T*X, we say that
¢ 'Y — X is non-characteristic for A if the equivalent conditions (i), (ii), (iiis),
(iii,) and (vi) of (4.3.1) are satisfied. (2) For a coherent Dx-module M, we say
that ¢ : Y — X is non-characteristic for M if ¢ is so for SS(M).

4.3.3. Theorem. If a morphismp :Y — X of smooth varieties is non-characteristic
for a coherent Dx-module M, then

(1) Dy_x ®5, M =Dy_x @px M =: p*M,

(2) ¢*M is a coherent Dy -module, and

(3) there is a canonical isomorphism Lo* Dx (M) < Dy (X¢* M).

Proof Let Y Y x X 2 X be the natural morphisms. Then (1), (2) and (3) are
obvious for . They are also true for o by (4.2.5) and (4.2.7). Since

DZ—)Y ®L——1’D)r _IIDY—»X = .DZ—>X
for any morphism Z — Y of smooth varieties [Ka Lemma (4.7)], we get the re-
sult. O
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5.0N D-MODULES ASSOCIATED TO A COMPLEX POWER OF A FUNCTION

5.0. Convention and Notation. We denote by Z the rational integer ring, and
by C the complex number field.

As for D-modules, we shall work in the algebraic category unless otherwise
stated. For a holonomic Dx-module M, define the de Rham functor DR(—) so
that DR(Ox) = Cx, where Ox is the structure sheaf. For a morphism F : X - Y
between varieties, and for an Oy-module M, F* denotes the usual @-module pull-
back; F*M = Ox @p-10,, F~'M. If it is necessary to clarify that it denotes the
 O-module pull-back, we write F* for F*. For a, regular holonomic Dy-module M,
we define two kinds of pull-backs P F* and D! 50 that

DRx(PF* M)[dim X] = F* DRy (M)[dim Y], and
DRx(PF' M)[dim X] = F' DRy (M)[dim Y].

Then PF' = ©LF*[dim X — dim Y], where LF* is the left denved functor of © F*.
For Dy, -module M; (i = 1,2), put MiRM; := Ox, xx, ® (pr7 ' M1 ®cpry *M,),
where pr; : X7 x Xz - X; (i=1 2) are the projections, and the tensor product is
considered over pri 1o x, ®c pry 10 X

We shall refer to [Gyl, (a,b,c)] etc. simply as (a,b,c) etc.

The basic references of this section are [Kal], [Ka2] for the D-module theory,
and [Kad], [Me] for the Riemann-Hilbert correspondence. We use the latter so
constantly that we often use the material without referring to these literatures.
The reader is assumed to be familiar with these materials. (Cf. [Ho, Chapter V].)

5.1. Let X be a non-singular irreducible algebraic variety over the complex number
field C. (We always assume an algebraic variety to be separable. For the sake of
simplicity, we further assume the quasi-compactness.) Let O = Ox be the sheaf of
regular functions, and D = Dx the sheaf of algebraic differential operators. If X
is an affine variety, we put C[X] := I'(X,0x) and D = Dx := I'(X, Dx). (More
generally, for a C[X]-module, say M, we denote the corresponding quasi-coherent
sheaf on X Dby the corresponding script letter, and vice versa.) For any C-algebra
A, weput Dy =Dx 4 := Dx ®c A, and Dy = Dx 4 := Dx ®c A. In particular,
when A4 is the polynomial ring C[s], we often write D[s] = Dx|[s] and D[s] = Dx[s]
for D¢js) and Dcyy), respectively.

We need the C-algebra Cls, t] given in (2.3.5), namely, the C-algebra defined by
the relation ¢s = (s + 1)t. Put D[s,t] = Dx|[s,t] := Dx ®c C|s,t] and D[s,t] =
Dx[s,t] = Dx Q¢ C[S,t].

In (5.2)-(5.8), we shall work with D-modules assuming X to be an affine vari-
cty. Since the category of Dx-modules is equivalent to that of ©x-quasi-coherent -
Dx-modules if X is affine, we can understand the results of (5.2)-(5.8) as those
concerning Dx-modules. Thus we can get the same results even if X is not affine
as far as the assertion is of local nature.

Typeset by AA(S-TEX
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5.2. Let N be a D[s,t]-module, and b(s, N) the (monic) minimal polynomial of
s € Endp(N/tN). (Possibly b(s, N) = 0. We define b(s N) for a D[s,t]-module N
“in the same way.) Put

Ay(N):={aeC|bla+j,N)#0forj=0,1,2---}, and
A_(N):={a€C|bla~j,N)#0forj=12-}.

Put N(«) N/(s—a)N
Lemma 5.3. Assume thatt: N — s N is m]ectwe and b(a +5N)#0 0 <<
| —1). Thent': N — N induces an isomorphism N(a+1) — N(a).

Proof. We may assume that [ = 1. Put b(s) := b(s, N'). Since b(s)N C tN, we get
the natural D[s]-homomorphisms tN — N — (¢N)[b(s)™!] — N[b(s)~!], and the
natural D-homomorphisms

tN_ 4N B @NBET o N
(s—a)tN — =aN — (= a)(MPE)]) (- B T)

Since b(a) # 0, CB and BA are isomorphisms, and consequently, A, B, C are all
isomorphisms. Since ¢: N — tN is assumed to be an isomorphism,

N N

(s—a—1)N T} (s —a)N = N(a).

tN
(s — a)tN

N(a+1)=

fad
—
t

5.4. Assume that X is a connected non-singular affine variety, and 0 # f € C[X].
Let N be a D[s, t]-module satisfying the following conditions.

(5.4.1) N is a subholonomic Dx-module.

(5.4.2) N C N[f~Y]. (Cf. (2.1.7) for N[f~1].)

(5.4.3) If we extend the D[s,t]-module structure of N to N[f~!] by s(f~™u) :=
f~™(su) and t(f~™u) := f~™(tu) (m € Z, u € N), then t € Aut(N[f™]) and
NIt (= Upso t-™N) = N1

(5.4.4) N[f™1] is flat over CJ[s] (i.e., C[s]-torsion free).

Since ¢t : N[f~1] — N[f~] is assumed to be injective (5.4.3), and N C N[f‘l]
(5.4.2), we can see that N/tN is holonomic by (5.4.1). Similarly, using (5.4.4), w
can see that N(a) = N/(s—a)N is holonomic. In particular, dimc EndD(N/tN ) <
0, and b(s, N) # 0.

Lemma 5.5. Leta € C. Ifb(a,N) # 0, then (s—a)N+tN =N and (s—a)N N
tN = (s — a)tN.

Proof. Put b(s) := b(s, N), and take ¢(s), d(s) € C[s] so that c(s)b(s)+d(s)(s—a) =
1. The action of the left hand side on N/tN is the same as the action of d(s)(s—a).
Hence s — a € Autp(N/tN), from which we get the result.

Lemma 5.6. (Cf. (2.8.5).) Assume (5.4.1)-(5.4.4). Let [N(a)] be the element in
- the Grothendieck group of holonomic D-modules. Then [N(c)] depends only on (o
“mod Z).
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Lemma 5.7. Assume (5.4.2)-(5.4.4). If o € A_(N), then N(a) = N(a)[f™}].

Proof. Let m € Zzo- From the diagram-

00— N N —  Ne-m) —— 0

s—a )
tT"™N — t™™N

together with (5.3), we get the exact sequence

0—-t™™N :i t™™N — N(a) — 0.

Taking hﬂ}’ we get

m

0 — N[t~ =5 N[t™Y] — N(a) — 0.

