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SINGULAR INVARIANT HYPERFUNCTIONS ON THE
SPACE OF REAL SYMMETRIC MATRICES

Iz B RT3 =B (MASAKAZU MURO)

ABSTRACT. Singular invariant hyperfuncsions on the space of n x n real
symmetric matrices are discussed in this paper. We construct singular
invariant hyperfunctions ,i.e., invariant hyperfunctions whose supports
are contained in the set S := {det(zr) = 0}, in terms of negative or-
der coefficients of the Laurent expansions of the complex powers of the
determinant function.
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0. INTRODUCTION.

A complex power of a polynomial is an important material to study in
contemporary mathematics. We often encounter integrals of complex powers
of polynomials in-various aspect; for example, zeta functions of various type,
hypergeometric functions and their extensions, kernels of integral transforms
and so on. There are many problems to solve. In particular, the explicit
calculation of the exact order at poles and the residues of the poles with
respect to the power parameter is a fundamental problem for the analysis
of invariant hyperfunctions on prehomogeneous vector spaces.

In this paper, we shall study the microlocal structure of the complex

power of the determinant function on the real symmetric matrix space, and

compute the exact order of poles with respect to the power parameter (The-
orem 2.3). Moreover, we shall determine the exact support of the principal
part of the pole (Theorem 2.4).

We shall construct a suitable basis of the space of smgular 1nvar1ant hy—
perfunctions on the space of n X n real symmetric matrices V' := Sym,, (R).
The hyperfunctions belonging to the basis are expressed by the coefficients
of the Laurent expansion of | det(z)|*, the complex power of the determinant
function. We estimate the exact order of the poles of |det(z)|* and give the
exact support of the negative-order coefficients of the Laurent expansion of
| det(z)|* at its poles.

We will give the plan of this article in the following. In §1, we shall
introduce some notions and basic properties on the complex power func-
tion Pl%(z) on the space of real symmetric matrices. In the next section
(§2), the main theorems are stated without proofs. In §3, we shall explain
about principal symbols o (P%l(z)) of the regular holonomic hyperfunc-
tion Pl®l(z) on the Lagrangian subvariety A and the coefficient functions

c}'k(a s) on the connected Lagrangian component AJ’ . They will play a
crucial role in the proofs of the main theorems. In §4 we investigate the
- relation formula on c7 (@, s). In the last section (§5), the proofs of the main
theorems are given.
We can obtain the same results on similar matrix spaces, for example,
the space of complex Hermitian matrices or quaternion Hermitian matrices.

They will appear in the future articles.

Remark 0.1. Similar results has been obtained by Blind [B1194] by a func-
tional analytic method.

1. COMPLEX POWERS OF THE DETERMINANT FUNCTION.

In this section, we shall explain our problem more precisely, prepare some
notions and notations, and state some preliminary known result. They are
well-known results, so we omit the proofs.

1.1. Some fundamental definitions. Let V := Sym, (R) be the space
of n X n symmetric matrices over the real field R and let GL,(R) (reap.
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SL,(R)) be the general (resp. special) linear group over R. Then the real
algebraic group G := GL,(R) operates on the vector space V' by the rep-
resentation _

plg) :z—g-z-g, (D)

with z € V and g € G. We say that a hyperfunction f(z) on V is singular
if the support of f(z) is contained in the set S := {z € V; det(z) = 0}.
We call § a singular set of V. In addition, if f(z) is SL,(R)-invariant,
ie., f(g-z) = f(z) for all g € SL,(R), we call f(z) a singular invariant
hyperfunction on V. :

Let P(z) := det(z). Then P(z) is an irreducible polynomial on V, and
is relatively invariant corresponding to the character det(g)? with respect
to the action of G ,i.e., P(p(g) - z) = det(9)2P(z). The non-singular subset
V — S decomposes into (n + 1) open G-orbits

Vi:={z € Sym,(R);sgn = (n - 4,1)}. (2

with ¢ =0,1,...,n. Here, sgn(z) for z € Sym,, (R) stands for the signature
of the quadratic form ¢;(¥) :='0-z -7 on ¥ € R®. We let for a complex
number s € C, ‘

rer={ O R G ®

Let §(V') be the space of rapidly decreasing functivons on V. For f(z) €
8(V'), the integral

Z(£,9) = | PO f(@)dz, 4)

is convergent if the real part of s is sufficiently large and is holomorphically
extended to the whole complex plane. Thus we can regard |P(z)|? as a
tempered distribution with a meromorphic parameter s € C. We consider a
linear combination of |P(z)|?

Pldl(a) = 3 ai|P)l:, (5)
1=0
with s € C and @ := (ao,a1,...,a,) € C**'. Then PI%%(z) is a hyper-
function with a meromorphic parameter s € C, and depends on @ € C*+!
linearly.

1.2. Basic properties and some known results on complex powers.
The following theorem is easily proved by the general theory of b-functions.
(see for example [Mur90]).

Theorem 1.1. 1. Pl(z) is holomorphic with respect to s € C except
. for the poles at s = —’%1 withk=1,2,....
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- 2. The possibly highest order of Pl%(z) at s = ——5321'—1- is given by

L) (k=1,2....,n 1),

1] ,(k=n,n+1...., and k + n is odd), (6)

'.n—g'lJ ,(k=n,n+1...., and k + n is even).
Here, |,$J myeans the floor of x € R, i.e., the largest integer not larger
than x. ‘

Any negative-order coefficient of a Laurent expansion of Pl%*l(z) is a
singular invariant hyperfunction since the integral

/f d:c_ZZ f,s) | (7)

is an entire function with respect to s € (C 1f f(z) € C°(V — S) where
C§(V — S) is the space of compactly supported C*°-functions on V — S.
Conversely, we have the following proposition.

Proposition 1.2 ([Mur88b],[Mur90]). Any singular invariant hyperfunction
on 'V is given as a linear combination of some negative-order coefficients of
Laurent ezpansions of P1%4](z) at various poles and for some @ € C**1.

Proof. The prehomogeneous vector space
(@, V) := (GLx(R), Sym,(R))

satisfies sufficient conditions stated in [Mur88b] and [Mur90]. One is the
finite-orbit condition and the other is that the dimension of the space of
relatively invariant hyperfunctions coincides with the number of open orbits.

O

1.3. Orbit decomposition. The vector space V decorriposes into a finite
number of G-orbits;

ve= || & - (8)
0<i<n
0<_7<n—

where
S? = {z € Sym,(R); sgn(z) = (n —i—j,j)} (9)
with integers 0 < 2 < n and 0 5 j £ n—1i A G-orbit in S is called

a singular orbit. The subset S; := {z € V; rank(z) = n — i} is the set
of elements of rank (n —%). It is easily seen that S = |_]1<z<n5 and

Si = Uocjcn—s .S' Each singular orbit is a stratum which not only is a
G-orbit but is an SL,(R)-orbit. The strata {Sz}1$1S"’OSJSn—1 have the
following closure inclusion relation '

SJ Si-ly s?

141 1417 | (10)

where Sf means the closure of the stratum Sf.
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The support of a singular invariant hyperfunction is a closed set consisting
of a union of some strata S7. Since the support is a closed G-invariant
subset, we can express the support of a singular invariant hyperfunction as
a closure of a union of the highest rank strata, which is easily rewritten by
a union of singular orbits.

2. STATEMENT OF THE MAIN RESULTS.

In this section we shall give the main problems and results. When we
give a complex n + 1 dimensional vector @ € C*t!, we can determine the
exact order of poles of ,P[a’s](a:) and the exact support of the hyperfunctions
appearing in the principal part of the Laurent expansion. We shall give the
statement of the theorems in this section without proofs. Their proofs will
be given in §5.

2.1. Main problem. When we consider complex powers of relatively in-
variant polynomials, we naturally ask the following questions.

Problem 2.1. What are the principal parts of the Laurent expansion of
Pl@s](z) at poles ? What are their exact orders of poles ? What are the
supports of negative-order coefficients of a Laurent expansion of Pl%*(z) at
poles ?

In order to determine the exact order of PEsl(z) at s = so, we introduce
the coefficient vectors “

d®[so] = (dPso], dP[so], ..., P, [so]) € (€)1 (1)

with k = 0,1,...,n. Here, (C"*!)* means the dual vector space of C"*!.

Each element of d(k)[so] is a linear form on @ € C™+! dependlng on sg € C
Ji.e.,a linear map from C to C*t!,

dP[so] : €1 5 @ (dW[s0], ) € C. (12
We denote ' .
(d®¥)[s0], @) = ((do”[s0], @), (&[0}, @), (4, 0], @)) € 1. (13)

Definition 2.1 (Coefficient vectors d®)[sg]). Let so be a half-integer, i.e.,
a rational number given by ¢/2 with an integer g. We define the coefficient

vectors d®)[so] for (k = 0, 1,...,n) by induction on k in the following way.
1. First, we set

d[sq] := (d[s0),d” [sol, - dO[so]) (14)

such that (dgo)[so],'d‘) :=a; fori=0,1,...,n.
2. Next, we define dM|se] and d?[sq] by

d[so] = (@D [so], dDsol. .., dD, [se]) € (C))", (15)
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wi‘ph dg-l) [s0] == dg_o) [so] + e[sO]d(-O) [so], and
d[so] := (d[sal, 7 [sol, -, di2a[s0) € (€))7 (16)
with d§2)[so] = dg-o)[so] dg 32[ o). Here, |

1 , (if s¢ is a strict half-integer),
0] = { (r s o w

(=1)%+!  (if 5o is an integer).

A strict half-integer means a rational number given by ¢/2 with an odd
~ integer ¢.
3. Lastly, by induction on Ic we define all the coefficient vectors d(* )[ 0]
fork=0,1,...,n by :

d2H ) [s0] := (dé”*”[so],d?‘“)[ o dZHD s o])e((C““)*)"‘zl’( )
(18

with d®[s] := &l V[so] - d%; V[s0), and
d®fso] := (& sol, dsol, - .. iy lso]) € (€))7, (19)
with d( z)[ o] = (21 2)[ ]+d(2l 2)[ ol.

‘Then we have the followmg proposition.

Proposition 2.1. Let sg be a half-integer. For an integer i in 0 <3 < n—2
and @ € C**1, if (d)[s), ") =0 then (dWF?)[so), @) = 0. In other words, if
(d+D[so], @) # 0 then (dD[so], @) # 0.

Proof. This proposition is trivial from the definition of d® [s0]. 0O
Corollary 2.2. Let so be a half-integer. Then we have

1. There ezxists an even integer ig in 0 < ig < n+ 1 such that

. - . ) < . . .
(d(’)[ ol, a) s #0 for all odd z m 0< z‘ < z.o (20)
=0 foralloddiinn2>1>1

9. There exists an odd integer 11 in —1 < i3 < n+ 1 such that

(@[50}, ) is {¢ 3 ol coeni o in i (21)

=0 foralleveniinn>1>14.
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Proof. We can prove this by induction on <. . o

2.2. Results on the poles of the complex power functions. Using
the above mentioned vectors d¥)[s], we can determme the exact orders of
Pl%:31(z) at each pole. -

Theorem 2.3 (Exact orders of poles). The ezact order of the poles of Plasl(g)

is computed by the following algorithm.



