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COHOMOLOGICAL RADON TRANSFORM AND
MIXED TWISTED EHRHART POLYNOMIAL

TOMOHIDE TERASOMA

Let fi1,..., fr be Laurent polynomials in Clz,...,z3], al, .0y B1,..., 8, be
rational numbers in LZ. For a multivalved function n = f; ** --- f "':1:'16 Lo.ghn

the corresponding local system on U = CY — {f; -~ -+ fr # 0} is denoted by C(n).
In this note, we study the Hodge structure of H(U,C(n)). Let T(x) and T(t)

be n-dimensional tori Spec C[z, ..., zE] and Spec[t{, ..., t2] respectively and 7 :
T(t) — T(z) be the morphism defined by z; = t/* ( = 1,...,n). Define finite
coverings Y and Y of T(z) and T(t) by Y = Spec[:cl - xf,wl yer s wE] /(W™ —

fi)i=1,..,r and Y=Y X7(z) T(t) respectively. The natural homomorphlsms are

denoted by ¢ : ¥ — T(z) and ¢ : ¥ — T(t) respectively. For elements g =
(g1,..-,9r) € T, and h = (hy,...,hyn) € p}, we define automorphisms of Y and
T(t) over T(z) by

Er D g — (w; »—) giw;) € Aut(Y/T(x))
Bm D b (8 = hjt;) € Aut(T(t)/T(z))

respectively. Via the above homomorphisms, u;, and ul, are identified with sub-
groups of Aut(Y/T(z)) and Aut(T(t)/T(z)) respectively. The group uy, X py, is
identified with a subgroup of Aut(¥ /T(z)) by fiber product. For characters x; and
x2 of u7, and p?, we define (¢1C)(x; "), mC(xz) and d;!C(xl'l,xg) through the
actions defined as before. Then we have

(x5 x2) 2 (HC) 0 ) ® (mC)(x2)-

From now on, we assume the following conditions:

(*) The variety D; = {x € T(z) | fi = 0} is irreducible and D; # D;.

(**) ay,...,ar, a1 + -+ + a, are not an integers.

Let x1, x2 be characters corresponding to (a1,...,ar) € (Z/m)" and (by,...,bs)
€ (Z/m)", where a; = ma; and b; = mpB;. If we define Y° = ¢7(U) and
#° = & |yo, then under the above conditions (*) and (**), we have (6C)(x7') =
1(#VC)(x1"'), where j is the natural inclusion j : U — T(z). Therefore we have

an isomorphism H(U, C(n)) ~ Hi(T(z), ($:C)(xi ', x2))-
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We compute (¢'C)(X1 1) via a family of Fermat hypersurfaces. Let T(u) =
Spec C[uf,...u%] and ) be a hypersurface of T(u) X T(z) defined by

Yiulfilz) + - +ulfr(z) = 1.
The composite of the natural inclusion ) — T(u) x T(z) and the second projection
T(u) x T(z) — T(z) is denoted by ¢ Y — T(z). This is a family of Fermat hy-
persurfaces parametenzed by (21,...,2n) € T(z). We define Fermat hypersurface

Fr=1 by Fr=1: g 4 - + £ = 1 in T(€) = Spec C[¢E, ..., £2]. The group 7
acts on F" by

Hm 3 g = (6 gifi) € Aut(F™)
Through this action, we define H™"1(F"~1, C)(x;) for a character x; of uT,.
Proposition 1. Under the condition (*) and (**), we have a motivic isomorphism:
; (¢C)(x1) @ H™H(F71,C) (i=r-1)
R'y,C Y '
®nO) = { | e

Proof. Let Y° be the inverse 1mage Yp~1(U) of U and 1/)0 be the restriction of ¢ to

V. First we prove

We define an isomorphism v between Y° xy Y? and F™~! x Y° by
vV xp Y03 (u,w) - (& = u;w;,w;) € FT~1 x Y0,
Then if we define a homomorphism

B X i D (g,h) — (gh h) Eum X s

the following diagram commutes.

W0 xy PO (g,h) W0 % YO
d ‘|
Fr-1 xyo £92, #(g,h) Fr-1 x Yo

We denote 1; and 1, the natural morphisms ; : Y° xy Y% — U and ¢2 Fr1
Y? — U, respectively. Then we have the following isomorphisms:
(R'$C)(xa) = (R C)(x1,1)
=~ (R'C)(x1,x1 ")
~ H{(F™,C)(x1) ® (4C)(xi")
By the condition for ay,...,a,, we have H}(F™™! C)(x;) = 0if i # r—1. Therefore .

we have the identity (1). Since (0C)x7 e =0forz € D= fi- fr=0, it
is enough to prove that (R'¢1C)(x1); = 0 for z € D. But if fi(z) = 0, the

TX e X oo X -o- %1 acts trivially on the stalk (R%),C), by proper base change
theorem Therefore we have the required vanishing.

Let ) be the fiber product Y X1,y T(t) and pj, x p?, acts on Y induced by the
actions of u;, and uy, on Y and T(t) respectively.
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Corollary 2. Under the same condition of Proposition 1. We have the following
isomorphism

HFTUD,0)0,x2) = H(T(2), (#C)0 7 x2)) @ H™HE™, €) )

Moreover, this isomorphism is compatible with the Hodge filtrations.