Since N[t~ = N[f~1], and since 0 — N[f~1] —— N[f~1] — N(a)[f~!] — 0 is
cxact, we get the desired result. _
Remark 5.7.1. The above lemma generalizes [KK, Lemma 2.3].

Lemma 5.8. Let N, N’ and N" be D x[s,t]-modules satisfying (5.4.1)-(5.4.4), and

B c
let N' — N — N" be Dx|s,t|-homomorphisms which induce an ezact sequence

(5.8.1) 0— N'[f1] 2 N[f7Y < N"[f"1] = 0.

" B, T Ca '
(5.8.2) 0 — N'(a) — N(a) — N"(a) = 0

induced by B and C is ezact if o € A((N) N A(N')NA(N") (e =+ or —).
Proof. By (5.3), we may and do assume that Re(a) > 0 or < 0.

First, we prove the surjectivity of Co. Let N” = 3. Du! (finite sum). Take
u; € N and m € Z>q so that C(t‘mui) = v for all . Take o € C so that
(5.8.3) ba+j—1,N")#0 (1<j<m).
Since t™u! € C(N), C(N) + (s —a)N" D t™N" + (s —a)N". Since our present
purpose is to prove that C(N) + (s — a)N” D N, it suffices to show that
(5.8.4) t'N" + (s —a)N" Dt/ IN" 4 (s — a)N"

for 1 < j < m. The left hand side of (5.8.4) contains ' 1(tN" + (s —a—j+1)N"),
which is equal to * " N" by (5.5) and (5.8.3). Thus we get (5.8.4).
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Next, we prove that ker C,, C image B, or equivalently that C~((s — ¢)N") N
N C N'4+(s—a)N. (Here and below, we regard N’ C N.) Let C~((s—a)N")NN =
>~ ; Dv; (finite sum). (Since D is left noetherian, every D-submodule of N is finitely
generated.) Let ), u; and m be as in the first step. Then C(v;) = (s—a) }_; Pijuy

for some P;; € D. Since C(t™™ Y ; Piju;) = ¥, Pyull,

(5.8.5) v — (s —a)t™™ Z Piju; € N'[f7]nt™™N = N'[t"']nt"™N,

J

by the exactness of (5.8.1), and by (5.4.3). Since N’[t—l] Nt~™™N (Ct™™N) is a

finitely generated D-module, we can take | > m so that

(5.8.6) - ‘ (N[t ]nt"™N) C N'.

By (5.8.5) and (5.8.6), we get

(5.8.7,) thy; e N'+ (s —a+j)N

for j = [. Take a € C so that

b(a_j»N,)#O (1

< ), and
bla—j,N)#0 (1<

By (5.8.8) and (5.5), we get

(5.8.0) (s—a+j)N'+tN'=N'" (1<j<lI), and

By (5.8.7;) and (5.8.9), we get

t(t*v;) € tN' + (s — a + )N, and hence
t(t*"1v;) € tN' + (s — a + I)tN,

(s—a+j)NNtN=(s—a+j)tN (1<j<]I).

from which follows (5.8.7;—1). Repeating this procedure, we finally get (5.8.79),

which is the desired result.
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Last, we prove the injectivity of B,. If Re(a) < 0, then (5.8.2) follows from
(5.8.1) and (5.7). (In fact,

0 0 0
| N
0 — N[f7] —— N7l —— N7} —0

ls-—a ls—a- S—Q

0 — N[f7] —— N[f7'] — N'[f7] — 0

l ! !

0 —— N'(@[f7] —— N(@)[f™'] —— N"([f}] —— 0

! ! l

0 0 0

the first two horizontal sequences and three vertical sequences being exact, the third
horizontal sequence is also exact, which is nothing but (5.8.2) by (5.7).) Assume
that Re(a) > 0. By (5.6), '

[ker Bo] = [N'(a)] — [N(a)] + [N"(a)]
= [N'(a— k)] = [N(a = k)] + [N"(c — k)]

for any k € Z. Taking k so that Re(a — k) < 0, we can see that [ker B,] = 0, i.e.,
B, is injective.

5.9. D-Modules Dx[s|(f*u|V) and Dx(f“u|V). Let X be a connected non-
singular variety over C and 0 # f € I'(X,0x). (We do not assume X to be
affine.) Let X := X \ f71(0), V be a Zariski open subset of Xy, M a coherent
Dy-module, and v = (u1,- -+ ,up) a p-tuple of elements of I'(V, M). Consider the
left Dx[s]-submodule Z of Dx[s]? consisting of (Pi(s),: -, Pp(s)) € Dx[s]? such
that Y7  (f™*P;(s)f*)u; = 0 holds in C[s] ®c M whenever m € Z is sufficiently
large. Put N := Dx[s]?/Z. Denote by (f*u);|V the element ((0,---0,1,0,---,0)
mod ), where 1 appears at the i-th place. Then N = 32 . Dx[s]((f*u):|V). Put
feulV = ((fPun|V,- -, (f°uw),|V). We write N = Dx[s](f*u|V). For a complex
number @, put V(o) := N/(s — a)N, and fou|V = ((fu)|V, -, (fu),|V) :=
(f*u|V mod (s — @)N). Then N(a) = Dx(fulV) = 32, Dx((f*u):|V). It is
casy to see that '

(5.9.1) (Dx[s](f*ulV)) U = Dyls](f°ulV NU)

for any Zariski open set U of X, and

(5.9.2) Dx[sl(f*(gu)|V) = Dx|[sl(g(f*u[V))



152

for any g € C[X]. We shall denote (5.9.2) by Dx[s](f°gu|V) = Dx|[s](9f*u|V). If
X is an affine variety, we define Dx[s](f*u|V) and Dx(f*u|V) in the same way as
“above. Then

(5.9.3) ['(X, Dx[s](f°u|V)) = Dx|[s](f°u]V), and
(5.9.4) I'(X, Dx(f*ulV)) = Dx(f*ulV).

If V = Xy, we sometimes write f°u and f*u for f*u|Xo and f*u|Xo. It is easy to
sce that '

(5.9.5) f is not a zero divisor of Dx[s](f*u|V)

and ,

(5.9.6) Dx[s](f*ulV) is C[s]-flat (i.e., C[s]-torsion free).

Lemma 5.10. Let Dx,v and Dx,w be two coherent Dx,-modules with finite global
generator systems v and w, respectively. Assume that b(s,Dx[s](f*v)) # 0 and
(s, Dx [s)(f*w))

# 0. (1) Then a Dx,-homomorphism ¢ : Dx,v — Dx,w induces canonically a
Dx -homomorphism ¢q : Dx(f*v) — Dx(f*w) if |Re(a)|.> 0. (2) In particular,
DX(faQ) = DX(fa ) ZfDXoU = DXow and IRG )I > 0.

Proof. It is enough to construct a homomorphsim ¢, locally but canonically.
Hence we may assume from the beginning that X is an affine variety. Let v =
(1,4 ), w = (wy,--+), (,D(‘U,;) = f_k Zj P w; with P;; € Dx and with k € ZZO,
[ > k+maxj( ord P;;), and f*~*P;; = Q;;(s)f*~! (multiplication of operators) with
Qij(s) € Dx([s]. Define @, : Dx[s](f*v )—*Dx[S](f"-fsw) b

s <ZRi(5)(f ) ZR $)Qij(s) (f7"- (fow);) -

Then it is easy to see that ¢, is well defined and that ¢, is independent of the choice
of P;;, k and I. Consider the D x-homomorphism ¢, : Dx(f*v) — Dx( fotw)
induced by ;. If |Re(a)| > 0, then ¢, can be regarded as a Dx-homomorphism
Yo Dx(f*v) — Dx(f*w) by (5.3). Thus we obtain the desired homomorphsim.