1. At s = —22l(m = 1,2,...), the coefficient vectors d(k)[——tm,”2 11 are
defined in Definition 2.1. The ezact order Pl%*l(z) at s = s (S
1,2,...) is given in terms of the coefficient vector d(?¥)[— 2mtl],

(a) Ifl <m< %, then Pl%5](z) has a possible pole of order not larger

than m.
o If(d (2)[ mtl) @) = 0 then Pl *l(z) is holomorphic and the
converse s true
e Generally, for integers p in1 < p < m, if (d\?P+H)[-2 mtll g) =

0 and (d®P)[- 211 gy £ 0, then PlE#)(c) has a pole of order
p, and the converse is true.

o Lastly, if (d®™)[- Intl) @) # 0, then Pl3)(z) has a pole of'

order m, and the converse is true.
(b) Ifm > 2, then P1%%l(z) has a possible pole of order not larger than
= |5
o If (d(2)[ Imtl] G) = 0, then P1%l(z) is holomorphic, and the
converse s true
e Generally, for zntegersp inl <p<a,if (d?P+I)][- Intl) g) =

0 and (d(?%)[—2 Imtl) G) # 0, then P& s]( ) has a pole of order
p, and the com)erse is true.
o Lastly, P1%(z) has a pole of order v’ if (d(®~)[—2 Ll @) #0

(when n is odd) or (d™[- 2] @) #£ 0 (when n is even) and
the converse is true.

. At s=—m(m = 1,2,...), the coefficient vectors d*¥)[—m] are defined
in Definition 2.1 with e[-m] = (=1)"™*1. We obtain the ezact order at

s=-m(m=1,2,...) in terms of the coefficient vectors d***)[—m).
() If1<m< % then Plas](g ) has a possible pole of order not larger
than m. |

o If (dV[-m],@) = 0, then PUsl(z) is holomorphic, and the
converse is true.

o Generally, for integersp in1 < p < m, if (d(2p+1)[ m],d@) =0
and (d®~V[-m],&) # 0 , then P& s](:c) has a pole of order p,
and the converse is true.

o Lastly, if (d®™D[—m],&@) # 0, then Pl35)(z) has a pole of
order m, and the converse is true.

(b) Ifm > 3, then Pla, s](a:) has a possible pole of order not larger than
n = l—*—J |

o If (d(l)[—-m],('i) = 0, then P%(z) is holomorphic, and the
converse is true.

e Generally, Jor integersp in1 < p < n', if (d®+)[—m], @) =0
and (d*~V[—m],&) £ 0, then ple s](:v) has a pole of order p,
and the converse is true.
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o Lastly, Pl%(z) has a pole of order n' if (d™[—m],@) # 0
(when . is odd) or (d™~V[—m],&) # 0 (when n is even), and
the converse is true. : |

2.3. Results on the supports of the principal symbols. The exact
support of Pll(z) is given by the following theorem.

Theorem 2.4 (Support of the singular invariant hyperfunctions). Let ¢ be

a positive integer. Suppose that Plas] (z) has a pole of order p at s = _q42-_1
Let
+ > g —atl +1
plas] _ L, ] q w
()= ) P (@)(s + 57 (22)
w=—p
be the Laurent ezpansion of P1%%l(z) at s = —q—gl. The support of the

) [@,— %] . X . )
coefficients P,," % “(z) is contained in S if w < 0.

| 7 gl
1. Let q be an even ‘positive integer. Then the support of Pt[ua’ 2 ](a:) for
w=—1,-2,...,—p is contained in the closure S_s,,. More precisely,
it is given by

Supp(PE ™7 () = ( U $,,).  (23)

i€{0< i St 2wi(d( ™) [- 2EL),8)#0}

- g
2. Let q be an odd positive integer. Then the support of Pg T ](:v)
for w = —1,-2,...,—p is contained in the closure S_g,—_1. More
precisely, it is given by ‘

g,-at ' -
Supp(Py™ % (@) = ( U S (29
je{0<i<nt2uw+1;(d| 72 T - 2EL) )50}

Here, Supp(—) means the support of the hyperfunction in (—).

3. PRINCIPAL SYMBOLS OF INVARIANT HYPERFUNCTIONS.

In this section, we review the notion of principal symbols of simple holo-
nomic microfunctions and coefficients with respect to the canonical basis of
principal symbols. Principal symbols will play a central role in the calculus
of invariant hyperfunctions on prehomogeneous vector spaces. The author
calculated the Fourier transforms of complex powers of relatively invariant
polynomials by putting the principal symbols to practical use in [Mur86]. In
the calculation of singular invariant hyperfunctions, principal symbols and
coefficients are powerful tools. So we will state the outline of the construc-
tion of principal symbols of relatively invariant hyperfunctions.
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3.1. Microfunctions on the cotangent bundle. Let By be the sheaf
of hyperfunctions on V and let Cy be the sheaf of microfunctions on the
cotangent bundle 7*V of V. There are the natural isomorphism sp:

sp : By — 7(Cy) ' (25)
and the exact sequence ' : :
0 — Ay — By — 7(Cv|r*v-v) — 0 (26)

Here, 7 is the projection map from the cotangent vector space T*V to V
and Ay is the sheaf of real analytic functions on V. By the isomorphism
(25), we can regard a hyperfunction f(z) on V as a microfunction sp(f(z))
on T*V. In this article, we often identify the hyperfunction f(z) on V with
the microfunction sp(f(z)) on T*V through the isomorphism (25).

Remark 3.1. In this paper, the sheaf Cy means the sheaf of microfunctions
on 7"V not on T*V — V. It was originally denoted by Gy when Sato intro-
duced the notion of microfunction originally. Roughly speaking, the sheaf of
microfunctions Cy on T*V is the union of the sheaf of hyperfunctions By
and the sheaf Cy|7«v_v. When the notion of microfunction was introduced
as a singular part of a hyperfunctions, it often meant the sheaf Cy|reyv_v.
However, in this article, we always means the sheaf Cy the one on the whole
space T*V.

3.2. Holonomic systems for relatively invariant hyperfunctions. We
consider an invariant hyperfunctions on V under the action of G as a so-
lution to a holonomic system. Let f(z) be a hyperfunction on V. We say
that f(2) is a x*-invariant hyperfunction if

fp(g)z) = x(9)° f(), (27)

for all g € G, where s € C and x(g) := det(g)2. Then, it is a hyperfunction
solution to the following system of linear differential equations M, by taking
an infinitesimal action of G, :

M; : ((dp(A)z, a—am-) — s5x(A))u(m)l =0 forall A€ &. (28)

Here, & is the Lie algebra of G; dp is the infinitesimal representation of
p; 6x is the infinitesimal character of x. The system of linear differential
equation (28) is a regular holonomic system and hence the solution space is
finite dimensional. See for detail [Mur90]. '

The characteristic subvariety of the system (28) is denoted by ch(M;). It
is given by

M; = {(z,y) e T"V; (dp(A)i, y) =0 for all A€ &} (29)

The characteristic variety has the irreducible component decompositioh,

Ms = 0 Ai? (30)
: —0
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with A; = Ts V where Ts V stands for the conormal bundle of the rank
(n — )-orbit S It is a well known result that the singular support of the
hyperfunction solution to M, is contained in ch(My).

Remark 8.2. In this article, the singular support of a hyperfunction f(z)
means, by definition, the support of sp(f(z)) in T*V, not in T*V - V.

- We denote the dual vector space by V*. The cotangent vector space
T*V is naturally identified with the product space V' x V*. since the group
G acts on V* by the contragredient action, V X V* admits the G-action.
The characteristic variety ch(M;) is an invariant subset in V' x V*. and it
decomposes into a finite number of orbits. See Proposition 1.1 in [Mur86].

Proposition 3.1. The holonomic system M, is simple on each Lagrangian
subvariety A;. The order of My on A; is given by
i(z + 1)

. 4
The irreducible Lagrangian subvarieties A; and A; _, have an intersection of
codimension one.

ordy (M) = —is — (31)

Proof. The orders on A, are calculated in [Mur86]. The intersections of
codimension one among A,’s are also given there. See the holonomy diagrams
in [Mur86]. O

3.3. Principal symbols on simple Lagrangian subvarieties. Recall
the definition of the principal symbols on simple holonomic systems defined
in [Mur86]. Let A be a non-singular Lagrangian subvariety and let u(z) be
a local section of a microfunction solution to a simple holonomic system M,
whose support is A. We denote by o (u) the principal symbol of u(z) on

A. It is a real analytic section of V[Qa|® V|Qv| ! where v |24] and V||
are the sheaves of half-volume elements on A and V respectively. For the
precise definition, see [Mur86] Definition 2.7. As explained in [Mur86], the
map

oA s u+—> op(u) (32)

is a linear isomorphism from the space of microfunction solutions to the
space of principal symbols of the holonomic system M,. In other words,
there is a one to one correspondence between a rmcrofunctlon solution to
M, and its principal symbol. ‘

When we consider a hyperfunction solution to the holonomic system Ms,
it is sufficient to handle the principal symbol on an open dense subset of
ch(M;). We introduce the open subset A7 of A;.

Definition 3.1. Let A, be one of the irreducible component of ch(M;) de-
fined in (30). We define the subset A} by

Si= A - UA (33)
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It is an open-dense subset of A;.

The open subset A consists of several open connected subsets, each of
which is a G-orbit. Furthermore, A? is a non-singular algebraic subvariety
and an open dense subset in A,;.

Proposition 3.2. The open set AY of A; decomposes into the followzng G-

orbits
I__I Ai"ka (34)
0<j<n—i
0<k<i
with

st () (M ) )

Here, Iz(ﬂ) = (Iq' I ) and I, is an identity matriz of size p. Each orbit
T ip—g
A* is a connected component in A2.

3.4. Canonical basis of principal symbols. When we consider the holo-
nomic system ch(M;) defined by (28), M; is a simple holonomic system on
all Lagrangian subvarieties A; (: = 0,1,...,n). Then the principal symbol
of a microfunction solution is given as a constant multiplication of a basis
of V|Qn,|® VIQv|.

Let A° be the open subset defined by Definition 3.1 and let AJ’ be a
connected component in AJ. We define a non-zero real analytlc section

ka(s) of \/lQA{,kl by
Q4 (s) = 1Py (2, 9)[*VIw s (2, Y- (36)

ka(s) depends on s € C holomorphically. Here, we set
PA{”‘ ("B) y) = P(W((L‘, y))/(U(.’L‘, y))mAi lAg'k’ (37)

“1(ldx olz :
Wy sk (z,y) := (lj(a[) ;\)ii( Y) /da(m,y)lAg,k, (38)

where ¢ := o(z,y) is a function on V' x V* defined by o := (z,y)/n; ™ is
the projection map from the subvariety

W= {(z,y) € T*V;(dp(A)z,y) =0 forall AcS}CV xV* (39

to V; my, and ”A¢ are the constants such that —MA,S — #—3'— is the order of

. . i(i41) -
Ms on A;. In particular, mp, =i and pp, = i’zil in our case.

