COHOMOLOGICAL RADON TRANSFORM AND MIXED TWISTED EHRHART POLYNOMIAL

TOMOHIDE TERASOMA

Let f_1, \ldots, f_r be Laurent polynomials in $\mathbf{C}[x_1^{\pm}, \ldots, x_n^{\pm}]$, $\alpha_1, \ldots, \alpha_r \beta_1, \ldots, \beta_n$ be rational numbers in $\frac{1}{m}\mathbf{Z}$. For a multivalved function $\eta = f_1^{-\alpha_1} \cdots f_r^{-\alpha_r} x_1^{\beta_1} \cdots x_n^{\beta_n}$, the corresponding local system on $U = \mathbf{C}^N - \{f_1 \cdots f_r \neq 0\}$ is denoted by $\mathbf{C}(\eta)$. In this note, we study the Hodge structure of $H_c^i(U, \mathbf{C}(\eta))$. Let $\mathbf{T}(x)$ and $\mathbf{T}(t)$ be n-dimensional tori Spec $\mathbf{C}[x_1^{\pm}, \ldots, x_n^{\pm}]$ and Spec $[t_1^{\pm}, \ldots, t_n^{\pm}]$ respectively and π : $\mathbf{T}(t) \to \mathbf{T}(x)$ be the morphism defined by $x_i = t_i^m$ $(i = 1, \ldots, n)$. Define finite coverings Y and \tilde{Y} of $\mathbf{T}(x)$ and $\mathbf{T}(t)$ by $Y = Spec[x_1^{\pm}, \ldots, x_n^{\pm}, w_1^{\pm}, \ldots, w_r^{\pm}]/(w_i^m - f_i)_{i=1,\ldots,r}$ and $\tilde{Y} = Y \times_{\mathbf{T}(x)} \mathbf{T}(t)$ respectively. The natural homomorphisms are denoted by $\phi: Y \to \mathbf{T}(x)$ and $\tilde{\phi}: \tilde{Y} \to \mathbf{T}(t)$ respectively. For elements $g = (g_1, \ldots, g_r) \in \mu_m^r$ and $h = (h_1, \ldots, h_n) \in \mu_m^n$, we define automorphisms of Y and $\mathbf{T}(t)$ over $\mathbf{T}(x)$ by

$$\begin{split} \mu_m^r \ni g \mapsto (w_i \mapsto g_i w_i) \in \operatorname{Aut}(Y/\mathbf{T}(x)) \\ \mu_m^r \ni h \mapsto (t_j \mapsto h_j t_j) \in \operatorname{Aut}(\mathbf{T}(t)/\mathbf{T}(x)) \end{split}$$

respectively. Via the above homomorphisms, μ_m^r and μ_m^n are identified with subgroups of $\operatorname{Aut}(Y/\mathbf{T}(x))$ and $\operatorname{Aut}(\mathbf{T}(t)/\mathbf{T}(x))$ respectively. The group $\mu_m^r \times \mu_m^n$ is identified with a subgroup of $\operatorname{Aut}(\tilde{Y}/\mathbf{T}(x))$ by fiber product. For characters χ_1 and χ_2 of μ_m^r and μ_m^n , we define $(\phi_!\mathbf{C})(\chi_1^{-1})$, $\pi_!\mathbf{C}(\chi_2)$ and $\tilde{\phi}_!\mathbf{C}(\chi_1^{-1},\chi_2)$ through the actions defined as before. Then we have

$$(\tilde{\phi}_!)(\chi_1^{-1},\chi_2)\simeq (\phi_!\mathbf{C})(\chi_1^{-1})\otimes (\pi_!\mathbf{C})(\chi_2).$$

From now on, we assume the following conditions:

- (*) The variety $D_i = \{x \in \mathbf{T}(x) \mid f_i = 0\}$ is irreducible and $D_i \neq D_j$. (**) $\alpha_1, \ldots, \alpha_r, \alpha_1 + \cdots + \alpha_r$ are not an integers.
- Let χ_1, χ_2 be characters corresponding to $(a_1, \ldots, a_r) \in (\mathbf{Z}/m)^r$ and $(b_1, \ldots, b_n) \in (\mathbf{Z}/m)^n$, where $a_i = m\alpha_i$ and $b_i = m\beta_i$. If we define $Y^0 = \phi^{-1}(U)$ and $\phi^0 = \phi|_{Y^0}$, then under the above conditions (*) and (**), we have $(\phi_! \mathbf{C})(\chi_1^{-1}) = j_!(\phi_!^0\mathbf{C})(\chi_1^{-1})$, where j is the natural inclusion $j: U \to \mathbf{T}(x)$. Therefore we have an isomorphism $H_c^i(U, \mathbf{C}(\eta)) \simeq H_c^i(\mathbf{T}(x), (\tilde{\phi}_! \mathbf{C})(\chi_1^{-1}, \chi_2))$.