Remark 5.11. We can not expect that Dx (f*u|V) is determined by Dy u, even if
wc impose a “reasonably strong” assumptions on u. Instead, denoting by jv : V —
Xo the inclusion mapping, and regarding u as global sections in I'( Xy, (jv )« (Dvuw)),
we can see from (5.10) that Dx(f*ul|V) is determined by Dx,u.

For example, let X := C, f(z) :=z, V := C\ {0,1}, us, := (z — 1)* (k € Z),
and let o be an arbitrary integer. Then Dyuy = Oy, but |

3 R(jv)«C, ifk<0
DR(Dex (f*ux|V)) = { C if k > 0.

Lemma 5.12. (Keep notation of (5.9).) Assume that Dyu is holonomic and the
inclusion mapping jv : V — X is an affine morphism. Then there erists a non-
zero polynomial b(s) € C[s] such that b(s)Dx[s](f*u|V) C Dx[s](f*+ ulV).

Proof. Since I'(Xo, (jv )« M) = T'(V, M) 5 u;, we can define Dx|[s](f*u) = Dx[s](f*ulXo
considering u;’s as sections of (jy)«M on Xj. It is easy to see that
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(5.12.1) Dx[s](f*uw) = Dx[s](f*u|V).

Since (jv)«M is holonomic, the remainder of the proof goes in the same way as
[Ka2, Theorem 2.7].

Lemma 5.13. Let Xo D Vi D Va # ¢ be Zariski open subsets such that the
mnclusion mappings V; — Xo are affine, M a coherent Dy, -module, u; € T'(V1, M),
and u = (u1, %2, -+ ) (finite set). Then the following two conditions are equivalent.
(1) For any affine open subset U of V1, Dyu — DV._,nUu i8 zn]ectwe

2) Dx[s)(f*ulV1) — Dx[s](f*ulV2).

Proof. For the sake of simplicity, we assume that u consists of only one section
u € I'(Vi, M). Let Z; C Dx|s] (resp. J C Dy,) be the annihilator of (fu|V;)
(resp. u). Then the following conditions are equivalent to (2). ,

(3) For any affine open subset U of X,

Dy[s)(f*ulVi N U) = Dyls](f*u|Va N T).

(4) For any affine open set U of X, for any P(s) € Dy[s], and for any m > 0,
(f™*P(s)f*)u vanishes on Vi NU 1f it vanishes on V, N U.

(5) For any affine open subset U of X, and for any P € Dy, Pu vamshes on V1 NnU
if it vanishes on V5 N U

(6) For any affine open subset U of V;, and for any P € Dy, P € T'(U,J) if
PlVonU eT(VanU,J).

Let U be as in (6). Since U and Vo, N U are affine, we get the commutative
diagram '

0 — TI(UJ) —— TIUD) —— TUDy ——0

l l L

0 —— I'(V;nU,J) —— T(V3NU,D) —— T(Va N U, D) — 0
with exact rows. From this diagram, we can see that (6) is equivalent to the
injectivity of p, which is equivalent to (1).

Lemma 5.14. Let notation and assumption be as in (5.13). Assume further that
M =Dy,u =) . Dy,u; and M is a simple Dy, -module, i.e., a non-zero coherent
Dy, -module without proper coherent Dy, -submodules.

(1) For any open subset W of Vi, M|W is a simple Dw-module, or = 0.

(2) The support of M is an irreducible variety.
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3) If M|W # 0, then T'(Vy, M) — I(W, M) is injective.
(4) Ezactly one of the following holds.

(a) M|V = 0.

(b) Dx[s](f*ulVy) — Dxls](f*ulVa)-

Proof. (1) Assume that M|W has a proper coherent Dy-submodule Ny. By
[Ho, (I, 3.3.2, (ii))], there exists a coherent Dy,-submodule N' of M such that
N|W = Nw. This is absurd.

(2) Assume that Y := supp M is not irreducible. Take an affine open subset
W of Vi such that Z := supp(M|W) is not irreducible. Put A := C[W]. B
[Bo, Chapter 4, §1, Theorem 1], Au has an A-submodule, say M’, whose support
is irreducible. Since supp(DwM') = supp(M') C supp(Au) = supp(Dwu) = Z,
. Dw M’ is a proper coherent Dy-submodule of M|W. This contradicts (1).

(3) Assume that 0 # u € I"(V1,M) and u|W = 0. Since M is simple, M = Dy, u.
Hence M|W = 0.

(4) It suffices to prove (b) assuming that (a) does not hold. (Obviously (a) and
(b) can not hold in the same time.) By (5.13), it suffices to prove the injectivity of
¢ : Dyu — Dy,npu for any affine open subset U of V7. Assume contrary that ¢ is
not injective for some U C V5. Then Dyu # 0 and Y NU # ¢ (Y = supp M). By
(1), Dyu is simple. Since kery # 0, ¢ = 0. Hence u = 0 in Dy,npu, Dy,nvu = 0,
and YNVoNU = ¢. Since we are assuming (a) does not hold, Y NV; # ¢. However
these relations contradict the irreducibility of Y (see (2)).

Lemma 5.15. (Keep notation of (5.9) with V = X,.) Let t be the coordinate of
C*, and pr : Xo x C* — X the projection. Then by s < —0¢t and f*u < 6(t —

f(x))u(z), we obtain isomorphisms p : pr«Dx,xcx = Dx, ®c C[-0:t,t,t71] =
Dixyls,t,67Y] and s 5 pra(Dxgxcn (8t — F@)u(®) — Dixols,t,t~1(fou) =
Dx,[s](f*u). (We have written u(x) for u in some places in order to indicate
that they are sections on Xg.)

Proof. We may assume X, to be an affine variety. For the sake of simplicity,
we assume that u = (uj,---) consists of only one section u. Define C-algebra
homomorphisms & : Dx, — Dx,[0:t] and ¥ : Dx, — Dx,[s] by ®(0s,;) = 04, +
(Ot)(10g f)a;s ¥(0z,) = Oz, — s(lOg f)z,, and ®(z;) = ¥(z;) = ;. Then

B(P)(6(t — f(x))u(z)) = 6(t — f(z))(Pu(z)),
U(P)(f(z)°u(z)) = f(2)*(Pu(z)), and
pod =10.

Hence for P;; € Dx, (i,j € Z>0),
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Y (=0et)'(t - f(2)Y @(Py)(8(t ~ f(2))u (w))—O

1,720

& > (—8it)i(t — f(z))6(t — f(z))Piju=0
1,720 ‘

&) (~0:t)'8(t — f(z))Piou =0
120

< Pjou = 0 for all 7 > 0.

(The last ‘<’ follows from the identity of the form (—8:t)*6(t — f(z)) = 33\ _, cuf v.
8 (t— f(z)), with ¢; = 1 and ¢, € C.) Using this relation together with the similar
relation for f(x)%u(x), we get

R(8(t — f(z))u(z)) = 0 & u(R)(f(z)*u(x)) =
for R € Dx, xcx-

Theorem 5.16. Let V be a Zariski open subset of Xo = X \ f~1(0) such that
inclusion mapping jv : V. — Xo is an affine morphism, let j : Xg — X denote
the inclusion mapping, and assume that Dvu =3 F_, Dyu; is a regular holonomic
Dy -module. Then

(1) Dx(f*ulV) is a regular holonomic Dx -module,

(2) DR(Dx(f*u|V)) = Rjs DR(Dx, (fulV)) if @ € A_(Dx[s](f*ulV)), and

(3) DR(Dx (f*u|V)) = ji DR(Dx, (f*ulV)) if o € A (Dx[s](f°ulV)).