Proposition 3.3. Let u(s,z) be a microfunction solution with a meromor-

phic parameter s € C to the holonomic system M, and let AJ ’ be a connected
component in A}. Then we have
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1. The principal symbol 0, ;. (u(s,z)) is written as a constant multiplica-

tion of the real analytic section of mAI Q@ V|Qv|,
030 (u(5,2)) = P*(5)9*(5)/V1dal. (40)
Here, |dz| is a non-zero polume element on 'V defined by

de| =] N dzijl, (41)

1<igy<n
Ti1 Ti2 ' Tin
. Ti2 T22 - T2n .
with ¢ = ) .. ] € V. Conversely, if the constant
Zin T2n *°° Tan

multiplication term c] (s) is given on each Aj’k then the corresponding
microfunction solutzon u(s,z) satisfying (40) is determmed uniquely.

2. If u(s,z) depends on s € C meromorphically, then cJ (s) is a mero-
morphic function in s € C. The converse is also true.

Proof. 1. This assertion is equivalent to the definition of a principal sym-
bol. : '

2. Tt is clear from that the isomorphisms sp in (25) and o4 in (32) are

C|s]-linear, where C[s] is the polynomial ring of s. Then Tpi x(u(s,z))

depends on s meromorphlcally if and only if u(s,z) i is a meromorphlc
function on s € C. Since QJ’ s)/+/|dz| depends on s € C holomorphi-

cally, c] (s)is a meromorphlc function in s € C.
v O

3.5. Laurent expansions of coefficient functions. Hyperfunction solu-
tions u(s, z) to M, that we consider in this paper are the linear combinations

u(s,z) = Pl&l(z) := Z a; - |P(z)|f, (42)

with @ = (ag,ay,...,a,) € C**! introduced in (5). Since P& sl(z) is a
hyperfunction with a meromorphic parameter s € C, the microfunction
sp(P%l(z)) and its principal symbols o ,k(P[“ *l(z)) depend on s € C

meromorphlcally In a particular case of (40) we define the coefﬁc1ents of
Pl%s](z) on the Lagrangian connected component A]’

Definition 3.2. Let

73+ (PE(2) = c* (@, 5)000* (5)/ V1 dal, (43)

with c” (@, s) being a meromorphic function in s € C. We call c] *(@,s) the
coefficient function or the coefficient of pla:s] (z) on A" with respect to the
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canonical basis,
o (s)/Videl. ()

Then each coefficients cf’k(&', s) depend on @ € Cntl linearly and on s € C
meromorphically. :

Proposition 3.4. Let Pl3vl(z) and PI%2l(z) be two hyperfunction solu-
tions to the holonomic system M,. If their coefficients coincide on each
A"

* (@, 5) = (@, 9), (45)

]
then we have d@; = dy. In other words, two hyperfunction solutions having
the same coefficients on all AJ’ ’s coincide with each other.

Proof. Recall the following fact on the uniqueness of hyperfunction solutions
to a holonomic system. It is proved in [Mur88a].

Lemma 3.5. Let f1(z) and fo(z) be two hyperfunction solutions to the holo-
nomic system M. If sp(fi(z)) = sp(fz(z)) on the open set |J7_o A2, then
fi(z) coincides with fo(z) as a hyperfunction on V.

Lemma 3.5 asserts that a microfunction solution to M, is determined by
the given data on [J,_,A?. Therefore we only need to consider the micro-
function solutions on |J_,A? instead on the whole characteristic variety
ch(M;). , ;

From Proposition 3.3, if (45) is satisfied, then sp(P1%](z)) = sp(Pl%](z))
on each Lagrangian connected component AJ’k and hence they coincide on
the open set U » o A?. Thus, from Lemma 3.5, we have Pl%](z) = Pl@2:s](g)
which means @; = ds. O

For a microfunction solution on each Lagrangian connected component
AJ & , we have the following equivalent conditions.

Proposition 3.6. 1. The following conditions are equivalent.
(a) The microfunction sp(P[“’S](:c))lAj,k has a pole of order p at s = sg.

(b) One of the principal symbol o , ;. (sp(P%%)(x))) has a pole of order
p at s = sg. '
2. The following conditions are equivalent.
(a) The principal symbol 7 (sp(Pl%3(2))) has a pole of order q at
s =8p. _ '
(b) The coefficient cf’k(d', s) has a pole of order q at s = sg.

Proof. The first equivalence follows from that the isomorphism o, in (32)
is C[s]-linear and commutative with the action of the differential operators
8 . The second equivalence follows from that QJ "*(s)/+/|dz| is holomorphic
at all seC. O

Corollary 3.7. The following conditions are equivalent.
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1. Pl%l(z) has a pole of order p at s = so.

2. sp(PEl(z Nur_,ae has a pole of order p at s = .so.

3. Allthe coeﬁiczents in {c7 (@5);0<i1<n,0<j<n—1,0<k<i}has
a pole of order not larger than p at s = so and at least one coefficient
of them has a pole of order p at s = sp.

Proof. The equivalence of 2. and 3. follows from Proposition 3.6 since

»
Uas= || A
1=0 0<ikn
0<s<n—1
7 0<k<i
We shall show that the condition 2 follows from the condition 1. If
P1@sl(z) has a pole of order p at s = sg, then (s — s0)? P%*](z) is a non-zero
holomorphic function at s = sp with respect to s. Then ‘

sp((s — s0)P Pl(z)) = (s — s0)Psp(PI%(2))

is also non-zero and holomorphic at s = so. Since (s—s)?sp(P%*(z)) luz_, A
is holomorphic at s = s, sp(P%*! (z))luz_,ae has a pole of order not larger
than pats = so. If the order is strictly less than p, then (s—so)?sp(Pl%] (@))lup_asls=
is a zero function. Then (s — s9)?sp(P®*!(z))|s=s, is zero, and hence
(s — 50)PPl%3)(z)|,—,, is zero by Lemma 3.5. This is a contradiction. There-
fore sp(P[a*s](z))|U?=oAg has a pole of order p at s = sg. This means that
that the condition 2 follows from the condition 1.
We shall show that the condition 1 follows from the condition 2. If
sp(Pl] (z))luz_,ae has a pole of order p at s = so, then

(s — 50)Psp(PE*)(2))|uz_ ae = sP((s — 50)P P11 ())|un_ ae

is non-zero and holomorphic at s = so. Therefore, (s — so)? Pl%#](z) is non-
zero and holomorphic at s = sg. Thus, P[a’s](;c) has a pole of order p at
s = sg. This means that that the condition 1 follows from the condition

2. O
We define the coefficients of Laurent expansions P1%%(z) and c7’k( ,s).

Definition 3.3. Suppose that the complex power function Pl%(z) has a

pole of order p at s = so. We give the Laurent ezpansion of Pl%%l(z) at

s = sg by
Plasl(g Z Pldsl (s —s0)®. (46)
w=—p
Here,

PlFol(z) | (47)



is the Laurent expansion coefficient of degree w of Pl%#l(z). For the coeffi-

cient c7 (@, s), we give the Laurent ezpansion at s = so by

cf-"k(d', s) = Z C{,’?ﬁ,so),w(s —s0)". (48)
w=-—p
Here,
CZ (a 0)vw ’ (49)

is the Laurent expansion coefficient of degree w of cg’k‘(éf, s). Since the order

of the pole of cg’k((i, s) at s = sg is not larger than p, some beginning Laurent
coefficients of (48) may be zero. »

We can express the support of P[ @50l (z) in terms of the Laurent coeffi-
cients of c7 (d,s). Namely, we have the following proposition.

~ Proposition 3.8. Suppose that P1%°l(z) has a pole of order p at s = sq.
Let (46) be the Laurent expansion of Pl%*l(z) at s = sy. Then we have

Supp (P (z)) = ( Y s (50)

cz'k(&',s) has a pole of‘
(4:0)€EZ%50rder > —w for some k

m0<k<tats=sg

Proof. For a hyperfunction f(z) on V', we have

Supp(f(2)) = 7(Supp(sp(f(2)))),
by the isomorphism (25). Therefore, we have

Supp(PLF*)(z)) = 7(Supp(sp (P (1)) (51)
Let ¢ be an integer in —p < —¢ < +oo. If sp(Pl (a:))|AJk has a pole

of order ¢ at s = sg, then the cg’k(d’, s)’s pole at s = sg is of order ¢

(Proposition 3.6). We have the Laurent expansion

oo

sp(PI (@)l = > sp(PEo)(@))|yn - (s = 50)”.  (52)

w=-q

by (46). On the other hand, let

[oo]

opir(sP(PE(@))) = 3 obf (s = s0) (53)

w=—q

be the Laurent expansion of the principal symbol Tpi k(sp(Pl%*](z))). Then
we have

o (sP(PFN(@)) = 015 ) (54)
for —¢ < w < +o0. ' '
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-Now we have the following Laurent expansions,

opir (PP (2)) = (@, )90 (5)//1dal

o | 55)
vk w (
= 2 g (57 50" |
w=—gq
ik ¢ o ik
" (@) = Z cz?:(&’,so),u (s = s0)%, (56)
u=—q . .
() =Y D (5= 50)" (657)
: v=0 '
Note that Q{)’fo’o,ﬂf::foyl, ... in (57) are non-zero linearly independent half-
j ke

volume forms on Al”. Then all the Laurent-expansion coeflicients

ot (~g < w < +oo) (58)

1,(&,50),w
in (55) are non-zero if c}"fa 50)y—4 # 0. This means that all the Laurent-

expansion coefficients of negative order of 7, ;.x (Pl%s](z)) are not zero. Hence
t

the support Supp(sp(PE’”](x))) contains Af"k if —g < w < oo, which shows
that : )

Supp(P)(z)) = =(Supp(sp(PL"*")(2))))
=( U AY)
{(i,j,k)eZ:*;c{'k(a’ s) has a pole o'f}
order > —w at s = s¢
_ ik

T T
{(i,j,k)€Z3;C€ (@, s) has a pole of}

order > —w at s = sp
— 3
-1 U s
: c{’k(d', s) has a pole of
(¢,7)€EZ?;order > —w for some k

in0<k<rat s=s0

Thus we have the desired result. ' O

Remark 3.3. Since sp (PE’“](x)') is a regular holonomic microfunction, we
can define its principal symbol directly. However, in our case, it is obtained
by differentiating a simple microfunction with a meromorphic parameter
s € C with respect to s , hence its principal symbol is obtained from the
differentiation with respect to the parameter s.
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4. SOME PROPERTIES OF PRINCIPAL SYMBOLS.

We shall calculate the analytic relations combining the coefficients of a
hyperfunction solution to the holonomic system M. The propositions ob-
tained in this section enables us to estimate the order of poles of coefficients
in the next section.

4.1. Relations of coeflicients on contiguous Lagrangian subvari-
eties. We shall use the following two relations (60) and (61) in the proofs
of the main theorem.

