DETERMINANT OF \(\ell \text{-ADIC COHOMOLOGY} \)

TAKESHI SAITO (斎藤 毅)

Department of Mathematical Sciences University of Tokyo (東大 数理)

We consider the following problem.

Let \mathcal{F} be a smooth ℓ -adic sheaf on a smooth scheme U over a field k of characteristic $\neq \ell$. Determine the 1-dimensional ℓ -adic representation

$$\det R\Gamma_c(U_{\bar{k}},\mathcal{F}) = \bigotimes_q (\wedge^{\dim} H^q_c(U_{\bar{k}},\mathcal{F}))^{\otimes (-1)^q}$$

of the absolute Galois group $Gal(\bar{k}/k)$.

Under certain mild assumptions, the answers are roughly given as follows.

- (1) When the sheaf \mathcal{F} is constant, it is determined by the discriminant of the de Rham cohomology.
- (2) In general, it is the tensor product of the following 3 contributions.
- (i) That for the constant sheaf raised to its rank-th power.
- (ii) The determinant det $\mathcal{F} = \wedge^{\text{rank}} \mathcal{F}$ "evaluated" at the canonical cycle.
- (iii) The Jacobi sum Hecke character determined by the ramification at the boundary.

In this report, only basic ideas will be sketched because the papers [S1], [S2] are already published. There is a Hodge-de Rham versionas announced in [S-T].

- 1. Basic examples.
- A. Fermat curve and Jacobi sum.

We consider the ℓ -adic sheaf \mathcal{F} on $U = \mathbb{P}^1 - \{0, 1, \infty\} = \{(u : v : w) \in \mathbb{P}^2 | u + v + w = 0, uvw \neq 0\}$ over a field k containing a primitive m-th root of unity defined by the covering by a Fermat curve

$$X = \{(x:y:z) \in \mathbb{P}^2 | x^m + y^m + z^m = 0\} \to \mathbb{P}^1 = \{(u:v:w) \in \mathbb{P}^2 | u + v + w = 0\}$$
$$(x:y:z) \mapsto (x^m:y^m:z^m)$$

unramified on U. Let $\mathbf{a}=(a,b,c)\in \mathrm{Ker}((\mathbb{Z}/m)^3\xrightarrow{\mathrm{sum}}\mathbb{Z}/m), a,b,c\neq 0$ be a character of $\mathrm{Gal}(X/\mathbb{P}^1)=\mu_m^3/\mathrm{diag}$, and let $\mathcal{F}_{\mathbf{a}}$ be the corresponding smooth ℓ -adic sheaf of rank 1 on U. Since $H_c^q(U_{\bar{k}},\mathcal{F}_{\mathbf{a}})=0$ except for q=1 and is of dimension 1 for q=1, the determinant $\det R\Gamma_c(U_{\bar{k}},\mathcal{F}_{\mathbf{a}})$ is the dual of $H_c^1(U_{\bar{k}},\mathcal{F}_{\mathbf{a}})$. It is a well-known fact that the 1-dimensional ℓ -adic representation $H_c^1(U_{\bar{k}},\mathcal{F}_{\mathbf{a}})$ is that defined

by the Jacobi sum Hecke character $J_{\mathbf{a}}$. When $k = \mathbb{Q}(\zeta_m)$, for a finite place $p \nmid m$, the algebraic Hecke character $J_{\mathbf{a}}$ is defined by

$$J_{\mathbf{a}}(p) = -\sum_{(u:v:w)\in V(\kappa(v))} \left(\frac{u}{p}\right)_{m}^{a} \left(\frac{v}{p}\right)_{m}^{b} \left(\frac{w}{p}\right)_{m}^{c}$$

where $\left(\frac{1}{p}\right)_m$ denotes the *m*-th power residue symbol at v and $V = \{(u:v:w) \in \mathbb{P}^2 | u+v+w=0, uvw \neq 0\}$. The fact above is a consequence of the Grothendieck trace formula. Here we note that a,b,c appearing in the definition of $J_{\mathbf{a}}$ determine the restriction of the character \mathbf{a} to the inertia groups $\mu_m \subset \mu_m^3/\text{diag}$. at the points u=0,v=0,w=0 respectively. As a conclusion, we see the contribution (iii) of the ramification at boundary in this case.

B. Unramified case (cf. [SS]).

In case A above, we only get the contribution of the ramification. However, in a general case, we have contributions (i) and (ii) of global invariants. This is found by Shuji Saito in the case where the base field is finite.