(Recall that DR(—) = DRx(—) = RHomp.. (0", —), where 0" = O%" is the
sheaf of holomorphic functions, D** = D := 0" @ D, and Hom denotes the
sheaf of local homomorphisms. Cf. (2.8).)

Remark 5.17. In the above theorem, the regularity assumption for Dy u can not
be removed even for (2) or (3). For example, let X := C, f(z) := z, 9 := d/dz,
M :=D/D(a™*1d—-1) (m € Zo), u the class of 1 € D in M, and N := D[s|(z*u).
Then _

(=™ (s + 1) + 2™8)(z* 11 )—:ﬁsu,

b(s,N) =1, Ax(N) = C, and D(z%*u) = D(z*u)[z!] for any a € C by (5.7). How-
ever Yys0(—1)F HE(DR(Dx (57u)))o = —m and 3 50(~1) H*(Rj. DR(Dx, (zu)))o =
0. (Cf. [Ka4, Chapter 6].) In particular,

[DR(Dx (z%u))] # [Rj. DR(Dx, (z%w))]

even in the Grothendieck group of perverse sheaves.

The first assertion of (5.16) is easy. (Since (jv )« preserves the regularity, we may
assume V = Xy by (5.12.1). If p = 1, (1) is already settled in (2.8.6). Then we can
prove generally, noting that Dx(f*u) is'a quotient of @%_; Dx(f*u;).) We shall
prove (2) and (3) by reducing successively the proof to easier cases. The second’
- assertion is proved in (5.23). The proof of the third assertlon is long, and will come

to an end in (5.38).
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5.18. First reduction. By (5.3), we may assume that
(A1) Re(a) < 0 (resp. > 0) in (5.16, (2)) (resp. (5.16, (3))).

5.19. Second reduction. Since our problem is local by (5.9.1), we may assume
that
(A2) X is an affine variety.
Then
(A2") V is an affine variety. :
By the first note of the same volume, we may also assume that
(A2") there ezists g € T'(X,Ox) such that V = X, \ ¢71(0).

5.20. Third reduction. Put X! := X* x C, Mz, y) == f(z)y, V¥:= V" x C,
M= M R Ocx, uf =uw K1, ut = (uﬁ, ,ug), and v := (u},--- ,u;). By
‘(=) ®DR(Dcy®)’ and conversely by the restriction to X” x {1} (C X*), (5.16) for
-~ X, ft ... follows from that for X°, f*--., and vice versa. Thus we may assume
that

(A3) X, f, V, M, u can be obtained as X* etc. from those for X" etc.
Note that (A3) implies that

(A3') there exists E € I'(X,Dx) such that Eu, = 0 and Ef = f.

5.21. Fourth reduction. Since (]V) M is regular holonomic, we may assume
tllc\:t

(A4) V = X,.
(Cf. (5.12:1).)

5.22. Fifth reduction. Assume (A1)-(A4). By [Ka2, Theorem 2.5], there exists
an affine open neighbourhood X’ of f~1(0) such that Dx (f*w)|X’ is subholonomic.
Since (5.16) is obvious outside of f~1(0), we may assume that Dx(f*u) is subholo-
nomic, replacing X with X’. By (A3'), Dx(f*u) = Dx[s](f*u). Hence we may
assume, without destroying (A1l)-(A4), that

(A5) NV := Dx[s](f°u|V) is subholonomic.
(Indeed, we may assume that this procedure preserves (Al)-(A4) except for (A3).
If X etc. are obtained as X! etc. from X* etc. as in (5.20), then first shrink X,
and next apply  —#. Then we can assume (A5) keeping (A3) as well.) Then if
we define the t-action on N by t(P(s)(f*u;)) = P(s+1)(f- f*u;) for P(s) € Dx|s],
N becomes a Dx|[s,t]-module satisfying (5.4.1)-(5.4.4). (Indeed, (A5) is (5.4.1),
(5.9.5) yields (5.4.2), (5.4.3) can be directly proved, and (5.9.6) is (5.4.4).)

5.23. Proof of (5.16, (2)). By (5.7), Dx(f*u) = N(a) = N(a)[f1] if Re(a) <
0. Hence we get the result by (5.16, (1)). :

5.24. Sixth reduction. Let us prove (5.16, (3)) when the length of Dyu is I,
assuming that { > 1 and (5.16, (3)) is already proved when the length is < . If V
and u are obtained as V! and u! from some V* and »’ as in (5.20), then consider a
proper coherent Dy»-submodule Dysu'® of Dysv’, put Dysu™ = Dyru’ /Dys b
apply ® —P, and denote the resulting D-modules by Dyw' and Dyu”. Then
applying the reduction of (5.22) once again, we may assume that all the assumptions
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(A1)-(A5) are satisfied by Dyu, Dy’ and Dyu”. Put N := Dx[s](f°u), N :=
Dx[s](f*u') and N := Dx[s](f*u"). Then N, N' and N satisfy (5.4.1)-(5.4.4),
and (5.8.1) becomes exact. Hence (5.8.2) is also exact, and applying DR to it, we
get the distinguished triangle

DR(Dx(fu')) — DR(Dx(f*u)) — DR(Dx (f*u")) -

from which we get (5.16, (3)) for the second term. (Note that (5.16, (3)) is assumed
to be already proved for the first and the third terms by the induction hypothesis.)

Hence we may assume, without destroying (A1)-(A5), that

(A6) Dyu is a simple Dy-module, i.e., a coherent Dy -module without proper
coherent Dy -submodules. _ >

Assume (A4) and (AG6). Then, there exists a closed irreducible subvariety Z
of X, and an irreducible locally constant sheaf L on a non-singular open dense
subvariety U of Zy := Z N Xy such that :

(5.24.1) "DRx,(Dx,u)[dim Xo] = (iz,)«(jo )« L[dim Z],
where jo : U — Zp and iz, : Zp — X, are the inclusion mappings.

5.25. Normal crossing case (1). Before st’udying generally (5.16, (3)), let us
consider the case where

X = C‘n.7
[1,n]= EUFUGUH,
== (e€Z50), Xo=X\f71(0) = (CX)" x CFUOUH,
1€EE '
Z ={x; =0 (i € H)} = CBUFUG (.= CEUFUG y [} H),
U= (CX)ELIF X CG, '

V = Xy \ ¢7(0) with g(z) H:U‘XH:Df‘ (e; € Z>o, f,€Z>o)
. 1EE =
H AR H 0(z;) (X €C), and
i€EUF i€H

M := the minimal extension of Dy v to Xo,

and u C I(V, Dyv) = I'(Xo, (jv)«(Dyv)) generates M as a Dx,-module.

Let My := ((jv)«((Dvv)*))*. (Here jv — X is the inclusion mapping, and
(—)* denotes the dual D-module. Cf. (2.6.3).) Then M = M; /T x\v(M;).
Since v € T'(V,Dyv) = I'(V,M) D T'(Xy, M), we have g™v € I'(X(, M) and
Re(A; + fim) > 0 (i € F) if m € Z is sufficiently large. Then the Dx,-module M
is generated by ¢g™v, and simple. Hence applying (5.14, (4)) with V3 = X, and
Vo =V, we get
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DX[S](fSQm”) = Dx|[s](f*g™v|V), and
Dx(f*9™v) = Dx(f*g™v|V) (a €0).

(Cf. also (5.9.2).) Assume that Re(a) > 0 By a direct calculation, we can show
that

DRx (Dx(f*g™v|V)) |
= (@J’:’C“’;ae‘—)\j (® it Cx N ) ® C®¢ ® C§[card H]
i€E 1€EF

=J DRXo (on (fagm,vlv)),

where j/ : C* - C and j : Xo. — X are the inclusion mappings. Hence we get
(5.16, (3)) if w = g™v. Then by (5.10, (2)), we get the same for an arbitrary global
. generator system u of the Dx,-module M.