Proposition 4.1. The coefficients on A? and A7, have the following rela-
tion. These relations depend on s € C meromorphzcally

cz:r‘(a s)]:P(s+”+T2> [exp(—gr (s+22)) exp(+Ev/=I(s +

)
V=I5 + %—Z))]

wl:)wlﬁ

It (@, s) Vor - lexp(+5vV=1(s+ £2)) exp(
. [exp(+5v/=T(i - 2k)) 0 ]
0 exp(—Tv/=1(i — 2K))
c7+1 k@, s)
| dt@s) }

 (60)

Proof. See the Theorem 2.13 of [Mur86]. The above relations are the case
of Sym,, (R). ! i

Proposition 4.2. The coefficients functions on A% and A7, , have the fol-
lowing relations.

k42 =
C'Z,J,I-;l(av s)
y + (d’, 3)

i
cffz((i, 5)
_ T+ 5 (s+42)
B 2m ‘ _
-1 exp(—r\/—(s +k)) 0 v=Texp(+mv/~1(s+ k))
X exp(zﬂ'\/—(z — 2k)) —2 cos(3m(2s + 1)) exp(—3mv/—1(i — 2k))
|V-1lexp(+mv/=1(s —k+1)) 0 —v=lexp(-my/=1(s — k +1))
c]+2 k
(@, 5)
< |d*4,s)

* (@, s)

{3

(61)
These relations depend on s € C ‘meromorphically.

- Proof. These formulas are obtained by applying the relation formula (60)
twice. : 0O
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4.2. Laurent expansions of coefficient matrices.

Definition 4.1. 1. We define the coefficient matriz c; *(&,s) and cf:"(c'z', s)
by the 1 x (n — 7)-matrix

k(@ 5) = (O (@, 5), (@, 5), .. , K@) (62)

[

and the ¢ X 1-matrix

*(,5) = H(dO(,5), ¢V (@,9), .. , ' (@,9)) (63)

] ]

, respectively. The coefficient matriz c;'*(d, s) is defined to be an ¢ X
(n — 1) matrix '

(@) = (c7*(@,9)) o<k<i - (64)
o 0<5<n—1

2. We define the order of pole of a coefficient matrix to be the maximum

of the orders of the entries in the matrix. For example, the order

of pole of ¢{"*(d@,s) is the maximum of the orders of the entries in

(c7*(@,9)) o<kei -

0<)<n—1

Let p be the order of poles of P[“( ) at s = so. Then the Laurent
s)

expansion of ¢ (@,s) ¢’*(@,s) and ¢!"*(d@,s) are written in the following
form.
& = ok '
c: (@,s) = Z _c;,v(a’so)’w(s — 50)%, (65)
w=-p :
. m V .
cf"((i, 8) = Z c?:(.a,so),w(s - so)w’ » (66)
w=-p

Z cz (a so),w - So)w' (67)

w=—p

Some beginning Laurent expansion coefficients may be zero in these Laurent
expansions because the order of poles of these coefficients are not larger than
the order of Pl%l(z).

4.3. Properties of Laurent expansion coefficients of coefficient ma-
trices.

Proposition 4.3. Let so be a half-integer satisfying sp < —1 and let i be
an integer in 0 < 19 < n—1.

1. We suppose that iy is even and S0 is a strict half integer or that g is
odd and so is an integer. Then ¢;*(@,s) and ;.5 ,(d,s) have poles of
the same order at s = sg.



2. Suppose: that one coefficient cj" ko (@,s) has a pole of order p at s = so.

Then all the coefficients c7°’ (a s) in 0 < k < ip have poles of the same
order p at s = Sgp. Thezr Laurent-ezpanszon coefficients of degree —p
satisfy the relations

’ -
(~DP0 Ot R o = Chao) o (68)
forall0 <k <19—1.

Proof. 1. Note that so + 22 is a strict half-integer in both cases. We
consider the relation (60) in a neighborhood of s = so. Then the

, 1,k+1 k(=
relation matrix between {c{c“'f_l k ((? )8)] and [ Clﬁlgfzgl)] depends
on s € C holomorphically and is invertible near s = sg. The inverse
matrix also depends on s holomorphically, and hence c;*(@,s) and

¢;'%1(@,s) have poles of the same order at s = so.

—1,k+1
2. In the formula (60), we substitute 7 := 70 — 1. Then ’0 1k @,5)
@,s)

can be written as a linear combination of cft’)k_l(d', s) and cfo 11k Y(&,s)

with coefficients of meromorphic functions of s. Then the equation (68)

is naturally obtained from the form of linear combinations by (60).
' O

Definition 4.2. Let so be a half-integer not larger than —1. By Propo-
sition 4.3, the orders of poles of ¢!"*(d@,s) and ¢}*(@,s) (0 < k < 1) all
coincide. We call it a top order of ¢}"*(@,s) at s = sg and denote by

t; = ti(c_i So) ( )
the order of them. Indeed, t; varies depending not only on sg but also on @

By using the top order, we can describe the relation

2s0+it1 ok _ okl
( 1) ° ¢; A(&,50),—ti(@,50) S A@,50),—ti(&,50) " (70)

This is implied from Proposition 4.3 and the definition of ¢;.

Definition 4.3. Let sg be a half integer not larger than —1 and let 7,7,and
k be integers contained in 0 < ¢ < n—-2,0< 7 < n—t1—2and 0 <k <
i,respectively.

1. Let ¢ be an integer. The condition (Cond) for the coefficients

A{@,50),9
on A means that the relation for the coefficients
ok 42,k _ ' '
C:Z,(a,sO)y"'q + ( ) CJ a 50) —q - 0 . (71)

is satisfied. The condition (Cond)é’(()gso) , for the coefficients on Ag
means that the relation for the coefficients

Cj,O ( )so+lc]+

. 0,(d,50),—¢
is satisfied. Here,sp must be an integer and g is always 0. -

0,(a,s0),—q
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2. Let ¢ be an integer. The condition (Cond)'(k~ o), means that the

conditions (C’o'n,d)j’éc so)ua
—1—2. The condition (Co'n,d)0 (&50)10 stands for that the conditions
(Cond)

are satisfied for all integers 7 in 0 < 7 <

o). 2T€ satisfied for all integers jin 0 < j < n—2. The con-

0 (a
dition (Cond)].’( s0),g Teans that the conditions (Cond)J’(a so)q 2T€
satisfied for all integers j in 0 < k < 4. The condition (Cond)é’ ((’:SO) .

stands for that the conditions (Cond)é’(()a*so) .

3. Let ¢ be an integer. The condition (Cond)'('. »),q means that the

conditions (Cond)J’(a o).
j <n—i—2and 0 < k < 1, respectively. The condztzon (Cond)

are satisfied for all integers j and k£ in 0 <
0 (éyso)vq

is equlvalent to the condition (Cond)a(()a*s()) g

4. The condition (Cond); (2.50).t0p means that the condition (Cond)_ /> (2.50),
when ¢ is the maximum of the orders of poles of the coefficients appear—
ing in the relation formula. For example, the condition (Cond)
means the relation (71) where ¢ is the maximum of the orders of poles
at s = so of the two coefficients ¢*(d@,s) and ¢/t k(a s) The con-
dition (Cond)?" means the condition (Cond) (.50),q VhETE ¢

J(@,s0),top
is the maximum of the orders of poles at s = sg in the entries of

e
(c7"(@,s)) o<k<i -
0<7<n—i

5. The condition (Cond)i—(’;’s;) _ means the negation of the condition
(Cond); (z.0).-

Proposition 4.4. Let @ € C*t! and let s¢ be a half-integer not larger than
—1. Then (Cond) is equivalent to that there ezists an integers k

(8,50 ),top
in 0 < k <z such that (Cond)f’k is satisfied.

A(@,s0),top
Proof. From Definition 4.2 and Definition 4.3, we have that (Cond) @
is equivalent to (Cond);", (@50),—t: (@,50)7 2nd that (Cond)
alent to (Cond);’ o*

130) tOp
,(@,s0),top
(@50)—ti(@s ). From (70), if there exists an integer k in
0 < k < ¢ such that (Cond) (@50), i i(@50) then (Cond) (&,50),~t:(@\50)’ for

all integers £ in 0 < k < i, and the converse is true. This is equivalent to

the condition (Cond);", (@50 )—ti(@,50)” LDUS We have the desired result. [

Proposnlon 4.5. There are the following relations among the condztzons
(Cond)”rs )~ and the following order of poles of coefficients ¥ (@, s).

1. Let so be an integer not larger than —1.

(a) If the conditions (Cond)’ > (Cond)’t2** and (Cond)

0,(&,s0),top’ 0,(a,s0),top’

are satisfied, then we have (Cond)1 (@50),t0p"
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J(&,s0),top

is equiv- -

j+27.7*
0,(&,s0),top’



b) If the condition (Cond)’? . is satisfied, then the order of
0,(@,s0),top

pole at s = sg of cl’ *(@,s) is 1. If the condition (Cond)]’(a s0) bop

is satisfied, then cl’ *(@, s) is holomorphic at s = sy. The converses
are also true.

2. Let so be a half-integer not larger than —1 and let ¢ be an integer in
0<1<n—-2. We suppose that ¢ is even and sq is a strict half-integer
or that 1 is odd and sg is an integer.

(a) If (Cond)”’(a s0),top and (Cond)J+2 are satisﬁed, then we

«(@,s0),top
have (C ond)f;2 (&,50),top”

(b) If the condition (Cond)J’(a s0),top

the order of pole at s = sy of cz+2(a s) is larger by 1 than that
of €*(@,s). If the condition (Cond)g’(

—'t— then the order of pole at s = sy of ¢! +2(a s) is not larger

is satisfied and sq < —%—2, then

2,50),t0p 15 satisfied or sg >

than that of cf’ (@,s). The converses are also true.

Proof. We can prove these propositions by using the relations of coefficients
(60) and (61), and the condition formula (71) and (72).

1. First we prove the relation of the coefficients L'Z’k(d',s) with ¢ = 0, 1.
Note that sp is an integer not larger than —1.

(a) The condition (Cond)”(; 50),top

From the equation (72) and the assumptions, we have

b o (m1)FLO g

0,(@,s0), 0,(d,50),0
4+1,0 so+l j+2,0 .

