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0. Let G be areductive Q-group and H a Q-subgroup of G. We consider the homogeneous
space X = H\G. Let P be a proper parabolic Q-subgroup of G. We call X = H\G
P-spherical (resp. weakly spherical) if the P-action is prehomogeneous (resp. if it is P-
spherical for some P). One can associate a family of zeta functions with a weakly spherical
homogeneous space and it is a conjecture that the associated zeta functions satisfy certain
functional equations similar to those satisfied by Eisenstein series.

If G = GL(n), then the notion of weakly spherical homogeneous space is closely re-
lated to the notion of prehomogeneous vector space and it is quite fruitful to investigate
zeta functions of prehomogenous vector spaces from the view point of weakly spherical
homogeneous spaces.

The aim of this note is to explain this new point of view through an example. First we
give the functional equations satisfied by the zeta functions attached to the weakly spherical
space Spin(10)\GL(16). Then we explain briefly how the result on Spin(10)\GL(16) can
be used to obtain the explicit functional equation of the zeta functions attached to the
prehomogeneous vector space (Spin(10) x GL(3), half-spin ® O). This space is one of the
most complicated ones among irreducible regular prehomogeneous vector spaces and the
explicit formula for the functional equation of the zeta function has not been known before.

1. The starting point is the following simple observation:

Lemma 1.1 Let P, ., be the standard (namely, upper triangular) parabolic subgroup of
GL(n) corresponding to the partitionn =e; +--- +e.. Let H be a connected Q-subgroup
of GL(n) Then the following are equivalent:

(1) (H X Py, .e;_y, M(n,m)) (m =€y +---+e,_1) is a prehomogeneous vector space.

(2) X = H\GL(n) is P.,,...,-spherical.
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In the case of H = Spin(10), we have the following.

Lemma 1.2 (Kimura [KKO]) We identify H = Spin(10) with the image of the half-
spin representation in GL(16). Let P be a standard parabolic subgroup of GL(16). Then,
X = Spin(10)\GL(16) is P-spherical if and only if P contains one of P111.13, P1,1,131,
Piisa, and Pgyag.

Combining these two lemma, we see that (Spin(10) x P, half-spin ® O) is a pre-
homogeneous vector space. Since the calculation of the explicit functional equation for
(Spin(10) x GL(3), half-spin ® O) can easily be reduced to the calculation for (Spin(10) x
Py 1,1, half-spin ® O), we concentrate our attention to this prehomogeneous space and the
weakly spherical homogeneous space Spin(10)\GL(16).

2. Let P be one of Py 113, P1,1131, P113,1,1, and Pi31,1,1. Denote by Qp the open P-orbit
in X. Let X(P) be the group of rational characters of P and X (P) the subgroup of X(P)
of characters corresponding to relative P-invariants on X. Then there exist 4 algebraically
independent relative invariants on X and Xy (P) is of finite index in X'(P). For x € Xu(P),
we fix a relative invariant fX satisfying

fX(zp) = x(p)f*(z) (z€X, p€P).
We may assume that

= (9 € Xu(P)).

Put
E(P) = Hom(Xy(P),{£1}).

For € € £(P), put

_ _ i Xx)
Qpe =<z € Qpr | sgn fX(z) = _lfx($)| =¢€(x) (Vx € XH(’P)) .
Then :
QP,R = U QP,E
: ec&(P)

gives the decompositon into connected componénts.
We put
, apc = Xn(P)®C = X(P)®C.
Choose a system of generators {x1, X2, X3, Xa} of Xu(P) so that fXi is regular everywhere
on X. For A = Y7 hixi € apc (Re(\;) > 0) and € € £(P), the function.

s [ L@ i 2 € Qp,
|f(z)|c = { 0 otherwise.
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does not depend on the choice of system of generators and is extended to a distribution
with meromorphic parameter A € ajc.
Let N be the unipotent radical of P and put

Ap(p) = d(pnp™')/dn € X(P),
where dn is the invariant gauge form on N. We define § = p € apc by

6=06p= %AP.

Now we can define the zeta functions Ec(P;z, ) for z € Xg and € € E(P) by

E(P;z, )= Y w@)lf@l*?,

yez-FﬂQp,e/FﬂP

where I' = GL(16, Z) and p(y) is the normalized volume of P,g/I' N P, (P, is the isotropy
subgroup of P at y).