Lemma 5.26. Keep the notation and the assumption of (5.25). Let 7: T*X — X
be the natural projection, and u = (u1,---) a finite global generator system of the
Dx,-module M. Then Dx[s](f*u) is Dx-coherent, and

ch(Dx[s](f*u)) N 7=1(f~1(0))
18 holonomic.

Proof. Put F':={i € F | \; € Z} and F" := F \ F'. Then

ch(Dx[S](fsg"‘v))
=Wg x (T&C)F x (T&C UT{;C)F" x (TCC)G x (T{,,C)¥,

where m > 0, Wg is the Zariski closure of

U (@i &)ier € T*CE | 7'z = ¢ (i € E)},
ce€CX
and, T&C and Ty, C are conormal bundles of C and {0}, reSpectlvely Hence we

get the result When u=gmv.
In the general case, put N := Dx[s](f*¢™v) (= Dx(f*g™ v)) and N’ := Dx[s](f*u).
Since N C N[f~!] = N'[f~!] D N’, and since both N and N’ are ﬁmtely generated

Dx[s]-modules, t™N C N’ and t™N' C N for m > 0. Since t™ : N — t™N and
g N2, t™N', we get the result.

5.27. Normal crossing case (2). Next, we prove (5.16, (3)), assuming that X,
f.Z,U, and V are the same as in (5.25), but as for Dy u, simply assuming that its
characteristic variety is (the closure of) the conormal bundle of U.
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We regard u as a subset of I'(Xy, (jv)«(Dvu)), where jy : V — X, is the
inclusion mapping. As is easily seen, the characteristic variety of (jv )«(Dyu) is a
union of conormal bundles of C! with subsets I C [1,n]. Hence the characteristic
variety of each composition factor, say M', of Dx,u is also of the same form. Since
supp M’ =: Z' is an irreducible variety by (5.14, (2)), 2’ = (C*)F x CT' x {0} &'
with some partition E U I' U H' = [l,n]. (Here E is the same as in (5.25).)
Moreover, considering the characteristic variety, we can see that there is a partition
I' = F'UG' such that the restriction of DR(M’) to U’ := (C*)EUF' x CG' x {0} ¥’
is an irreducible locally constant sheaf (up to shift). Since m;(U’) = ZEYF', we can
see that the restriction of M’ to V' := (C*)EBUF' y CG'UH’ ig of the form Dy’
with v’ as in (5.25). Hence M’ itself is also of the form as in (5.25).

Now, in order to prove (5.16, (3)), we may assume (A1)-(A5) even in our present
special situation, as we can see from the argument so far. Moreover we can reduce
the proof to the case where Dx,u is some M’ as above, by the argument of (5.24).
But then we have already proved it in (5.25). '

Similarly, we can generalize (5.26) to the case considered here. We omit the
dcetail.

In (5.25) and (5.27), the similar results hold in the category of D**-modules.

5.28. Let us return to the general situation, keeping all the assumptions (A1)-
(AG). Let g1,---,gr be regular functions on X such that g; = ..+ = g, = 0 are
(minimal) defining equations of Z at its generic point. (See (5.24) for notation.)
Let S be the locus where f - [, g; =: h is not normal crossing. Shrinking the open
subset U of Zy, we may assume, keeping (A1)-(A6), that

(A7) U is non-singular, UNS = ¢ and U = Zy \ p~*(0) with some p(z) € C[X].
Let F : X' — X be a proper modification of S such that {F*h = 0} is normal
crossing [Hi]. Let f' := F*f, U’ := F~Y(U) (~ U), and Z' be the Zariski closure
of U’ in X'. By a further proper modification of Z’\ U’, we may assume that Z’ is
non-singular and Z’ \ U’ is a normal crossing divisor of Z'. (Here we claim Z’ to
be the closure of U’, again.) :

“In the process of the above proper modification, each center of blowing-up has an
image in X which is closed in X and does not intersect U. Hence there is an affine
open set V C X, such that F : F~1(V) — V is an isomorphism, and VN Z = U,
Shrinking X, U, and V, we may assume (A2") for V, ie., V = X, \ §71(0) with
some § € C[X]. Put X} := X'\ f'~(0), V' := F~(V) and § := F*§. Then
V' = X§\ ¢ ~1(0). By a further proper modification of §'~1(0), we may assume
that {F*g- F*h = 0} is a normal crossing divisor of X’. Note that V' N2’ = U".
Note also that we may assume that the above procedure always preserves (A3).
Indeed, if X etc. are obtained as X! etc. from some X’ etc., then first apply the
above procedure to X° etc., and then apply ¢ —¥.

Now, locally with respect to the classical topology, X', f’, Z', U’, V' and §' can
be regarded as those studied in (5.25) and (5.27). (Indeed, since {F*g- F*h = 0} is.
~normal crossing, and since Z’ is non-singular, we may regard locally with respect
to the classical topology that X' = C", Z’ = C! x {0}¥ with some partition
I'UH = [1,n], and that f’ and §’ are monomials in the coordinate functions
{ziticicn Let f' = [L;cpi (ei € Zso). Since {f' =0} 2 Z', E C I. Let
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I =EUI Since S :
(C)E x T x {0} \{§ =0}

(5.28.1) - _ oBur {O}H \ ({fl =0} U {g/ = 0}) =, v'nz' A= U,

we may regard that _
(5:282) U' = (CX)EYF x CC% x {0}#

w1th some partition FUG = I'. Since g g isa mononual in :c, ’s, we may assume that
J'(x) = HzeE'l € x [Tier® f’ (€ € Z>o, fj € Z>g). Thus all the conditions for X,
f.Z,U,V and gin (5.25) are satisfied with X', f', Z', U’, V' and §'.) Identifying
U’ with U, the locally constant sheaf L on U (cf (5. 24 1)) can be regarded as a
locally constant sheaf on U’, which we shall denote by L'. Put Z; := Z' N X, and
let jo : U' — Zy and iz : Zy — X be the inclusion mappings. Let M’ be a regular
holonomic Dx;-module such that

" DRy (M)[dim X'] = (iz;)«(io)1 L' [dim Z'].

If we 1dent1fy V' = F~1(V) and V, then M'|V' = M|V. Take 0 # u € LV, M)
and 0 # u' € ['(V', M') which correspond to each other. Consider u as a section
of (jy )« MIV) on Xy, where ji; : V — Xj is the inclusion mapping. Since M C
(j)«(M]|V) and since (jy)«(M|V)/M is supported by §='(0), §™u € M for a
sufﬁmently large m. Replacing u with §™u, and by the similar argument for v’ and -
J', we may assume that

(A8) u (resp. u') can be extended to a section of M (resp. M') on Xq (Tesp.
X5).
Then M = Dx,u and M' = Dx;u’, M01eover if M and M’ are obtained as a

result of ‘4 =P then we may and do assume that v and u' are also obtained as a
result of the similar procedure (cf. (5.20)).

Lemma 5.29. Put fF|X' Dx:u' =: Dx,u. If Re(a) > 0, then flgDX:(f’au’) =
Dx(f*v). '

(Here f =(—) denotes the i-th cohomology sheaf of [(—) := RFy(Dxx- ®p ,(-).)
The p1oof is long and come to an end in (5.38). Before embarking in the proof,
let us show that we can finish the proof of (5.16, (3)) assuming (5.29).