Coasoyo T (DT eg i 500 = 0> (73)
42,0 s 43,0

Coaso)0 T (—1) ot 0,(3.50),0 = 0-

Note that c(’;’o((i, s) = a; do not depend on s for all jin 0 < 7 < n.
Then the equation (73) means

3]

°(@,s) + (-1)°*' (@, 5) =0
F0E,s) + (1)t 0@, ) =0 (74)

%
Cg+2,0(do, 8) +( l)so+1cJ+3 O(CL S) -0

[

is equivalent to the condition (Cond)
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By substituting 4 := 0 in the relation formula (60), we have
' (d)
C{’o (@,s)

V-1(s+1)) exp(-}—’ VvV=1(s+ 1))]
V-1

7 |exp+EvTI(s+1) exp(—5v=I(s+1))

[c{,“"’(a, s)]
X 0/ =
g (d,s)
(75)
for all jin 0 < j < n—1. Through I'(s + 1) has a pole of order

1 when s is an 1nteger not larger than —1, c’ (@,s) and cJ (@,s)
are holomorphic at s = sp by the relatlons (74) and (75) By
computing the values of them at s = so, we have

1 so+1 J+1, —
ci,(c'f,so)0+ (1) q a,so)O 0 (76)
i+1,0 so+1 J+2,0  _
1,(a,s0), 0 ( ) ° CJ 1,(&,50),0 — =0
Hence we have
0 i+2,0
¢} (@50).0 = Cl(@.50)0" (77)
This means that
,0 )+2, —
(’J a.so)O ( )(‘J aso)O 0, (78)

and hence we have (C'o'n,d)1 (@:50).0° In our case, since the order of

pole at s = so of c’ (@, s) is 0, this condition is (Cond)1 (@,50),t0p"

This is the desired result.
(b) These propositions are trivial from the above calculatlons
2. Next we prove the relation of the coefﬁc1ents c? (@,s) with ¢+ > 1.
Let po := t;(@,5s0) be the top order of ¢;*(g, ) at s = sp and let
p1 = ti+2(@,s0) be the top order of c2+2(a s) at s = sp as defined in
Definition 4.2.
(a) We first suppose that v is odd and sp is an integer. Then the
condition (Cond)?’ means the condition (Cond);". @

,(@,50),top d@,s0)po”
Therefore, from the equation (71), if ¢ is odd, then from the as-
sumption o '
ik _ 2k .
%,(&,50),—po — 7i,(d,50),—Po (79)
+2,k _ Atk
‘iy(a,So)y—PO - "'»(aaso):-PO

are satisfied for all k in 0 < k < 7. Using the relation formula (61),

we can compute the elements of c;_’F2 (3,50)—p1" . Then we have

1,k 1+2,k
(:17+2 (@,50),—p1 CZ+2 (&,50),—pP1 : (80)
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is satisfied for all k in 0 < k < 7+ 2 since the relation ma-
trix in (61) does not depend on j. This means the condition

(C‘md)f;uz (&,50) top’

In the case that ¢ is even and sp is a stnct half-integer, we can
prove the proposmon in the same way. Namely, the condition

(C’ond)”(a s0),top’
Wk o i+2k :
C'Zv(avSO)a_pO - _cg,(ff’so),"Po (81)
implies the condition (C’ond)z +2,(@,50) top"
ik itk
CZ+21(5,50),‘“P1 - _C‘Z+2,(5,30)’—p1 (82)
(b) We first suppose that ¢ is odd and sg is an integer.
If (C’ond)fi’_2 (3,50) 60D is satisfied, then there exists integers & in
0<k<1 such that
ik j+2,k
cg,(E,SO),-po # Cg,(&,so),—po' (83)

Then, remember the formula (61).

; (@ '
AR A | | (84)

= 2 Z (85)
2w

—lexp(—mv/=1(s + k)) 0 vV—1lexp(+mv/=1(s + k))

X exp(3mv/~1(i — 2k)) —2cos(3m(2s + 1)) exp(—3mv/=1(i — 2k))
|V~1exp(+mv/=1(s — k + 1)) 0 —v—=1lexp(—mv/~1(s — k + 1))

(86)
-cj+2 k(d’, s) ' _
X C‘7+1 k((i s) . (87)
c*(@,s) |

Then the elements of the matrix (86) x (87) have poles of order
po at s = sg. If 59 < —+— then the gamma function (85) has
a pole of order 1 at s = 30 Hence, the elements of the matrix
(85) x (86) x (87) has a pole of order po + 1 at s = so. Therefore,

¢} 5(@,50) has a pole of order larger by 1 than that of c{’ (@, so0) at

(]
s = sg. This is the desired result. It is clear that the converse is

true.

If (Cond) is satisfied, then

i+2,(d,s0),top

ok =¥k (88)

iy(a730),—P0 zv(ayso)1_p0



72

for all integers k in 0 < k < 4. Then the elements of the matrix
(86) x (87) have poles of order po ~ 1 at s = so. T he gamma
function (85) has a pole of order 1 at s = so if 59 < —‘—'g—, and
otherwise, it is holomorphic at s = so. Hence, the elements of the
matrix (85) X (86) x (87) has a pole of order not larger than pp at

s = sg if the condition (Cond)}" (3,50),top is satisfied or sg > ——ﬂ
Therefore, if the condition (Cond)”(a so) o is satisfied or so >

— 52 then c{iz(a', sp) has a pole of order not larger than that of
c* (@, s0) at s = so. This is the desired result. It is clear that the

1
converse is true.

In the case that ¢ is even and sp is a strict half-integer, we can
prove the proposition in the same way.

D .

Corollary 4.6. 1. Let 5o be an mteger not larger than —1.

" (a) The condition (Cond)y Za s0),t0p implies the condition (Cond)}"? '(@,5) k0D

This means that the condition (Cond)(')zd.*s()) top JOlows from the
condition (Cond)}" '(@,50) top"

(b) If the condition (Cond)y 7y . is satisfied, then the order of

0,(@,s0),top
pole at s = so of c7*(@,s) is 1. If the condition (Cond)g' &\ top
is satisfied, then c¢}*(&,s) is holomorphic at s = so. The converses
are also true.

2. Let sy be a half-integer not larger than —1 and let ¢ be an integer in
0<i<n—2. We suppose that i is even and so 1$ a strict half-integer
or that ¢ is odd and sg s an integer.
(a) The condition (Cond);"; (@50) 0P

This means that the condition (Cond); ",

implies the condition (Cond)z“ (@,50), top”

(@s0),top follows from the

condition (Cond); i—’+-2 @, so) top

(b) If the condition (Cond); (@.50) 0P is satisfied and sp < —%ﬁ, then
the order of pole at s = so of ¢ +2(d’, s) is larger by 1 than that
of_c;" (@,s). If the condition (Cond):”{a,so),top is satisfied or so >
— 52 then the order of pole at s = so of c;} (@, s) is not larger
than that of ¢;'* (@, s). The converses are also true.

Remark 4.1. Proposition 4.5-2-(a) and Corollary 4.6-2-(a) can be proved
from the assumption that so is a half-integer and ¢ is an integer in 0 < 1 <
n — 2. Indeed, this proposition is proved from the fact that the relation
matrix in (61) does not depend on j.

Corollary 4.7. Let sg be a half-integér. In this corollary, (Cond)”} (2,50).60p

means (Cond)y7r

” ) n v
0.(&,50),t0p Then we have



1. When sg is an znteger there exists an even integer ip in —2 < 19 < n+1

such that
[ (Cond);". (@:50).60p forallodd i in -1 < i< 1 (89)
(Cond)'{a so)top Joralloddiinn>i> io

2. When sq is a strict half-integer, there exists an odd mteger 11 1n -2 <
11 <n+1 such that

(Cond)'(’a s0),t0p foralleveni in -1 <1< 1 (90)
(Cond)'{a so)iop  Jor all even i inm > 1> 14 |
Proof. We can prove this by induction on 3. : _ O

Proposition 4.8. Let @ € C"*!, We suppose that i is even and sg is a
strict half-integer not larger than —1 or that ¢ ts odd and sg is an integer
not larger than —1. We denote by t;(@,so) the top order of ¢;*(d,s) at
S = Sp. ' : '

1. Let so be an integer. We have

(Cond); Ea*s ) top 15 equivalent to (dM[s0), @) #0, (91)
and equivalently, |
(Cond);’ Za*so) top 'S equivalent to (dMse), @) = 0. (92)

If (d(l)[sd],d') # 0, then t1(d@,so) = 1 and

(d( )[30] a)//c1 (3,50),—1" (93)
for k =0,1. _ ‘
2. Let so be a half-integer and let ¢ be an integer in 0< t <n—2. Then
(Cond)!", (@s0)top 1S €quivalent to (dF[s0), @) # 0, (94)
and equivalently, |
(C’ond)'('a so),bop 1S €quivalent to (di+2)[s0], @) = 0. (95)

If (d")[sg], @) # 0, then
(d+][s], a)//cer2 (2,50)1—ti42(@50)" (96)
forallk in0<k<i1+2.
Remark 4.2. 1. In Proposition 4.8-2, when (d@+?[sq], @) # 0,

t,‘((-f, So) +1 if So S —%2

) 97
ti((—i, So) if sg > —52'—2 ( )

tit2(@, so) = {

by Proposition 4.5-2-(b).
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2. If (d+?[sg), @) = 0, and (d(')[so] @) # 0, then t;42(@,s0) = ti(@, s0)
and ,

co,k
i+21(6750)1—ti+2 (6'.130)

¢ x (1,0,1,0...) +¢2 x (0,1,0,1...) if 7 is odd,
T (98)

— n—i—1 n—i—1
“lea x(1,0,-1,0,...) +¢2 x (0,1,0,—1,...) if ¢is even,
A S _,._/
n—i—1 n—i—1

for all kin 0 < k < i+ 2. Here, ¢; and c; are constants.

Proof. 1. First, we shall prove Proposition 4.8-1. Since sg is an integer,
(91) follows from the computation each of them by (72) and (15).
Indeed, note that c7 0 = a; from the case of ¢ = 0 in (72). Then

(a@,50),0
(Cond)y’ Zé 20),0 TN€2NS
g+ (=1)®* a4 =0, forall jin0<j<n.  (99)

From (14), we have (dgo)[so],é’) = j. By (15), (dM[so], @ = 0 means
(99). Thus we have (92), which also proves (91). This is the first

assertion.

If (dV[so], @) # 0, then (C’ond)'?’k o0 bY (91). Therefore, (93)

is implied from the calculation of ¢}’ (a‘s ),—1 DY (60) near s = sp. It

is described in (75). Then, at least one matrix [ 0(_, )] with J in
(&)

0 < j < n has a pole of order 1. Then, we have t;(d,so) = 1. By
taking the residues of (75), we have

c;. (a. so) -1
c]y

1,(a,s0),—1

: , (100)
(-1)=+ 1 #1500
=axX X 0
1 (_1)so+1 ,O* )
0,(&,s0),0
with a constant @. Then we have '
51 — S 1,1
Ci,(ﬁ,so),—l =a X (CJ (a 80)0 + ( ) 0+lc(7)_*('a 50) O) V
=ax (a;+ (-1)**a;41)
" =aX (c7 + (-1 )s°+1c7+1 1 ) (101)
1,(@,s0),—1 0,(@,s0),0 0,(&,50),0
= ax (g + (1) aip)
for 0 < 7 < n. On the other hand, from (15), we have
(@s0}8) = (@fool, @ + (1)@ [s0) @ 102)

= (a; + (=1)**aj41)



for 0 < j < n. By (102) and (101), we obtain (93). This is the second
assertion.

Thus,we have completed the proof of Proposition 4.8-1.
. We shall prove Proposition 4.8-2 by induction on 3.

First we shall prove Lemma 4.9 and Lemma 4.10 as initial conditions
of the induction for the cases ¢ = 0 and ¢ = 1, respectively.

Lemma 4.9. Let sy be a strict half-integer < —1.

(Cond)0 (2,50) pop 1S €quivalent to (d@)[so],a) # 0, (103)
and equivalently, ‘
(Cond)y Ea so),top 15 €quivalent to (d®[so], &) = 0. (104)
If (dP[s0], @) # 0, then t5(a, s0) = to(@,s0) +1 =1 and
(d@[s), @ ")//c2 (@,50)—t2(@,50) (105)

forallk in0 < k<2.