Theorem. (Shuji Saito) Let \mathcal{F} be a smooth ℓ -adic sheaf on a projective smooth variety X over a finite field k of characteristic $\neq \ell$. Then the action of the geometric Frobenius $Fr_k \in Gal(k_{sep}/k)$ on $\det R\Gamma_c(U_{\bar{k}}, \mathcal{F})$ is given by

$$\det(Fr_k:R\Gamma_c(X_{\bar{k}},\mathcal{F}))=\det(Fr_k:R\Gamma_c(X_{\bar{k}},\mathbb{Q}_\ell))^{\mathrm{rank}\mathcal{F}}\times\det\mathcal{F}(c_X).$$

Here $\det \mathcal{F}(c_X)$ denotes the value of the ℓ -adic character of the arithmetic fundamental group $\pi_1(X)^{ab}$ corresponding to $\det \mathcal{F} = \wedge^{\operatorname{rank}} \mathcal{F}$ evaluated at the image of the canonical class $c_X = (-1)^n c_n(\Omega_X^1) \in CH^n(X), n = \dim X$, by the reciprocity map $CH^n(X) \to \pi_1(X)^{ab}$ of the class field theory.

2. Constant coefficient.

If we assume that our U admits a smooth compactification X such that the complement D = X - U is a divisor with simple normal crossings, then the determinant $\det R\Gamma_c(U_{\bar{k}}, \mathbb{Q}_\ell)$ is the alternating product of $\det R\Gamma(D_{J,\bar{k}}, \mathbb{Q}_\ell)$ where the intersections $D_J = \bigcap_{i \in J} D_i$ of the irreducible components of $D = \bigcup_{i \in I} D_i$ are proper and smooth. In the sequel, we consider the case where U = X is projective and smooth. By Poincaré duality, we see

$$\det R\Gamma(X_{\bar{k}}, \mathbb{Q}_{\ell})^{\otimes 2} \simeq \mathbb{Q}_{\ell}(-n\chi)$$

where $n = \dim X$ and χ is the Euler characteristic of $X_{\bar{k}}$. Hence there is a character ϵ of $\operatorname{Gal}(k_{sep}/k)$ of order 2 such that

$$\det R\Gamma(X_{ar{k}},\mathbb{Q}_\ell)\simeq \epsilon(-rac{n\chi}{2}).$$

When the dimension n is odd, since the cup-product on H^n is a non-degenerate alternating form, the dimension of H^n and hence the Euler number χ are even and ϵ is trivial. Therefore the only non-trivial problem is to determine ϵ when n is even. The answer is the following.

Theorem 1. Assume char $k \neq 2$ and let X be a projective smooth variety over k of even dimension n = 2m. Then the character ϵ corresponds to the square roots of

$$(-1)^{m\chi+b^-} \cdot \operatorname{disc} H_{dR}^n$$

where χ is the Euler number, $b^- = \sum_{q < n} H^q_{dR}(X/k)$ and disc H^n_{dR} is the discriminant of the cup-product of the de Rham cohomology of the middle degree.

Proof is done by taking a Lefschetz pencil and by computing the vanishing cycles by the Picard-Lefschetz formula.

3. With coefficient.

Our result gives an answer under the following rather mild assumption.

- (1) The ramification of \mathcal{F} along the boundary is tame. More precisely, we take a smooth compactification X of U such that the complement D = X U is a divisor with simple normal crossings and, at each irreducible component of D, the pro-p Sylow subgroup of the inertia group acts trivially on the stalk of \mathcal{F} .
- (2) There is a subring $A \subset k$ finitely generated over \mathbb{Z} such that \mathcal{F} is defined on a model of U on A.

The condition (1) is satisfied if char k = 0 and (2) is satisfied if \mathcal{F} is defined geometrically.

Under the hypothesis (2), by the Cebotarev density, the problem is reduced to the residue fields of the maximal ideals of A and hence, for simplicity, we will assume k is finite in the sequel.