5.30. Proof of ‘(5.29) = (5.16, (3))’. First note that, if Re(a) > 0, then

(5.30.1)
DR( / D (f°u))
=PH°(RF, DRx: (Dx:(f'*v')))
=PH°(RF, j{ DRx;(Dx:(f'*u"))), by (5.25) and (5.27),
= jI(PH°(RFyDRx; (Dx(f'*w')))), since j is affine,
(= 3(Cf~* ® PH*(RFi DRy, M"))).



161

(Here PH® denotes the perverse cohomology; ?H? o DR = DR oH* for regular holo-
nomic D-modules.) Then (5.16, (3)) holds for the special type of Dx,-module Dx,v
by (5.29). Using this, and assuming (A1)-(A6), we prove (5.16, (3)) for M by the
induction on d := dim supp Dx,u. From the construction, Dx,v is obtained as k!
from some K’. Consider a composition series of K°, and then apply ¢ —¥ as in
(5.20). Then we get a composition series

Dxo = Dx,0” 2 Dxou™ 2 -+ 2 Dx, o™ = 0.

Note that each composition factor is obtained as a result of ® —¥ asin (5.20). Since
Dx,u|V = M|V, exactly one of the composition factor is M, and the remaining
factors Dx,w'? := Dx,v? /Dx,v*t1) are supported by subvarieties of dimension
< d. (Indeed, supp(Dx;u') = Zy, supp(Dx,v) C Z and dim(Z \ V) < dimZ = d.)
Here we take as w(? the image of v(). By the first step, (5.16, (3)) holds for Dx,v.
By the induction hypothesis, it holds also for Dx, w(® except for exactly one i. (In
order to apply the induction hypothesis to Dx,w(®), we need to verify (A1)-(A6)
for this D-module, replacing X with a neighbourhood of f~1(0) if necessary. There
would be no difficulty except for (A5). As for (A5), note that, if (A3) is satisfied,
we can apply the procedure (5.22) keeping (A3).) Therefore we get (5.16, (3)) for
M =Dx,u. (Cf. the argument of (5.24).) O
Now we embark in the proof of (5.29).

Lemma 5.31.

0
/ Dy [s](Fu') = Dix, [s](f*v)-
F|X},

Proof. By (5.15), it suffices to show that

(5.31.1) /( Dxgwox (8t — (') (z'))

F|X{])xCXx
= Dxyxcx (6(t — f(z))u(z))-

By the isomorphism Xy x C* — Xy x C*, (z,t) — (z,t — f(z)) and by the similar
isomorphism Xj x C* — X3 x C*, (5.31.1) is transformed into

0 R
(5.31.2) / Dx: xcox (u'(2)6(t))
(Flxg)xCx

= Dxi1xcx (u(z)d(t)),
which is obvious. |

5.32. By (A3) for X' etc., Dx/[s](f"*u') = Dx:/(f'*u'). Let X"™* Cc X' be a
Zariski open neighbourhood of f'~1(0) such that Dx-[s](f'*u')|X"'* is subholonomic.
Since X* := X \ F(X'\ X'*) is a Zariski open neighbourhood of f~1(0), and
since (5.29) holds outside of f~1(0) by (5.31), we may assume that Dx:[s](f'*u’)
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is subholonomic, replacing X and X’ with X* and F~ 1(X *) (€ X'*). Further
shrinking X, we may assume that
(A9) Dx:[s](f'*u') and Dx[s|(f°v) are subholonomic..

5.33. Put

Ni=Dxlsl(f'y)
N' = T(X, / "D [sl(f°u')), and
N" .= image{cp : N’ —>vN’[f‘1]),
where ¢ is the natural morphism. Then these a,rerD x/[$,t]-modules, and finitely
generated D x-modules by (A9). By (5.31),
Gasn NPT =N =N,

and this is a Dx[s,t,t~!]-module. Obviously

(5.33.2) N[f~Y] = N[t™!].

Let us show that

(5.33.3) N"[f~1] = N"[t71].

Since N"[f~!] (= N[f™!]) is a Dx[s,t,t~*]-module, the inclusion ‘O’ is obvious.
Since N"[f~Y] = Dx,[s](f*v) (cf. (5.29) for v, and (5.31)), it suffices to show that
f~™ - fou; € N"[t7Y] (m > 0), i.e., t'(f~™ f°v;) € N” for [ > 0. The latter is
obvious. By (5.33.1)-(5.33.3),

(5.33.4) t™N C N" and t"N" C N

if m € Z is sufficiently large. (Note that N Cc N[f~!] and N” ¢ N"”[f~!]. Note
also that, to obtain (5.33.4), Dx|[s]-finiteness of N -and N” is enough.) Since
N" ~t™N" ¢ N as Dx-modules, N" is subholonomic D x-module. Moreover, we
can see that N and N satisfy (5.4.1)-(5.4.4), using the above relations. (The C[s]-
flatness of N”[f~*] follows from (5.33.1).) By (5.33.4), we get natural morphisms

t3lel A thN B tmN” c N
Y — — .
(s — ‘a)t3mN'f (s — a)t?™N (s—a)t™N" (s—a)N

(5.33.5)

Since N t’”N and N — tkN" for any k € Zxo, (5.33.5) can be identified with

tk tk
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| | A B c
(5.33.6) .N"(a+3m) — N(a+2m) — N"(a+m) — N(a).

By (5.3), BA and CB become 1somorphlms if Re( ) > 0. Then B is an isomor-
phism. Using (5.3) again, we get

(5.33.7) N(a) = N"(a) if Re(a) > 0.

Now, let 7 : T*X — X be the natural projection, W := ch(N), and W' :=
ch(N'), where ch(—) denotes the characteristic variety. (Cf. (2.2). )
Lemma 5.34. (1) WNn7~1(Xp) = W n7~1(Xy). (2) W'\ 7=1(Xy) is isotropic.

Proof. We get (1) from (5.33.1). Let W' := ch(Dx:[s](f*w")), and T*X’A<-’—)—

T*X xx X' — T*X the natural morphisms. (See (5.28) for X'.) By [Kal,
Theorem 4.2],

W'\ 77 (Xo) C wp™ (W' \ 7' 71 (Xg)),

where 7’ : T* X' — X' denotes the natural projection. By (5.26) (cf. also (5.27)),
and by [Kal, Proposition 4.9], we get (2). :

5.35. By (A9) and (5.34),

(5.35.1) N' is a subholonomic Dx-module, and

(5.35.2) K :=ker(p: N' — N'[f7Y]) is a holonomic Dx|s,t]-module.
Then by [Kal, Proposition 5.11],

(5.35.3) t"K =0 for m > 0.

For such m,

(5.35.4) 0t N s g N,

In fact, if w € N’ and ¢(t™u) = 0, then t™p(u) = 0. Since ¢ : N'[f~!] — N'[f7]
is injective, ¢(u) = 0. Hence u € K, t™u = 0, and (5.35.4) is injective. The
surjectivity is obvious. From (5.35.4), it follows that

tmNI ~ | tmN” ~ Nll
-— <
(s — a)t™N' (s —a)t™N" = (s—a—m)N"

—_
(&3]
w
ot
(<]

N’

~ N'"(a)

if Re(a) > 0. (The last isomorphism follows from (5.3).)
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Lemma 5.36. Let M be a D[s]-module which is finitely generated as a D-module.
Put T(a) :=ker(s—a | N — N). Then T(a) =0 ezcept for a finite number of a’s.
Proof. Since each T'(a) (a € C) is a D-submodule of M, and since for any mutually

distinct @, a1, ,04 € C, T(ap) N Eiﬂ T(c;) = 0, we get the result. (Note that
D is left noetherian.)