Theorem 2.3 (1) Let a}' be the open cone in apr = X(P) ® R generated by characters
corresponding to everywhere regular relative invariants and put

apc =ap + V- lapg-

Then E.(P;z,)\) are absolutely convergent if A € § + apc
(2) The series E.(P;z,)) have analytzc continuations to meromorphic functions of A in

aP(C

To describe the functional equations satisfied by F.(P;z,)\), we need some notational
preliminaries. Let Sy be the symmetric group in 4 letters. For P = P, ¢, ¢ ¢, and o € Sy,
we define

°P =P,

€o=1(1)%~1(2)%o—1(3) %~ 1(a)"
Moreover o defines an isomomorphism between the standard Levi subgroups of P and °P
by permutation of the diagonal entries and induces a linear isomorphism

g a;’c — Cl;p’C.

For p € P, we write
D *
D2
Y]

0 P4
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We define the normalized zeta functions by

A

E(P;z,)) = ]] f(z“—z,,+

1<pu<r<4

e, +e
2

) E;(P; z, A,

where XA = ¥4, z,detp, € apc and {(2) = 77/2T(2/2)¢(2) (((2) = the Riemann zeta
function). '

Theorem 2.4 For o € Sy and € € £(°P), the following functional equation holds :

E(P;z, o)) = Y Cen(P; 0, \) Ey(P; 2, ),

ne&(P)

where Cc,(P;0,)) are meromorphic functions of A independent of x € Xg and have ele-
mentary expressions in terms of the gamma fucntion and the exponential function.

3. Let us collect here some data, which are necessary to make the functional equations
explicit.
For simplicity, we put

Pl = P1,1,1,13a P2 = P1,1,13,11 P3 = P1,13,1,1, P4 = P13,1,1,1-

We write
8(p) = 8p(p) = 61 det py + b2 det po + 63 det p3 + 84 det py.
Then
BRY-) - PR,
R T
(61762763764) %,%’_123’_%5 P:P3,
1-4.-2-%) - PoR.

We can choose 4 characters xo, X1, X2, X3 such that x&?, x1, x2, X3 generate the semigroup
Xy (P) consiting of characters corresponding to everywhere regular relative P-invariants.
These characters are given by the following and form a basis of the free abelian group

XH(P)Z
Case P = P1:

Xo(P) = p1p2ps - det ps, x1(p) = P}P3, x2(p) = pipip3, Xa(p) = Pip3ps-
Case P = Py:

Xo(P) = p1p2 - det psps, x1(p) = pip3, X2(p) = pipadet p2, xa(p) = PSp3 - det p3.
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Case P = P5:

Xo(p) = p1-det p2-psps, x1(p) = P3°P52, Xx2(p) = Py *p3*-detpz?, Xxa(p) = py°p3°-detpy*.
Case P = P;:

Xo(p) = det p1 - papsps, x1(p) = P3°ps°, x2(p) = P3°P32p7*, xs(p) = P2 p3pi.
We write :
A = z1detp; + 22 det p; + z3 det p3 + zs det ps € apc
and put

Q; = 2, — Zip1 (7' =1, 21 3)

Then, by the fact that x&, X1, X2, X3 generate the semigroup X (P), we have

ape = { A € apc| (0},

where
Re(a;;) > Re(al) > 0, R.C(O!2) >0 ... P= Pl,
(%) : 2Re(as) + Re(a;) > Re(az) > Re(a;) >0 --- P =P,
’ 2R€(012) + R,G(Clg) > Re(al) > Re(ag) >0 --- P=D;,
Re(al) > Re(ag) > 0, Rﬁ(az) >0 .-« P=P,.

The group S; acts on £(P) naturally. The following is the simplest case of the functional
equation given in Theorem 2.4:

Case 0 = (3,i+1) (i =1,2,3) and °P = P: If oe = ¢, then we have
E(P;z,0)) = E.(P;z,)).

If o€ # €, then we have

( E’E(P;x,a)\) )_ ( secw tanw )( E(P;z,\) )
ol .