We compute $(\phi_! \mathbf{C})(\chi_1^{-1})$ via a family of Fermat hypersurfaces. Let $\mathbf{T}(u) = \operatorname{Spec} \mathbf{C}[u_1^{\pm}, \dots u_r^{\pm}]$ and \mathcal{Y} be a hypersurface of $\mathbf{T}(u) \times \mathbf{T}(x)$ defined by

$$\mathcal{Y}: u_1^m f_1(x) + \dots + u_r^m f_r(x) = 1.$$

The composite of the natural inclusion $\mathcal{Y} \to \mathbf{T}(u) \times \mathbf{T}(x)$ and the second projection $\mathbf{T}(u) \times \mathbf{T}(x) \to \mathbf{T}(x)$ is denoted by $\psi : \mathcal{Y} \to \mathbf{T}(x)$. This is a family of Fermat hypersurfaces parameterized by $(x_1, \ldots, x_n) \in \mathbf{T}(x)$. We define Fermat hypersurface F^{r-1} by $F^{r-1} : \xi_1^m + \cdots + \xi_r^m = 1$ in $\mathbf{T}(\xi) = \operatorname{Spec} \mathbf{C}[\xi_1^{\pm}, \ldots, \xi_r^{\pm}]$. The group μ_m^r acts on F^r by

$$\mu_m^r \ni g \mapsto (\xi_i \mapsto g_i \xi_i) \in \operatorname{Aut}(F^{r-1})$$

Through this action, we define $H^{r-1}(F^{r-1}, \mathbf{C})(\chi_1)$ for a character χ_1 of μ_m^r .

Proposition 1. Under the condition (*) and (**), we have a motivic isomorphism:

$$(R^{i}\psi_{!}\mathbf{C})(\chi_{1}) \simeq \begin{cases} (\phi_{!}\mathbf{C})(\chi_{1}) \otimes H^{r-1}(F^{r-1},\mathbf{C}) & (i=r-1) \\ 0 & (i\neq r-1). \end{cases}$$

Proof. Let \mathcal{Y}^0 be the inverse image $\psi^{-1}(U)$ of U and ψ^0 be the restriction of ψ to \mathcal{Y}^0 . First we prove

(1)
$$(R^{i}\psi_{!}^{0}\mathbf{C})(\chi_{1}) \simeq \begin{cases} (\phi_{!}^{0}\mathbf{C})(\chi_{1}) \otimes H^{r-1}(F^{r-1},\mathbf{C}) & (i=r-1) \\ 0 & (i\neq r-1). \end{cases}$$

We define an isomorphism ν between $\mathcal{Y}^0 \times_U Y^0$ and $F^{r-1} \times Y^0$ by

$$\nu: \mathcal{Y}^0 \times_U Y^0 \ni (u_i, w_i) \mapsto (\xi_i = u_i w_i, w_i) \in F^{r-1} \times Y^0.$$

Then if we define a homomorphism

$$\mu: \mu^r_m \times \mu^r_m \ni (g,h) \mapsto (gh,h) \in \mu^r_m \times \mu^r_m,$$

the following diagram commutes.

$$\begin{array}{ccc} \mathcal{Y}^0 \times_U \mathcal{Y}^0 & \xrightarrow{(g,h)} & \mathcal{Y}^0 \times Y^0 \\ \downarrow & & \downarrow & \\ F^{r-1} \times Y^0 & \xrightarrow{\mu(g,h)} & F^{r-1} \times Y^0 \end{array}$$

We denote ψ_1 and ψ_2 the natural morphisms $\psi_1: \mathcal{Y}^0 \times_U Y^0 \to U$ and $\psi_2: F^{r-1} \times Y^0 \to U$, respectively. Then we have the following isomorphisms:

$$(R^{i}\psi_{!}^{0}\mathbf{C})(\chi_{1}) \simeq (R^{i}\psi_{1!}^{0}\mathbf{C})(\chi_{1}, 1)$$

$$\simeq (R^{i}\psi_{2!}^{0}\mathbf{C})(\chi_{1}, \chi_{1}^{-1})$$

$$\simeq H_{c}^{i}(F^{r-1}, \mathbf{C})(\chi_{1}) \otimes (\phi_{1}^{0}\mathbf{C})(\chi_{1}^{-1})$$

By the condition for a_1, \ldots, a_r , we have $H^i(F^{r-1}, \mathbf{C})(\chi_1) = 0$ if $i \neq r-1$. Therefore we have the identity (1). Since $(\phi_! \mathbf{C})(\chi_1^{-1})_x = 0$ for $x \in D = f_1 \cdots f_r = 0$, it is enough to prove that $(R^i \psi_! \mathbf{C})(\chi_1)_x = 0$ for $x \in D$. But if $f_i(x) = 0$, the $1 \times \cdots \times \mu_m^i \times \cdots \times 1$ acts trivially on the stalk $(R^i \psi_! \mathbf{C})_x$ by proper base change theorem. Therefore we have the required vanishing.