5.37. Put R := ker(tm : N' - t™N'), where m is a sufficiently large integer.
Since suppR C f~1(0), R is a holonomic Dx-module by (5.34, (2)). By (5.36),
ker(s—a—m|R — R) = 0if m € Z»o and Re(a) > 0. In this case, s—a—m: R — R
is- an isomorphism, since R is holonomic. Applying the snake lemma to

m

0 — R > N’ y tMN! ——— 0
l.ﬁ—a—m ls—a—-m ls——a
; ’ ™ :
0 + R - > N » tMN! — 0,
we get
NI mNI
(5.37.1) o ON

(s—a—m)N' ~ (s—a)t™N'
if Re(a) > 0 and m € Zxo.

5.38. Put N := Dx/[s](f"*u') and N(a) = N/(s - o)N. If Re(a) > 0 and
m € Zso, we get the commutative diagram

0 — N —5 N ——  [pN@ —— [N
R R S
0 y Nt N » [pN(a+m) —— [N

whose first row is exact. Here N is the Dx-module associated to N', i.e., N/ =
| 12 N. The injectivity of s — a follows from (5.36). Let K be the largest holonomic
submodule of [ FN Since K has a Dx|s, t]- module structure, t™K = 0 for m > 0.

Since [p N (a +m) is holonomic, its image in [N is annihilated by t™ (m > 0).
Hence we get the sequence

Ss—a

0
(5.38.1) 0—)N’—-——>N'—->/ Dx:(f'*u') —
F
if Re(a) > 0, i.e.,

NI

o
e T, /F Do (fou)).

(5.38.2)
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Summing up, we get

I'(X,Dx(f%v)) = N(a) ~ N"(a) by (5.33.7)
N t™N'
(s = a)tmN!

= G —-a]\—[— N by (5.37.1)
~ _.__..___.____..N,
T (s—a)N'

—F(X/ Dx (f'“u’)) by (5.38.2)

by (5.35.5)

by (5.3)

if Re(a) > 0. Thus

0
/ Dx/(f'*v') = Dx(f*v)
F
and we get (5.29), and hence we have also completed the proof of (5.16). |

5.39. Let Mod(Dx) denote the category of (left) Dx-modules, Mod,(Dx) (resp.
Mod,»(Dx)) its full subcategory consisting of holonomic (resp. regular holonomic)
Dx-modules, D(Dx) the derived category of Mod(Dx), and DE(Dx) (resp. D%, (Dx))
the full subcategory of D(Dx) consisting of bounded complexes with holonomic
(resp. regular holonomic) cohomologies. By [Be] (together with [Ka3], [Me]),

(5.39.1) D% (Dx) = Db(ModT;l(DX)).

If X is an affine variety, we can define Mod(Dyx), Mod,(Dx), Mod,(Dx),

D(Dx), D%(Dx) and D%, (Dx) in the same way as above.

Let Mod(Cx) denote the category of Cx-modules, D(Cx) its derived category,
and D?(Cyx) the full subcategory of D(Cyx) consisting of bounded complexes with
(algebraically) constructible cohomologies. .

5.40. Dx-Modules (f*, M), and (f*,M);. Let 0 # f € C[X], j:Xo =
X \ f~1(0) — X be the inclusion mapping, and M a regular holonomic Dx,-
module. If M is generated by global sections u = (u1, - ,up) (u; € I'(Xo, M)),
then we can define Dx(f*u) as in (5.9). Let v = (v1,---,v,) be another global
generator system of the Dx,-module M. Then for m € Z,

Rj.(Cf~*®DRx,(M)) ifm<0

DRx(Dx(f**™u)) =>DR‘X('DX(fa+m-'Q)) = { j(Cf~*@DRx,(M)) ifm>0

by (5.16). Hence the natural isomorphism Dx, (f*™u) ~ Dx,(f**™v) (~ Dx, f*®ox,
M) uniquely extends to Dx(f*t™u) ~ Dx(f**™wv) if m > 0 or m < 0. By the
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same reason, Dx(f**™u) is independent of a special choice of m € Z as far as
m > 0orm<L0.

Generally, let X = |J; U; be a finite open covering, u(? € I‘(U,, M)Pi (p; € Z30)
a finite generator system of M|U;, and consider Dy, (f*+™u(®) (m > 0 or m < 0).
By what we have seen above, these Dy,-modules patch together. In other words,
there uniquely exist regular holonomic Dx-modules (f*, M), = (f*, M). x and
(fY M) = (f*, M) x such that

. (fe, M) |U; ifm <0

= at+m, (1) _

(5.40.1) - Du(fm) = { (fo, MW|U;  ifm > 0.
'I_‘lien

(5.40.2) DRx((f*, M).) = Rj.(Cf~* ® DRx,(M)), and
(5.40.3) - DRx((f*, M)1) = 51(Cf~* ® DRx,(M)).

By (5.40.2) and (5.40.3), M — (f*, M), and M — (f*, M), are exact functors
Modrh(’on) — Mod,x(Dx). By (5.39.1), these functors have natural extensions
Drh(DXO)

— D? (Dx), which we shall denote by the same notation. Then (5.40.2) and
(5.40.3) hold for M € D2, (Dx,) as well.

5.41. Duality. For £ € Dg(Dx), its dual D(L)=Dx(L) = DDX(E') is defined
by

D(£') := RHomyp (£, Dx) ®ox Q&= X [dim X],

where Q% denotes the sheaf of regular differential forms of degree ¢, Hom denotes the
sheaf of local homomorphisms, and RHom its derived functor. For L' € Dz(D x),
DL is defined in a similar way. '

We denote the Verdier duality by D = Dx = Dy;

D(-) := RHom¢ (-, Cx[2 dim X]).

It is known that

D(DR(£)[dim X]) = DR(DL")[dim X]
for £ € D2 (Dx) ([Ho, Chapter V, §5, 5.1]). By (5.40.2) and (5.40.3),

(5411) DX(fa)M.)* = (f_aaDXoM.)!
for M € Db, (Dx,)- |

5.42. Integration of D-modules. Let F': X — Y be a morphism between non-
singular algebraic varieties over C. Let [  denote the usual functor of integration of
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Dx-modules along fibres [Kal] (cf. [Ho, Chapter I, 3.4]). Put [, := Dyo [,oDx.
Let 0 # g € C[Y], and assume that f := F*g # 0. Then by (5.40.2) and (5.40.3),

(5.42.1) /F(f"‘,M')* = (g, M’),, and

F|X,
(5.42.2) | /F'(fa,M'); = (9%, 'le 'M')s

for M" € D%, (Dx,). See [Ho, Chapter V, 5.3]. (Note that we do not need to
assume F' to be proper.)

5.43. Pull-back. Keep the notation of (5.42). Define the functors PF' and P F*
from D%, (Dy) to D?, (Dx) so that -

(DRx o PF')[dim X] = (F' o DRy)[dim Y], and
(DRx o P F*)[dim X] = (F* o DRy)[dim Y].

(See [Ho, Chapter I, 3.5.1], where P F' is denoted by F"'. The functor P F* is defined
by Dx o PF' oDy [Ho, Chapter III, 3.1.1].) Then by (5.40.2) and (5.40.3),

(5.43.1) DFY(g™, M), = (£, P(F|X,)' M')., and
(5.43.2) PF* (g%, M) = (2, P(F|X0)* M),
for M" € D%, (Dy,).