First we describe the formula for curve. Let U be a smooth curve over a finite field k of order q and X be the smooth compactification. Let \mathcal{F} be a smooth ℓ -adic sheaf $(\ell \nmid q)$ on U at most tamely ramified at the boundary D = X - U. For simplicity, we assume that the points $x_i \in D = \{x_i\}$ are rational over k and that, for each x_i , the representation of the inertia group I_i on the stalk of \mathcal{F} is the direct sum $\mathcal{F}|_{I_i} \simeq \bigoplus_j \chi_{i,j}$ of characters of the quotient $I_i \to k^{\times} : \sigma \mapsto \sigma(\pi_i^{\frac{1}{q-1}})/\pi_i^{\frac{1}{q-1}}$ where π_i is a uniformizer at x_i . In this case, the product formula [L] of Laumon gives us

Theorem. (Laumon) Let U be a smooth curve over a finite field k and \mathcal{F} be a smooth ℓ -adic sheaf on U tamely ramified along the boundary satisfying the simplifying assumption above. Then

$$\det(Fr_k : R\Gamma_c(U_{\bar{k}}, \mathcal{F})) = \det(Fr_k : R\Gamma_c(U_{\bar{k}}, \mathbb{Q}_\ell))^{\operatorname{rank}\mathcal{F}} \times J_{Y_{\mathcal{F}}} \times \det \mathcal{F}(c_{X,D}).$$

Here $\chi_{\mathcal{F}}$ is the family of $M = \deg D \times \operatorname{rank} \mathcal{F}$ characters $(\chi_{i,j})_{x \in D, 1 \leq i \leq \operatorname{rank} \mathcal{F}}$ of k^{\times} and $J_{\chi_{\mathcal{F}}}$ denotes the Jacobi sum

$$J_{\chi_{\mathcal{F}}} = (-1)^M \sum_{(a_{i,j}) \in V(k)} \prod_{i,j} \chi_{i,j}(a_{i,j})$$

where $V = \{(a_{i,j}) \in \mathbb{P}^{M-1} | \sum a_{i,j} = 0, \prod a_{i,j} \neq 0\}$. The relative canonical class $c_{X,D}$ denotes the class

$$-\sum_{x\in U} deg_x \omega \cdot [x] \in \bigoplus_{x\in U} \mathbb{Z}/\{a\in K^\times | a\equiv 1 \bmod D\} = CH^1(X,D)$$

where ω is a rational section of $\Omega^1_X(\log D)$ satisfying $\operatorname{ord}_x\omega=0$, $\operatorname{res}_x=1$ for $x\in D$ and $\det F(c_{X,D})$ denotes the value of the character of $\pi_1(U)^{\operatorname{ab}, \operatorname{tame}}$ corresponding to the rank 1 sheaf $\det \mathcal{F}$ evaluated at the image of $c_{X,D}$ by the reciprocity map $CH^1(X,D)\to \pi_1(U)^{\operatorname{ab}, \operatorname{tame}}$ of the class field theory.

Our main result in higher dimension is formally the same as in the case of curve.

Theorem 2. Let X be a projective smooth variety over a finite field k and U be an open subscheme such that the complement D = X - U is a divisor with simple normal crossings. Let \mathcal{F} be a smooth ℓ -adic sheaf on U tamely ramified along the boundary D. Then

$$\det(Fr_k:R\Gamma_c(U_{\bar{k}},\mathcal{F})) = \det(Fr_k:R\Gamma_c(U_{\bar{k}},\mathbb{Q}_\ell))^{\mathrm{rank}\mathcal{F}} \times J_{\chi_{\mathcal{F}}} \times \det \mathcal{F}(c_{X,D})$$

where $J_{\chi_{\mathcal{F}}}$ and det $\mathcal{F}(c_{X,D})$ are defined below.

The proof is analogous to the constant coefficient case and is done by the induction on dimension by taking a Lefschetz pencil and by computing the vanishing cycle.

In the rest of this report, I explain the idea of the definition of the terms in the right hand side of Theorem 2. The definition of the Jacobi sum is easier. Let X be a smooth compactification of U such that the complement D = X - U is a divisor with simple normal crossings. For simplicity, we assume the constant fields of the components D_i of D are k and the Euler numbers $\chi_i = \sum_q (-1)^q \dim H_c^q(D_{i,\bar{k}}^*, \mathbb{Q}_\ell)$ of $D_i^* = D_i - \bigcup_{j \neq i} D_j$ are bigger or equal to 0. We also assume for simplicity that for each irreducible component D_i , the representation of the inertia group I_i on the stalk of \mathcal{F} is the direct sum $\mathcal{F}|_{I_i} \simeq \bigoplus_j \chi_{i,j}$ of characters of the quotient $I_i \to k^\times : \sigma \mapsto \sigma(\pi_i^{\frac{1}{q-1}})/\pi_i^{\frac{1}{q-1}}$ where π_i is a uniformizer of the divisor D_i . Under the above simplifying assumption, we define the Jacobi sum $J_{\chi_{\mathcal{F}}}$ by

$$J_{\chi_{\mathcal{F}}} = (-1)^M \sum_{(a_{i,j,k}) \in V(k)} \prod_{i,j,k} \chi_{i,j}(a_{i,j,k})$$

where i runs the indices of the irreducible components of D, $1 \le j \le \operatorname{rank} \mathcal{F}$, $1 \le k \le \chi_i$, $M = \operatorname{rank} \mathcal{F} \times \sum_i \chi_i$ and $V = \{(a_{i,j,k}) \in \mathbb{P}^{M-1} | \sum_i a_{i,j,k} = 0, \prod_i a_{i,j,k} \ne 0\}$.