Let \mathcal{Y} be the fiber product $\mathcal{Y} \times_{\mathbf{T}(x)} \mathbf{T}(t)$ and $\mu_m^r \times \mu_m^n$ acts on \mathcal{Y} induced by the actions of μ_m^r and μ_m^n on \mathcal{Y} and $\mathbf{T}(t)$ respectively.

Corollary 2. Under the same condition of Proposition 1. We have the following isomorphism

$$H_c^{i+r-1}(\tilde{\mathcal{Y}},\mathbf{C})(\chi_1,\chi_2) \simeq H_c^i(\mathbf{T}(x),(\tilde{\phi}_!\mathbf{C})(\chi_1^{-1},\chi_2)) \otimes H^{r-1}(F^{r-1},\mathbf{C})(\chi_1)$$

Moreover, this isomorphism is compatible with the Hodge filtrations.

Proof. Let $\tilde{\psi}: \tilde{\mathcal{Y}} \to \mathbf{T}(x)$ be the natural morphism. Since

$$(R^{q}\tilde{\psi}_{!}\mathbf{C})(\chi_{1},\chi_{2}) \simeq (R^{q}\psi_{!}\mathbf{C})(\chi_{1}) \otimes (\pi_{!}\mathbf{C})(\chi_{2})$$

$$\simeq \begin{cases} 0 & (q \neq r-1) \\ (\phi_{!}\mathbf{C})(\chi_{1}^{-1}) \otimes (\pi_{!}\mathbf{C})(\chi_{2}) \otimes H^{r-1}(F^{r-1},\mathbf{C})(\chi_{1}) & (q = r-1), \end{cases}$$

the spectral sequence

$$E_2^{p,q} = H_c^p(\mathbf{T}(x), (R^q \tilde{\psi}_! \mathbf{C})(\chi_1, \chi_2)) \Rightarrow E_{\infty}^{p+q} = H_c^{p+q}(\tilde{\mathcal{Y}}, \mathbf{C})(\chi_1, \chi_2)$$

degenerates at E_2 -term and we get the theorem.

Remark. So far, we did not assume the resonance condition nor the non-degenerate condition. (See the definitions below.)

Using this identity, we will state the Cohomological interpretation of Radon transform.

Definition. Let $\Delta_1, \ldots, \Delta_r$ be convex polytopes. The polytope $\tilde{\Delta}$ is defined by the convex hull of $(1, 0, \ldots, 0, \Delta_1), \ldots, (0, \ldots, 0, 1, \Delta_r)$ and 0 in \mathbf{R}^{r+n} . A sequence of rational number $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_n$ is said to be non resonant if $\partial \tilde{\Delta} \cap (\mathbf{Z}^{r+n} + (\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_n)) = \emptyset$.

If the Newton polygon of f_1, \ldots, f_r is $\Delta_1, \ldots, \Delta_r$ respectively, the Newton polygon of $v_1 f_1 + \cdots + v_r f_r - 1$ is $\tilde{\Delta}$.

Theorem 3 (Cohomological Radon transformation). Under the same condition of Proposition 1 and assume that

- (1) $u_1^m f_1 + \cdots + u_r^m f_r 1$ is non degenerated with respect to its Newton polygon.
- (2) $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_n$ is non resonant with respect to $\Delta_1, \ldots, \Delta_r$.

Then $H_c^i(U, \mathbf{C}(\eta)) = 0$ if $i \neq n$ and

$$H_c^n(U, \mathbf{C}(\eta)) \simeq H_c^{n+r-1}(U, \mathbf{C}(\eta)) \otimes H^{r-1}(F^{r-1}, \mathbf{C})(\chi_1)^{\otimes (-1)}$$

as Hodge structures. Moreover, $H_c^n(U, \mathbf{C}(\eta))$ is pure of weight n.

Proof. Under the condition, we have

$$H_c^{i+r-1}(\tilde{\mathcal{Y}},\mathbf{C})(\chi_1,\chi_2) \simeq H_c^i(U,\mathbf{C}(\eta)) \otimes H^{r-1}(F^{r-1},\mathbf{C})(\chi_1)$$

We rewrite

$$u_1^m f_1 + \dots + u_r^m f_r - 1 = u_1^m (f_1 + (\frac{u_2}{u_1})^m f_2 + \dots + (\frac{u_r}{u_1})^m f_r) - 1$$

and

$$u_1^{a_1}\cdots u_r^{a_r}t_1^{b_1}\cdots t_n^{b_n}=u_1^{a_1+\cdots+a_r}(\frac{u_2}{u_1})^{a_2}\cdots (\frac{u_r}{u_1})^{a_r}t_1^{b_1}\cdots t_n^{b_n}.$$