Eae(P; z,0)) w sec w E'“(P; z, )

Put

L) = I Te(a-a+%5%), Ta@)=r"T (%)),

1<p<v<4

In the following, for € € £(P), we put

€ = G(X‘i) ('L = 0, 1, 2, 3)
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Case 0 = (2,3), P = Pi1131, °P = Py 1311 In this case, unless g = 70 and ez = 12, we ~
have

Cey(P;0,A) =0.
If o = 10 and €3 = 12, We have
Cen(P;0,A) = const x exp(linear form of A) X Lop(o)
I'p(A)
A4y (X + 205 — 03 9 AZY aa==6) jf mp = 41,
XL | 4 X AB3) (es=ea=6) ifp — ]
73,Mm2€3 4 72 )

where

APD(2) AP (z) : cos T (:1: + %1) - sin &
=T'r(224+2)'r(2 .
(A(_’"q)(z) AP9(2) r(22+2) R('z+p+q) sin & cosT(x )

Note that this is the gamma matrix of the functional equation satisfied by

2 z

2 2 2
lzl+"'+mp—zp+1_"'_xp+q

Case 0 = (3,4), P = Py1,1.13, °P = P11,13,: In this case, unless €g = 1o and €; = 1y, we
have

Cey(P;0,X) =0.
If ¢ = 19 and €¢; = 11, we have
' Top(oX
Cen(P;0,)) = const x exp(linear form of ) x p(od)
’ : I'p(N)
(34) ' a;—1 ag—a; —6
XB(ﬂlﬂz,711173),(7116263117162) ( 9 4 ) ’

where
Bg?,;‘*)(zl, z3) = Ir(221 + 225 + 3)TR(221 + 22 + 8)[R(222 + 2)['R(222 + 7) X bg?,;‘*)(zl, %)

and the functions b3 (2, z2) are given by the following table:

e\n N +— —+ —
++ | cosm(s1 + s2)sin7sy 0 0 0
+-—- 0 —sin(s; + s2) sin sy 0 —sinwsy
-+ 0 1 cos sy + s2) cos TSy sin w(s1 + s2)
— 0 — COS TS9 — cos (s + $2) —sinw(s; + 82) cos s
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Note that the matrix (Be(f’;;‘*)) is the gamma matrix of the local functional equation of the
prehomogeneous vector space (SO(3,4) x Py 1, M(7,2)). '

4. Now we apply the result of the preceding section to the prehomogeneous vector space
(Spin(10)x Py 1 1, half-spin®0). First we recall the relation between prehomogeneous vector
spaces and weakly spherical homogeneous spaces given in Lemma 1.1. The weakly spherical
space Spin(10)\GL(16) we have just studied is closely related to the prehomogeneous vector
space (Spin(10) x Py 1,1, half-spin® O). One can express the zeta functions associated with
the latter space in terms of the Riemann zeta function and E.(P;1,,3;Z,\). Moreover
there exists a similar relation between E.(P311,1;%,A) and the zeta functions associated
to the prehomogeneous vector space dual to (Spin(10) X P; 1, half-spin ® O). Then it can
be shown that the functional equation obtained from the general theory of prehomogeneous
vector spaces is nothing but the functional equation corresponding to the cyclic permutation
(;gii‘), which connects Ec(Py31,1,1;%,A) to Ey(P11,1,13; %, A). It is rather hard to calculate
the functional equation explicitly; however, if we decompose the functional equation as
E(Piis; %, %) &3 E(Py1,13,15 %, %) e E(P1131,15 %, %) @3 E(Pi31,1,1; %, %),

then, as the formulas in §3 shows, the functional equations corresponding to the transposi-
tions (1,2), (2, 3), (3,4) are simple enough for explicit calculation. These simple functional
equations are not visible if we stick to the view point of prehomogeneous vector spaces.

5. The detail of the proof of the above results will apear in [S5]. The result in §2 can be
extended to arbitrary weakly spherical homogeneous spaces of GL(n) (see [S2] and [S3]).
This generalization is based on Lemma 1.1 and the theory of zeta functions associated with
prehomogeneous vector spaces ([S1]). To extend the result further to reductive groups other
than GL(n), we can no longer appeal to the theory of prehomogeneous vector spaces. We
are sure that the key of further generalization is the study of the regularization of period
integrals of Eisenstein series ([S4]).
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