5.44. Tensor product. In the notation of (5.40), it is easy to see that

(5.44.1) (f*, Dxo f? ®0x, M')x = (f*7P, M), and
(5.44.2) (£ Dxo f* ®0x, M) = (F547, M),

for M € D% (Dx,). Let X; (i = 1,2) be non-singular varieties, 0 # f; € C[X,],
and X; o := X; \ f71(0). Then :

(5.44.3) |
((fr B f2)%, My & M;3)s = (f1', M)« B (fF, M3)s, and

(5.44.4) |

((fl X fZ)a’Mi M2)' = (flaaMl)' X (fzcxaMé)!a

for M; € Db, (Dx,). Now consider the case where X1 = X2 = X, fi = fo = f,
M; = M, and M; = Dx, fP~* ®oy, M'. Let A: X — X x X be the diagonal
morphism, and consider the pull—back of (5.44.3) using (5.43.1) and (5 44. 1) Then
we get : :

(5.44.5) (Fo4P, M; @6, Mi)e = (%, Mi). 86, (f%, M3)s
for M; € D2, (Ox,,)-
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Lemma 5.45. If M € Mod,+(Dx,) is locally free Ox,-module of rank r, then

ch(*, M), = ch(f*, M)s = 7 -h(Dx f).

(Here ch(—) denotes the characteristic cycle. See (2.2.4).) :

Proof. By (5.16), [Hi] and [La], we may assume that f~'(0) is normal crossing.
Since the problem is local (with respect to the classical topology), we may assume
that X = C® = {(x1, -+ ,%»)} and f is a monomial. By the usual devissage, we

may assume that M = Dx,(z?" ---zf) (8; € C). Then the assertion becomes
obvious. O '

Lemma 5.46. If M € Mod,#(Dx,), then ch(f*, M). = ch(f*, M) and it is
independent of o € C. ' ’

Proof. Since the assertion is of local nature, we may assume that M has a finite
global generator system u. Then it is enough to prove that

(5.46.1) ch Dx (f*u) is independent of a € C.

As we can see from (5.40), we can reduce the proof to the case where M is a
simple Dx,-module. By the argument of (5.30), we can reduce the proof to the
case considered in (5.25). Thus we get the assertion by a direct calculation.

CHARACTERISTIC CYCLE OF Dx|[s](f°u)

Lemma 5.50. Let Dx,u be a regular holonomic Dx,-module such that DR x, (Dx,u)
is a locally constant sheaf of rank r. Then Dx|[s](f°u) is Dx-coherent, and

ch(Dx[s](f*u) = - [Wy],
where Wy s the Zariski closure in T*X of

{(z,sdlog f(z)) e T* Xy | s € C*}.

(Recall that ch(—) denotes the characteristic cycle. Cf. (2.2. 4) )
Proof. (1) First consider the case where

X =C",
[1,n] = EUF,
= H ll}'fi (ei € Z>0),'
i€EE
u(z) = H z; ()\ € C),
1€E

and u consists of only one section u. Then we can prove by a direct calculation.
(2) Next consider the case where X, f(z) and u(z) are the same as in (1), but
w = (ug, - ,up) (u; € Dx,([[;22¥), 1 < i < p) is an arbitrary global generator
system of Dx,u. Put Euler := )., z;0;,, and decompose u; as u; = ;1.;1 v;j SO
that (Euler)v;; € Cu;j. Put v = (v;5)i;. Then we get a natural morphism
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N := Dx[s](f*u) = N := Dx[s)(f*s) = Dx(f*v).

Since N[f~!] — N'[f~1] and since N C N[f~!] and N’ C N'[f~!] by (5.9.5), ¢ is
injective. Since NV is a finite D x-submodule of the finite D x-module N/, N is also
D x-finite. Since N[t™!] = N[f~1] = N'[f~!] = N'[t™!], and since N and N’ are
Dx|s]-finite, N >~ t™N C N’ and N’ ~ t™N' C N for a sufficiently large integer
m. Hence the assertion holds in this case.

(3) Consider the case where X and f(z) are the same as in (1), but Dx,u is
arbitrary. We prove by the induction on thelength ! (= r) of Dx,u. If = 1, we have
already done in (2). Assume ! > 1, and let Dx,u’ be a simple submodule of D XoU-
Then u! = f~* 2 Qiju; with some k € Z>o and Q;; € Dx. Take m > 0 so that
form=*Qijf~* =t Pyj(s) € Dxls]. Then f**™u} = Y. Pyi(f*u;) € Dx|s](f*w).
Hence, replacing v’ with f™u', we may assume that Dx[s](f*u') C Dx[s](f*w).

Let »” be the image of u in Dx,u/Dx,u'. Put N := Dxl[s](f°u), N' :=
Dx|[s](f*u') and N" := Dx[s](f*u"). Then the length of Dx,u" is | — 1, and

B C
0 — N’ —>’N — N" — 0, and
' B' c’
0 — Nl[f—l] N N[f-—l] - Nll[f—l] -0

arc exact sequences of Dx|s,t]-modules, possibly except for the middle term of the
first sequence. Regard N’ C N by B. Put R :=ker C. Then

(5.50.1) R~t™R =' t™(N'[f~Y N N) =t™(N'[t"1]n N) CN' CR (m>0).

(Note that Dx[s] is left noetherian, and hence N'[t~!]NN is a finite D x[s]-module.)
Since t™R is a Dx-submodule of the finite Dx-module N/, R is also Dx-finite. .
From (5.50.1) and (2), we get ch R = ch N’ = [Wy]. On the other hand, N” is
D x-finite and ch N = (r — 1)[Wy] by the induction hypothesis. Hence we get the
result in this case. v : |

(4) Consider the case where X is general and f~!(0) is normal crossing. It is
enough to prove the similar assertion in the category of D%*-modules. Thus it
follows from the D*"-analogue of (3), which follows from (3).

(5) Consider the general case. We may and do assume X to be affine. Let
F : X' — X be a proper modification of f~1(0) such that the zero locus of f' := F*f
is normal crossing. Put X3 := X'\ f'71(0) (= Xo), identify Dx,u with a Dx;-.
module, and denote it by Dx;u'. Put : -

N := Dx[s](f*w),

0 |
N =T, [ Dalsl(fu), and
N := image(N’' — N'[f~!]).
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Then these are Dx/[s,t]-modules, and, N" and N are finite Dx-modules by (4).
Although we know only the Dx[s]-finiteness of N at the first stage, we can apply
(5.33.4) to the present N and N”. Since we have already obtained the D x-finiteness
of N”. N is also Dx-finite. Then the argument of (5.33) and (5.35) works in the
present situation, and we get

ch(N) = ch(N") by (5.33.4)
= ch(N') - Z[Au] by (5.35.2)

=r- [Wf] + Z[A by ( 4) (5.26) and [Kal Proposition 4.9]

where A, and A}, are some holonomic varieties. Thus we get the assertion in the
same way as the proof of [Kal, Corollary 5.12].
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LisT OF SYMBOLS

5.1. O = Ox, D = Dx, Da = Dx,a := Dx ®c A, Da = Dx 4 := Dx ®c A,
Dls] = Dx[s] := Dx ®c Cls], D[S t] = 'Dx[s t]:=D®c Cls, t]

5.2. b(s,N), AL(N), A_(N), N()

5.9. Xo:= X\ f~1(0), Dx[s](f*u) = 3, Dx[S](f“u)i, Dx(f*u) = 32, Dx(fu)i,

Dx[s](f°w), Dx(fow), fulV, (fulV)i, foulV, (foulV)i, gf*ulV

5.16. V25 Xo 5 X

5.24. Z, L, U 2% Zy —% X,

5.39. Modx(Dx), Mod,+(Dx), D}(Dx), D?,(Dx), DX(Cx)
5.40. (£, M), (f¢, M),

5.47. K (algebraic closure of C(s))