Finally I explain the idea of the definition of the relative canonical class $c_{X,D}$ in higher dimension. Note that in the case of curve, the residue $\operatorname{res}_x:\Omega^1_X(\log D)\otimes \kappa(x)\to\kappa(x)$ at $x\in D$ defines a trivialization of the invertible sheaf $\Omega^1_X(\log D)$ at x. In general case, for each irreducible component D_i of the complement D=X-U, the residue $\operatorname{res}_i:\Omega^1_X(\log D)\otimes \mathcal{O}_{D_i}\to \mathcal{O}_{D_i}$ defines a partial trivialization of the locally free sheaf $\Omega^1_X(\log D)$ of rank n. This family of partial trivializations enables us to define a refined chern class $c_n(\Omega^1_X(\log D),\operatorname{res})$ as follows. Let's briefly recall a definition of the top chern class $c_n(\mathcal{E})$ of a locally free sheaf \mathcal{E} of rank n on a smooth variety X. It is the image of 1 by the composition map

$$\mathbb{Z} \simeq H^n_{\{0\}}(V, \mathcal{K}_n) \to H^n(V, \mathcal{K}_n) \simeq H^n(X, \mathcal{K}_n) = CH_n(X)$$

where V denotes the vector bundle associated to \mathcal{E} , \mathcal{K}_n is the Zariski sheaf associated to Quillen's K-group and the last equality is a consequence of the Gersten resolution.

To define the refined chern class $c_n(\Omega_X^1(\log D), \text{res})$, let V be the vector bundle associated to $\Omega_X^1(\log D)$ and we consider complexes

$$\mathcal{K}_{n,X,D} = [\mathcal{K}_{n,X} \to \bigoplus_i \mathcal{K}_{n,D_i}], \mathcal{K}_{n,V,\Delta} = [\mathcal{K}_{n,V} \to \bigoplus_i \mathcal{K}_{n,\Delta}]$$

where $\Delta_i \subset V_{D_i}$ is the inverse image of the 1-section by res_i: $V_{D_i} \to \mathbb{A}^1_{D_i}$. We define the class as the image of 1 by the composition map

$$\mathbb{Z} \simeq H^n_{\{0\}}(V, \mathcal{K}_{n,V,\Delta}) \to H^n(V, \mathcal{K}_{n,V,\Delta}) \simeq H^n(X, \mathcal{K}_{n,X,D}) = CH^n(X,D).$$

Here the first isomorphism is by the fact $\Delta \cap \{0\} = \emptyset$, the second isomorphism is by the homotopy property of K-cohomolgy and the equality is the definition. Thus $c_{X,D} = (-1)^n c_n(\Omega^1_X(\log D), \operatorname{res}) \in CH^n(X,D)$ is defined. By the reciprocity map $CH^n(X,D) \to \pi_1(U)^{\operatorname{ab},\operatorname{tame}}$, the value det $\mathcal{F}(c_{X,D})$ of the character of $\pi_1(U)^{\operatorname{ab},\operatorname{tame}}$ corresponding to det \mathcal{F} evaluated at the image of $c_{X,D}$ is defined. This is the idea of the definition.

More detail will be found in [S1], [S2].

REFERENCES

- [L] G.Laumon, Transformation de Fourier, constantes d'équations fonctionelles et conjecture de Weil, Publ.Math.IHES 65 (1987), 131-210.
- [SS] S.Saito, Functional equations of L-functions of varieties over finite fields, J.Fac.Sci.Univ.of Tokyo, Sect IA, Math 31 (1984), 287-296.
- [S1] T.Saito, ε-factor of a tamely ramifed sheaf on a variety, Inv. Math 113 (1993), 389-417.
- [S2] _____, Jacobi sum Hecke characters, de Rham discriminant, and the determinant of \ell-adic cohomologies, J. of Alg. Geom 3 (1994), 411-434.
- [S-T] T.Saito-T.Terasoma, A determinant formula for period integrals, Proc. of Japan Acad.Ser.A 69 (1993), 131-135.

More references will be found in the lists in [S1], [S2].