Proof. Since ¢)*(@, s) = @, it does not depend on s € C. Then, its top
order is 0. Hence, (C’ond)' 0 means (Cond) ! . Then, by

0,(a,50),top 0,(d,%0),0
(71), we have
42,0 0 _
cé(aso)0+cé(a,30)0 =0
forall jin0< 7 <n-2. Smce 0@, s) = cé?a )0 = 8 = (dg-o)[so],d'),
we have
ajy2 +a; = (d[so], @) = 0

for all j in 0 < j < n—2, which means (d®[sy],@) = 0. Thus, we have
obtained (104).

Next, we suppose (d(2)[so],c’i) # 0. Using (61), we can compute
c;’zd. s0),—ta(@,50) 17O € Z~ o)o- Namely, taking the top terms of the
Laurent expansion of the equation (61), we have

2 i+2,0

C‘; (a s0),—t2 b 0 by CZ) (a so) 0 '
2(()a ,50),—12 = Zb)l 8 21 X CJ (()a so) 0 (106)
2,(d,s0),—t2 0 0 c%’,(a,so),o

with b2blbO # 0.
Then, we have

c;:];E,so),—tg = br(ajt2 + aj)‘
for all j and k. From the definition,
(ds0], @) = ajy2 + o;
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for all j. Thus we have

<d( [SO] ~>//c 2,(@,50),~1t2(&,s0)’ . 7
forallkin 0 <k <2. . O
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Lemma 4.10. Let sy be an integer < —1.

(Cond)I Ea s0),t0p 1S €quivalent to (d® [Sp], a) # 0, | (107)
and equivalently, 4 |

(Cond)y Ea s0),top 15 €quivalent to (d®][se], @) = 0. (108)
If (d®[so], @) # 0, then t3(a, so) = t1(@, s0) + 1 and

(d(B) [so], @ ")//c3 (&,50),~13(&,50)" (109)

forallk in0<k<3. ‘
Proof. By Proposition 4.6-1-(a), (Cond); Za s0),0p iMPlies (Cond)g" .

Using (61), we can compute ¢3’f (G.50)—ts (d,50) TTOM €] za s0) et (@0)"

Namely, taking the top terms of the Laurent expansion of the equation
(61), we have

k+2 . +2,k
c;](g&' io) ,—13 a 0 —a c;. (a so) -1
3'(a so)—ts| = |0 8 -b| x c’ (a so), " (110)
c —c
CE; (a 80), t3 C] (a So) —~13
with abc # 0. Thus |
j k42 _ +2,k ik
3,(&',50),—153 =aXx ( Ci (a SO) —1 + ci,(a,SO),—tl) (111)
for all k. On the other hand, by (18), we have
| (d[s], @) = —(d)3[50], @) + (d[s0), @) (112)
Therefore, we have
— ok
(dOfsol, 3/ /e3tz o0).- gy (113)

for all £ by Proposition 4. 8— Since c ,( 7,50),~ta (3, SO) # 0 we have

(d®[s0], @) # 0.
Conversely, we suppose tha.t (d®[so],@) # 0. Then, from Propo-
sition 2.1,we have (d(*)[sy],@) # 0. Then, from Proposition 4.8-1, we

have (Cond)gr",  op, and |
(dMs0],@)//ey (3,50 -1 (114)
forall kin 0 <k<1. '
Suppose that (Cond)I Za s0) bop” Then, from ‘the definition,
C,7+2 k n c’ —~0

1,(@,s0),—t1 1,(a,50),—t1



for all j and k. Then, by (112) and (114), we obtain ( (®)[so], @) = 0.
This is a contradiction. Therefore, we have (Cond)?" O

1,(@,s0), top”

Next, we assume the following conditions with a fixed integer | > 2.
These are the assumptions of the induction with i =1 —2. We suppose
either that [ is even and s is a strict half-integer < —1 or that [ is odd
and sp is an integer < —1.

(a) We have ‘

(Cond);”, {(@.50) bop 18 equivalent to (d[so], @) # 0, | (115)

(b) If (dD[so], @) # 0, then

<d(l) [so], @//CZ’(I;,SO),_t,(E’SO), (116)

forallkin0<k<I
We shall prove Lemma 4.11 and Lemma 4.12 for the proof of Propo-
sition 4.8-2 by induction on 1.

Lemma 4.11. We suppose (115) and (116). Then (Cond);",

l,(@,s0),top
implies (d"+?)[so],a@) # 0 and
(D s0], @/ /€4y 3009 —trsa(to) | (117)
forallk in0 <k <142
Proof. By Proposition 4.6-2-(a), (Cond)l'('a s0).top imPplies (Cond);”, @ ;0) bop”

Using (61), we can compute cH_2 (@50),—t142 (@,50) from ¢}’ (@50)—~t1(@50)"

Namely, taking the top terms of the Laurent expansion of the equation
(61), we have

k42 )+2,k
l;*;‘;?_{_(l&',so),—tln l.,(a'fl,s]g),-tz
1 —_— + ’
CI]_-I;CQ,(&‘,So),—tl+2 T A X Cl’.’sca’so)v._tl (118)
I+2,(&,s0), —t142 ‘ CZ (@,50),—1

with a 3 x 3 constant matrix A. If [ is odd and s is an integer, then
A has the following form:

la 0 —a] |
A= (b 0 -b (119)
c 0 —c

with abe # 0, and if [ is even and sp is a strict half-integer, then A has

the following form:
a 0 a _ ’
A=1b 0 b (120)
0 ,
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with abc # 0. Thus if I is odd, then

j k42 o +2,k ik .
Dra(ds)-tisz = ¢ X (S @50)-t + Ugso),-) (121)

and if [ is even, then

k42 o 42,k ik
c;+2,(&'150))_tl+2 =ax (CZ,(E,SO),—tl + 6171(5150)’_“) (122)

for all k. On the other hand, by (18) and (19), we have

! ! ! -
(d/*P[s0], @) = —(d{2[s0], @) + (d[s0], @) (123)
if [ is odd, and
l - l - l -
(d§*Ps0], @) = (d1,ls0], @) + (d[50], @) (124)
if [ is even. Therefore, whether [ is odd or even, we have
l —» 0.k .
| (d +2)[30],a)//cl +2,(3,50)—tiy 2 (@s0)" (125)
t(')or all k by (116). Since cl'_fz(a,so),_ t142(@,00) 7 0 We have (dH[sg], @) 5&

Lemma 4.12. We suppose (115) and (116). Then (d+?)[so],a@) # 0
implies (Cond)

l,’(d‘,so),top'
Proof. From (d#?)[so], @) # 0 and Proposition 2.1,we have (dW[se), @) #
0. Then, from the assumption of the induction (115) and (116), we have

(C’ond) I.L.Z,(d’,so ),top and

{(dDT50), @)/ /€] s ) —ta(@i00) (126)

for all kin 0 < k < 1. |
Suppose that (Cond)l"(:.z. s0),top” Then, from the definition,

42,k & _
_CZ)(E’SO)v—'tl + CI])(&";SO)v_tl - 0

if [ is odd, and

42,k ik _
c;,(d',SO),—tl 617,(6:,30),—151 - O

if  is even, for all j and k. Then, by (124), (123) and (126), we

obtain (d!*?)[s),&@) = 0. This is a contradiction. Therefore, we have

(Cond) l.,,(:'z‘,so),t op* O

Thus, by Lemma 4.11 and Lemma 4.12, we obtain the following
result under the conditions (115) and (116). These are the results of
the induction with 7 =[. ‘ ‘

(a) We have

(C’ond)l"(".z.’s())’t op 15 €quivalent to (d[se], @) # 0, (127)




(b) If (d[sg], @) # 0, then

(D50, 8)/ /€L 5.0 R (128)

forallkin 0 <k <I+2.
Therefore, with Lemma 4.9 and Lemma 4.10, we have completed the
proof of Proposition 4.8-2 by induction on 3.

O

5. PROOFS OF THE MAIN THEOREMS.

In this section we shall prove Theorem 2.3 and Theorem 2.4. We have
reduced the problems of “orders of poles” and of “supports of Laurent coef-
ficients” of the hyperfunction P1%*l(z) to the calculation of those of coeffi-
cients on the Lagrangian components of the microfunction sp(P%*!(z)) by
Proposition 3.6,Corollary 3.7 and Proposition 3.8. We shall determine the
orders of the coefficients applying the relations obtained in Proposition 4.1.

5.1. Some preliminary propositions.

Proposition 5.1. Let sg be a half-integer in so < —%l.
1. Suppose that sg is a strict half-integer.

(a) If the condition (Cond)t;:z&.’s())’o is satisfied,then all the coefficient
matrices ¢;"* (@, s) are holomorphic at s = sg.

(b) If there exists an even integer iy in 2 < ig < n such that the con-
ditions (Cond):"* and (Cond):0°(a s0),b0p AT satisfied,
then
(i) the order of pole at s = so of ¢;’*(d,s) is |3 | if i < dp.

(ii) the order of pole at s = so of ¢!'*(@,s) is 41 if 1 = tp.
(iii) ?he ?rder of pole at s = sy of ¢;*(d,s) is not larger than % if
1> 1.

(c) If the condition (Cond):()'(a SO)I top 'S satisfied for the largest even

integer ig in 0 < ig < n, then the order of pole at s = s of ¢]'*(@, s)
) |
2. Suppose that sy is an integer.
(a) If the condition (Cond)' 0 | o is satisfied,then all the coefficient

matrices c;* (&, s) are holomorphzc at s = so.
(b) If the conditions (Cond):):zgso)’o and (Cond)? Ea o) top 4T€ Satis-
fied, then
(i) the order of pole at s = sy of ¢7*(d,s) is 1 and ¢3*(d,s) is
holomorphic at s = sg.
(ii) the order of pole at s = sy of ¢]*(@, s) is not larger than 1 if
t > 1. ~
(c) If there exists an odd integer iy in 2 < i9 < n such that the con-

ditions (Cond):"* and (Cond):()'(a s0),top 4TE satisfied,
then '

10—2,(d,s0),top

t0—2,(d,s0),top
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(i) the order of pole at s = so of ¢;"*(d@, s) is %J if 1 < 1p.
(ii) the order of pole at s = sg of ¢'*(d, s) is 10;'1 if 1 = 1p.
(iii) the order of pole at s = sg ofc *(@,s) is not larger than
if 1> 10.
(d) If the condition (Cond)z0 (@,50).top 15 satisfied for the largest odd
integer ip in 0 < i < n, then the order of pole at s = so of ¢;'*(@, s)
is | 5L for all0 <7 <m.

20+1

Proof. Note that So is a half-integer in s¢ < —-”—'H

1. We first suppose that sg is a strict half-integer. T hen by Corollary 4.7-
2 and Corollary 4.6-2-(a), we have
(a) If the condition (Cond)y’ Ea 00 18 satisfied,then (C’ond) (@
for all even ¢ in 0 <z < m.
- (b) If there exists an even integer ip in 2 < ¢y < n such that the

conditions (Cond);”, - .., and (Cond); "z ) top 2T€ Satis-

fied, then (Cond)';as Jtop for all even i in 0 < @ < i, and
(Cond)'('a 50),60p for all even 7in n > 7 > ig.