Proof. Let ¢ : Y — T(x) be the natural morphism. Since

(R*:C)(x1, x2) = (R*h:C)(x1) ® (mC)(x2)
{0 | (g#r-1)
(4C)(xi") ® (mC)(x2) @ H™1(F™7?, C)(xl) (g=r-1),

the spectral sequence
Ey? = H}(T(z), (qu"C)(xl,Xz)) = B! = H””(J’,C)(X: X2)

degenerates at E,-term and we get the theorem.

Remark. So far, we did not assume the resonance condition nor the non-degenerate
condition. (See the definitions below.)

Using this identity, we will state the Cohomological interpretation of Radon
transform.

Definition. Let A;,...,A, be convex polytopes. The polytope A is defined by the
convex hull of (1,0,...,0,4),...,(0,...,0,1,A;) and 0 in R™™. A sequence of
rational number ay,...,as, B1,..., B is said to be non resonant if JA N (Z™™ +

(_al"°’7ar’ﬂ11"-7/3n)) ={

If the Newton polygon of fi,..., fris Ay,..., A, respectively, the Newton poly-
gonof vifi +---+ v fr—1is A.

Theorem 3 (Cohomological Radon transformation). Under the same con-
dition of Proposition 1. and assume that

(1) wu*fi+---+ul fr—1 15 non degenerated with respect to its Newton polygon.
(2) a1y...,00,P1,...,0n is non resonant with respect to Ay, ..., A,.

Then Hi(U,C(??)) =01f1#n and
H2(U,Cn) = H2"-1(U, C(n)) @ H™1(F™, C)(1) 2D

as Hodge structures. Moreover, H}(U,C(n)) is pure of weight n.

Proof. Uhder the condition, we have
H2+r_1 (j}a C)(Xl: X2) = HZ(U7 C(Tl)) ® HT—I(FT_I'a C)(Xl)

We rewrite

u it = L=l (o GO+ (O™ ) - 1



and u u
ai ar by b, _ . a1+--+a 2 az | ~Thea by b
ul ...ur"tl ...tnﬂ_ul "(—) ..( )"tl ...tn"_
Uy Uy
Now we introduce a set of new variables s, = %‘,—f,...,sr = z=. Then we ap-

ply the non resonance condition for f = f; + s3fa + - + srf,,land (ay + -+
QryQ2,...,0r, PB1,...,8,). The Newton polygon A(f) of f in R™! x R" is the
convex hull of (0,...,0,A,),(1,0,...,0,A:),(0,...,0,1,A,). Therefore the non
resonance condition for (a3 + -+ + ar, a9,...,ar,B1,. .., Bn) with respect to A(f)
is expressed as '

An(zr+n+(al‘|‘"'+ar>a2a---aa'r’ﬂla"'wan)):w’

where A is the convex hull of (1, A(f)) and 0. It is easy to see that A is the convex
hull of (1,0,...,0,4A:),(1,1,0,...,0,A,),...,(1,0,...,0,1,A,) and 0. Bye the lin-
ear change of base, (P1y- - Pry@is---qn) = (P1—DP2 = DPryP2y-- s Pry Qi -5 qn), A

maps onto A and (a1+- - +ayr,...,ar, f1,...,Bz)) mapsto (ai,...,ar, B, .., Bn).
As a consequence, it is equivalent to the resonance condition for A,,...,A, and

(ala"'aaraﬂla'ﬂaﬂn)-

Remark. In physics, the dummy variables s,, ..., s, are called ghost field.

Definition (Mized twisted Ehrhart polynomial). Let E(Ay,...,A,,a,B,t) be the
formal power series defined by '

E(Aiya, B,1) = D #{EAN(Z7" + (a, B))}(1 — )"+,

In the case where r = 1, we have the following theorem.

Theorem 4.

(1) (a:) is non-resonant if and only if I(j A, a;) = I*(jA, ;) for all 5.
(2) If (a;) is non-resonant, H'(Zp,C)(c;) 1s of pure of weight n and the twisted
Ehrhart polynomial coincides with

(=t)"() _ dim GrpH™(Zs, C)(a;)t ™).

=0

Proof. This is a twisted version of the theorem due to Danilov and Khovanski. For
the detail of the proof, see [T] or the paper in preparation. '

We return to the case where r is general. Since
#{EAN(Z™" + (01 + -+ ar,ar, .., a0, B)} = #{EA N (Z7" + (o, B))},

E(As,..., A a, ﬂ,t) turns out to be a polynomial by Theorem 4. It is called the
mixed twisted Ehrhart polynomial. By Theorem 3 and Theorem 4, we have the
following theorem.
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Theorem 5. Assume the condition of Theorem 3. Let HP9 be the (p, q)-component
of the Hodge decomposition of H}(U,C(n)). Then we have

> dim(HP)t? = E(A;, a, 8,8)t7°,
p=0

where e =< a; >+ -+ <o, >—<a + 4 >
Remark. E(A;,a,p,1) is equal to the Minkowski’s mixed volume of {A;};.
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