Now we introduce a set of new variables $s_2 = \frac{u_2}{r_1}, \ldots, s_r = \frac{u_r}{u_1}$. Then we apply the non resonance condition for $f = f_1 + s_2 f_2 + \cdots + s_r f_r$ and $(\alpha_1 + \cdots + \alpha_r, \alpha_2, \ldots, \alpha_r, \beta_1, \ldots, \beta_n)$. The Newton polygon $\Delta(f)$ of f in $\mathbf{R}^{r-1} \times \mathbf{R}^n$ is the convex hull of $(0, \ldots, 0, \Delta_1), (1, 0, \ldots, 0, \Delta_2), (0, \ldots, 0, 1, \Delta_r)$. Therefore the non resonance condition for $(\alpha_1 + \cdots + \alpha_r, \alpha_2, \ldots, \alpha_r, \beta_1, \ldots, \beta_n)$ with respect to $\Delta(f)$ is expressed as

$$\hat{\Delta} \cap (\mathbf{Z}^{r+n} + (\alpha_1 + \dots + \alpha_r, \alpha_2, \dots, \alpha_r, \beta_1, \dots, \beta_n)) = \emptyset,$$

where $\hat{\Delta}$ is the convex hull of $(1, \Delta(f))$ and 0. It is easy to see that $\hat{\Delta}$ is the convex hull of $(1, 0, \dots, 0, \Delta_1), (1, 1, 0, \dots, 0, \Delta_2), \dots, (1, 0, \dots, 0, 1, \Delta_r)$ and 0. Bye the linear change of base, $(p_1, \dots, p_r, q_1, \dots, q_n) \mapsto (p_1 - p_2 \dots - p_r, p_2, \dots, p_r, q_1, \dots, q_n), \hat{\Delta}$ maps onto $\hat{\Delta}$ and $(\alpha_1 + \dots + \alpha_r, \dots, \alpha_r, \beta_1, \dots, \beta_n)$ maps to $(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_n)$. As a consequence, it is equivalent to the resonance condition for $\Delta_1, \dots, \Delta_r$ and $(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_n)$.

Remark. In physics, the dummy variables s_2, \ldots, s_r are called ghost field.

Definition (Mixed twisted Ehrhart polynomial). Let $E(\Delta_1, \ldots, \Delta_r, \alpha, \beta, t)$ be the formal power series defined by

$$E(\Delta_i, \alpha, \beta, t) = \left[\sum_{k=0}^{\infty} \#\{k\tilde{\Delta} \cap (\mathbf{Z}^{r+n} + (\alpha, \beta))\}\right] (1-t)^{r+n-1}.$$

In the case where r = 1, we have the following theorem.

Theorem 4.

- (1) (α_i) is non-resonant if and only if $l(j\Delta, \alpha_i) = l^*(j\Delta, \alpha_i)$ for all j.
- (2) If (α_i) is non-resonant, $H^i(Z_F, \mathbf{C})(\alpha_i)$ is of pure of weight n and the twisted Ehrhart polynomial coincides with

$$(-t)^n \left(\sum_{i=0}^n \dim Gr_F^i H^n(Z_f, \mathbf{C})(\alpha_i) t^{-i}\right).$$

Proof. This is a twisted version of the theorem due to Danilov and Khovanski. For the detail of the proof, see [T] or the paper in preparation.

We return to the case where r is general. Since

$$\#\{k\hat{\Delta}\cap(\mathbf{Z}^{r+n}+(\alpha_1+\cdots+\alpha_r,\alpha_r,\ldots,\alpha_r,\beta))\}=\#\{k\tilde{\Delta}\cap(\mathbf{Z}^{r+n}+(\alpha,\beta))\},$$

 $E(\Delta_1, \ldots, \Delta_r, \alpha, \beta, t)$ turns out to be a polynomial by Theorem 4. It is called the mixed twisted Ehrhart polynomial. By Theorem 3 and Theorem 4, we have the following theorem.

Theorem 5. Assume the condition of Theorem 3. Let $H^{p,q}$ be the (p,q)-component of the Hodge decomposition of $H^n_c(U, \mathbf{C}(\eta))$. Then we have

$$\sum_{p=0}^{n} \dim(H^{p,q})t^{p} = E(\Delta_{i}, \alpha, \beta, t)t^{-e},$$

where $e = <\alpha_1>+\cdots+<\alpha_r>-<\alpha_1+\cdots+\alpha_r>$.

Remark. $E(\Delta_i, \alpha, \beta, 1)$ is equal to the Minkowski's mixed volume of $\{\Delta_i\}_i$.

Reference

[T] ワークショップ、超曲面の特異点、基本群、有限被覆写像 報告集、P116~118、 1995年、東エ大、