(c) If the condition (C’ond)z0 (@,50),t0p

integer ip in 0 < 49 < n, then (Cond)!7,
0<2<n. :
From Corollary 4.6-2-(b), if (Cond) (@,50),60p
integer 7, then the order of pole of c; +2(a s) at s = sg is larger by 1
than that of ¢{"*(d, s) since so < —2FL. If (Cond);"’ (3,50),t0p is satisfied

for an even integer 7, then the order of po]e of ¢;1,(@,s) at s = 50 is
not larger than that of ¢;"*(d,s). Since c0 *(d, s) is a constant vector,
we can compute the orders of poles of ¢;"*(@,s) for all even integers i
in 0 < ¢ < n. For odd integers ¢ in 0 < ¢ < n, the order of pole of
c*(d,s) is that of ¢°, (@, s) by Proposition 4.3-1.

In the following, we compute the orders of poles of ¢;**(@, s) in each
case.
(a) Suppose that the condition (C’ond)0 (@:50).0 1S satisfied.

s0),top

is satisfied for the largest even

for all even 7z in
(@,50),top

is satisfied for an even

If @ = 0, then all ¢]"*(@,s) are zero. Hence all of them are holo-

morphic at s = sp.

Suppose that @ # 0. Since ¢y*(@, s) is a non-zero constant vector,

its order of pole is 0 . Then, all the orders of poles of ¢;*(d, s)

at s = so for even ¢ in 0 < 7 < n are 0. The orders of poles of

c;"*(@,s) at s = sg for odd 7in 0 < 7 < n are also 0. Thus all
o0

c.;”(@,s) are holomorphic at s = s.

(b) Suppose that there exists an even integer 7o in 2 < 29 < n such

that the conditions (Cond)zo —~2,(&,50),top and (Cond)..(a 50),top

are satisfied. Then the order of pole of c;*(d,s) is 5 for even i




in 0 <7 < 79, and is not larger than 3% for even ¢ in 7 > 1g. For odd
i, the order of pole of ¢!**(d,s) coincides with that of ¢}**(d,s)
Then the order of pole of ¢}"*(@,s) is [%J for all ¢ in 0 < ¢ < 1o,
and is not larger than % for all ¢ in 7 > 4. ’
(c) Suppose that the condition (Cond):(;:(a’s())’top is satisfied for the
largest even integer ip in 0 < 4 < n. Then the order of pole of
¢;"*(d,s) is £ for even ¢ in 0 < ¢ < n. For odd ¢, the order of pole of

c;"*(@,s) coincides with that of ¢!*°,(@,s). Then the order of pole

of ¢{'*(d@,s) is | 4] forall 1in 0 < i < n.
Thus we complete the proof of Proposition 5.1-1.
. Secondly, we suppose that sg is an integer. Then, by Corollary 4.7-1
and Corollary 4.6-2-(a),(b), we have '
(a) If the condition (Cond)azzgs())io is satisfied,then (CO'n,d):,’('(.z.’sO)’top
for all odd 7 in 0 < i < n. '

(b) If the conditions (Cond):)’zé*s()) , and (C’ond);’z&. s0) top aT€ satis-

fied, then (C’o'n,d)(')’E(:l."‘so)0 and (Cond);’{a so)top foF all odd i in

(c) If there exists an odd integer iy in 2 < 75 < n such that the

ey e ) o,0 : [ 2 J :
conditions (C'ond)io_2’(&.’30),top and (Cond)io,(a,so)’top are satis-

fied, then (Cond)’" for all odd 7 in 0 < ¢ < 4, and

i1(5150 ),tOp

(C’ond);’(:.l. 50), 0D for all odd 7 in n > ¢ > 1.

(d) If the condition (Cond)?"* is satisfied for the largest odd

10,(&,s0),top
integer 7o in 0 < 79 < m, then (C’ond);”{&.,so),top for all odd 7 in
0<1< .
From Corollary 4.6-2-(b), if (Cond);,’('(.1.150)’t op
integer 7, then the order of pole of c;v5(@,s) at s = so is larger by 1

than that of ¢]"*(@, s) since s < — 2L, If (C’ond);’('a. s0)top 15 satisfied

for an odd integer 7, then the order of pole of ¢;:’,(d@,s) at s = sq is
not larger than that of ¢;*(@,s). Since ¢3*(@,s) is a constant vector,
we can compute the orders of poles of ¢;"*(a,s) for all odd integers ¢
in 0 < ¢ < n. For even integers ¢ in 0 < ¢ < n, the order of pole of
c;*(d@,s) is that of ¢)°,(d@, s) by Proposition 4.3-1.

In the following, we compute the orders of poles of ¢;"* (&, s) in each
case.
(a) Suppose that the condition (Cond)azzgso)’o is satisfied.

is satisfied for an odd

If @ = 0, then all ¢]"*(@,s) are zero. Hence all of them are holo-
morphic at s = sg. '

Suppose that @ # 0. Since ¢y*(@, s) is a non-zero constant vector,
its order of pole is 0 . Then, all the orders of poles of ¢;"*(d@, s) at
s = sg for odd 7in 0 < i < n are 0. The orders of poles of ¢;*(d, s)
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at s = so for even % in 2 < i < 7 are also 0. Thus all ¢;"*(d@, s) are
holomorphic at s = sp.

(‘b) Suppose that the conditions (Cond);’ Za* 1,0 and (Cond)

(@,s0),top
are satisfied.
Then the order of pole of ¢}"*(d@,s) is 0 for ¢ = 0, is 1 for ¢ = 1,
and is not larger than 1 for odd ¢ in 4 > 1. For even i, the order of
pole of ¢]"*(@, s) coincides with that of ¢;»°, (@, s). Then, the order
of pole of ¢{*(@,s) is 0 for i=0,is 1 for i =1, and is not larger
than 1 for all ¢in 2z > 1.

(c) Suppose that there exists an odd integer i in 2 < 39 < n such
that the conditions (C’ond)ﬂg0 2,(3,50) 0P and (C‘ond)l0 (2,50) 0P

are satisfied. Then the order of pole of ¢!'*(d,s) is 2! for odd
¢ in 0 < 7 < 1p, and is not larger than ﬂ;—l for odd : in 1 > 1.
For even i, the order of pole of ¢;**(a@,s) coincides with that of
c?*,(@,s). Then the order of pole of ¢{**(,s) is | *$}] for all 7 in
0 < < 4, and is not larger than 29+—1 for all zin 2 > 1.

(d) Suppose that the condition (Cond)zo’(a so).b0p 18 satisfied for the
largest odd integer io in 0 < % < n. Then the order of pole of
c;*(@,s) is 3L for odd ¢ in 0 < ¢ < n. For even i, the order of
pole of ¢!"*(@, s) coincides with that of ¢;”(@,s). Then the order
of pole of ¢}*(@,s) is || forall iin 0 < i < m.

Thus we complete the proof of Proposition 5.1-2.

Proposition 5.2. Let so be a half-integer in —2+ < 5o < —1.
1. Suppose that s is a strict half-integer.

(a) If the condition (Cond)c.):Za,so),o is satisfied,then all the coefficient
matrices c;"* (@, s) are holomorphic at s = sg.

(b) If there exists an even integer ig in 2 < 19 < —2s9—3 such that the
conditions (Cond)?"*
fied, then .
(i) the order of pole at s = so of ¢;*(d,s) is | 3] if i < io.
(ii) the order of pole at s = sg of ¢]"*(d,s) is & if i = io. _
(iii) the order of pole at s = so of ¢;*(@, s) is not larger than % if

1> 1.

(c) If there exists an even integer i in —2so — 3 < ig such that the

condition (Cond):"* is satisfied, then

and (Cond);" . are satis-

i0—2,(d,50),top i0,(d,50),top

i0,(d,s0),top
(i) the order of pole at s = sg of ¢;"*(d,s) is [%J if 1 < =259 — 1.
(ii) the order of pole at s = so of ¢"* (@, s) is =20=* if i = —2s0—1.
(iii) the order of pole at s = so of c* (@, s) is not larger than =25=1
ifi> —2s0— 1. '

2. Suppose that sg is an integer.
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(a) If the condition (Cond) 7> is satisfied,then all the coefficient

0,(a,s0),0
matrices ¢;* (@, s) are holomorphic at s = s.
(b) If the conditions (Cond);’ z.* and (Cond)} Z» o) top 7€ Satis-
fied, then

(i) the order of pole at s = so of ¢1"*(@,s) is 1 and ¢3*(d,s) is
holomorphic at s = sg.

(ii) the order of pole at s = so of ¢;"* (@, s) is not larger than 1 if
¢ > 1.

(c) If there exists an odd integer ig in 2 < ip < —2so — 3 such that the
conditions (Cond)"* and (Cond):oj(a so)bop 9T satis-
fied, then
(i) the order of pole at s = so of ¢;"*(@,s) is [%’—I-J ifi < 1g.

(ii) the order of pole at s = sg of ¢’ (c'i, s) is % if 1 = ig.
iii) the order of pole at s = so of ¢;'*(d, s) is not larger than oL
p 2
if 1> 1p.
there exists an odd integer 19 in —2sg — 3 < ig such that the

d) If there exi dd integer iy in —2 3 <1 h that th
condition (Cond)zo, (@,50),bop 15 satisfied, then”

(i) the order of pole at s = sg ofc (d’ s) is [SEL] if i < —2s0—1.
(ii) the order of pole at s = sg of ¢}’ ( d,s) is —sg if 1 = —=2s9 — 1.
(iii) the order of pole at s = so of ¢}'*(d,s) is not larger than —so

if i > —2s0 — 1.

i0—2,(d,s0),top

Proof. Note that sp be a half-integer in —24L < 59 < —1.

1. We first suppose that sq is a strict half-integer. Then, by Corollary 4.7-
2 and Corollary 4.6-2-(a), we have
(a) If the condition (Cond); (@.50),0 1S satisfied then (Cond):"’
forallevenzm0<z<n
(b) If there exists an even integer i in 2 < iy < 7 such that the

conditions (Cond);"* and (Cond):()'(a s0),top 2T satis-

fied, then (Cond):” {(@s0)top for all even 7in 0 < ¢ < 4o, and

(@,s0).top

zo —2,(@,s0),top

(Cond):". (@50).top TOT all even iin n > i > 4.

(c) If the condition (Cond)®* is satisfied for the largest even

i0,(&,s0),top
integer i in 0 < ig < 7, then (Cond);", @
0<1<n.
From Corollary 4.6-2-(b), if (Cond);”.
i+2
2

7,50),top for all even 7 in

(@50).t0p is satisfied and sy <

for an even integer ¢, then the order of pole of ¢;}’, (@, s) at s = sg

is larger by 1 than that of ¢;'*(a@,s) If (Cond)'('a s0),t0p 15 satisfied or

S0 > —“52 for an even integer 7, then the order of pole of c;’ 2 (@, s) at
.8 = sg is not larger than that of ¢;"*(d@, s). Since ¢5'*(@, s) is a constant
vector, we can compute the orders of poles of ¢;"*(@,s) for all even
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integers 7 in 0 < ¢ < n. For odd integers ¢ in 0 < 7 < n, the order of
pole of ¢}"*(&@, s) is that of ¢”°,(d@, s) by Proposition 4.3-1.

In the followin_g, we compute the orders of poles of ¢!"*(@, s) in each
case.
(a) Suppose that the condition (Cond)o(a 00

If @ = 0, then all ¢} *(&@, s) are zero. Hence all of them are holo-
morphic at s = sp.
Suppose that @ # 0. Since cy* (@, s) is a non-zero constant vector,
its order of pole is 0 . Then, all the orders of poles of ¢;*(a, s)
at s = so for even 7in 0 < 7 < n are 0. The orders of poles of
c?'(a s) at s = sp for odd i in 0 < i < n are also 0. Thus all
c¢;"*(@, s) are holomorphic at s = so.

(b) Suppose that there exists an even integer 4o in 12 < 4o < —250— 3

such that the conditions (Cond)Zo 2,(3.0) 0P and (Co'n,d)zo (@50) k0P

are satisfied. Then the order of pole of ¢]**(d, s) is 3 for even i in
0 <7< i, and is not larger than 12‘1 for even 7 in z'.> 0. For odd ¢,
the order of pole of ¢;"*(&, s) coincides with that of ¢;* (@, s) Then
the order of pole of ¢"*(d@,s) is | %] for all iin 0 < i < ip, and is
not larger than %° for all 7 in ¢ > <.

(c) Suppose that there exists an even integer ¢ in ¢ > —2s9 — 3
such that the conditions (C’ond)z0 2,(d,50) 40P is satisfied. Then

the order of pole of ¢;*(d,s) is  for even iin 0 < i < —2s0 — 1,
and is not larger than %’ for even 7 in ¢ > —2s¢ — 1. For odd ¢, the
order of pole of ¢!'* (@, s) coincides with that of ¢;**; (@, s) Then the
order of pole of ¢!**(d@,s) is | %] forall iin 0 < i < —2s0 — 1, and
is not larger than ﬁs?”—l forall 2in ¢ > —2s9 — 1. ’

Thus we complete the proof of Proposition 5.2-1.

. Secondly, we suppose that sg is an integer. Then, by Corollary 4.7-1

and Corollary 4.6-2-(a),(b), we have

(a) If the condition (Cond);):z..

is satisfied.

is satlsﬁed then (Cond)".

0),0 1,(&,s0),top
forallodd zin 0 <t < n.

(b) If the conditions (Cond)g(r, ), and (C’ond)1 (.50),b0p 2T€ Satis-
fied, .then (Cond)a:m%),o and (Cond)'{as J,eop for all odd i in
n>12>1.

(c) If there exists an odd integer ¢y in 2 < ¢p < n such that the
conditions (Cond):()' 2,(3,50),t0p and (Cond):o'(a so)top 2T€ satis-

fied, then (Cond);". (@50) 0P for all odd ¢+ in 0 < ¢ < 149, and

(Cond)'(:ls ) 60p for all odd 7 in n > % > 1.

(d) If the condition (Cond):" is satisfied for the largest odd

10,(&,50),top
integer 7o in 0 < 49 < n, then (Cond) ¥ for all odd ¢ in

0<:<n.

a@,s0),top



‘From Corollary 4.6-2-(b), if (Cond); (' o)top 15 satisfied and sp <
i+72 for an odd integer 7, then the order of pole of cH_z(a,s) at s = sg

is larger by 1 than that of ¢}'*(a@,s). If (Cond); ', s0) top 18 Satisfied

or sg > —+— for an odd integer 4, then the order of pole of cz+2(a s)
at s = so is not larger than that of ¢]*(a@,s). Since c0 *(@,s) is a
constant vector, we can compute the orders of poles of ¢{**(d, s) for all
odd mtegers tin 0 <7< n. For even integers 7 in 0 < ¢ < n, the order
of pole of ¢;"*(a@,s) is that of ¢;**,(d@,s) by Proposition 4.3-1.

In the followmg, we compute the orders of poles of ¢!"*(d, s) in each
case.

(a) Suppose that the condition (C’ond)a’zf.;.*so) o is satisfied.

If @ =0, then all ¢]"°(@,s) are zero. Hence all of them are holo-

morphic at s = sg. ‘ , »

Suppose that @ # 0. Since ¢J'*(@, s) is a non-zero constant vector,

its order of pole is 0 . Then, all the orders of poles of ¢}’ (a s) at

s = 8o for odd ¢ in 0 < 7 < n are 0. The orders of poles ofc *(@,s)

at s = 5o for even ¢ in 2 < ¢ < n are also 0. Thus all ¢] (a s) are

holomorphic at s = s.

- (b) Suppose that the conditions (C’ond)0 o and (Cond)y ('a 55)st0p
are satisfied.
Then the order of pole of ¢;*(d,s) is 0 for i = 0, is 1 for ¢ = 1,
and is not larger than 1 for odd 7 in 7 > 1. For even %, the order of
pole of ¢}**(@, s) coincides with that of ¢;*°,(@,s). Then, the order
of pole of ¢;*(d@,s) is 0 for i =0 ,is 1 for i = 1, and is not larger
than 1 for all 7in 7 > 1.

(c) Suppose that there exists an odd integer ig in 2 < ig < —2sp — 3

such that the conditions (C’o'n,d)20 2,(3,0), top and (Cond)20 (3,50) 0D

are satisfied. Then the order of pole of ¢}"*(&@, s) is 2L for odd ¢ in
0 <2< 19, and is not larger than ’°+1 for odd 71in ¢ > 0. For even
i, the order of pole of ¢} (a s) c01nc1des with that of ¢]** (@, s).
Then the order of pole of ¢;*(@,s) is | 52| for all 4 in 0 < 4 < 4o,
and is not larger than ’°+1 for all ¢ in ¢ > 4.

(d) Suppose that there ex1sts an odd integer iy in ig > —2sg9 — 3 such

that the condition (Cond);"* , (@.50).top 15 satisfied. Then the order

of pole of cz-’ *(@,s) is —“‘2’— for odd ¢ in 0 <1< —259—1, and is not
larger than —sg = KLO;IM for odd 7 in ¢ > —2s¢— 1. For even 1,
the order of pole of ¢;**(@, s) coincides with that of ¢{** (@, s). Then
- the order of pole of ¢!"*(@, s) is [’—'*Z'—IJ foralliin 0 <1< —2s5—1,
and is not larger than —sg for all ¢ in ¢ > —2s5 — 1.
Thus we complete the proof of Proposition 5.2-2.
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5.2. Proof of the theorem on the exact orders of the complex pow-
ers. In this section we shall give a proof of Theorem 2.3

1. First, we prove the Theorem 2.3-1. :
Suppose that sp := —2—"15'1'—1 with m = 1,2,.... Then sp is a strict
half-integer.
(a) Consider the case that 1 < m < 2. Then, —2 > 5o > -2+, and

(b)

we can apply Proposition 5.2-1.

If (d®[so],@) = 0, then (Cond)>? is satisfied (Proposi-

0,(&,s0),top
tion 4.8-2). Then we have (Cond), za 50)0° By Proposition 5.2-1-

(a), all the coefficients ¢;**(@, s) for 0 < ¢ < n are holomorphic at
s = so. Then , by Corollary 3.7, Pl%3](z) is holomorphic at s = so.
The converses are also true. ;

Let p be an integer in 1 < p < m. If (d®+[s],@) = 0 and
(d®)[s0], @) # 0, then (Cond);;(a s0) top 20d (Cond)2p 2,(3,5),60p
(Proposition 4.8—2). Therefore, by Proposition 5.2-1-(b), the order
of pole of ¢]**(d@,s) at s = sg is |_1J if i < 2p,ispifi=2p, and is
not larger than p if ¢ > 2p. Then , by Corollary 3.7, the order of

Pl%s](z) at s = sg is p. The converses are also true.

If (d@™)[sq], @) # 0, then (Cond)y” (@50),top (Proposition 4.8-
2). Therefore, by Proposmon 5.2-1-(c), the order of pole of ¢!**(d, s)

at s = sg is | ] if ¢ < 2m, m if { = 2m, and not larger than m if

i > 2m. Then , by Corollary 3.7, the order of Pl%l(z) at s = sq is

m. The converses are also true.

Consider the case that m > 5. Then, sp < —”—'H, and we can

apply Proposition 5.1-1. Let n' := [2]. '

If (d@[sq],@) = 0, then (C’ond)o(“ ) top 15 satisfied (Proposi-

tion 4.8-2). Then we have (Cond);" (@5 o- By Proposition 5.1-1-

(a), all the coefficients ¢;'*(&@, s) for 0 g i 5 n are holomorphic at
s = 8g. Then , by Corollary 3.7, plasl (z) is holomorphic at s = sp.
The converses are also true.

Let p be an integer in 1 < p < n'. If (d®*+)[sy],@) = 0 and
(d®)[s0], @) # 0, then (Cond)2p (2,50 top 214 (Cond);p' 2,(2,50),60p
(Proposition 4.8-2). Therefore; by Proposition 5.1-1-(b), the order
of pole of ¢;*(@,s) at s = sp is [—j if i <2p,ispifi=2p, and is
not larger than p if ¢ > 2p, Then , by Corollary 3.7, the order of
PlEsl(z) at s = sg is p. The converses are also true. ‘
Suppose that n is odd (resp. even). If (d®~V[se], @) # 0, (resp.
(d™[s0), @) # 0,) then (Cond)*”* (@,50),t0p (TESP- (Cond)’* 2,(d,50) 60p
) by Proposition 4.8-2. Therefore, by Proposition 5.1-1-(c), the or-

der of pole of ¢;*(d, s) at s=spis | 5] forall 1in 0 <7 < n. Then

, by Corollary 3.7, the order of P[a’s] (z)at s=spis | 5| =n' e




the largest order of the poles of ¢;”*(d@, s) at s = so. The converses
are also true.

2. Secondly , we prove the Theorem 2.3-2.
Suppose that sg := —m with m = 1,2,.... Then sg is an integer.

(a)

Consider the case that 1 < m < %. Then, —=1 > 59 > —~%, and we
can apply Proposition 5.2-2.

If (dW[sg),@) = 0, then (Cond)a’zé*so) top‘ is satisfied (Proposi-
tion 4.8-1). Then we have (Cond):)’zd. s0),0° BY Proposition 5.2-2-

(a), all the coefficients ¢*(d@, s) for 0 < i < n are holomorphic at
s = so. Then , by Corollary 3.7, Pl%5](z) is holomorphic at s = s,.
The converses are also true.

If (d®[so], @) = 0 and (dM[s0],@) # 0, then (Cond)™

1,(@,50),top

and (Cond):)’zé*so) top (Proposition 4.8-1). Therefore, by Proposi-

tion 5.2-2-(b), the order of pole of ¢3'* (@, s) at s = sq is 0, the order
of pole of ¢]*(d@, s) at s = so is 1, and the order of pole of ¢;"*(a, s)
at s = so is not larger than 1if ¢ > 2. Then , by Corollary 3.7, the
order of PI%%l(z) at s = sq is 1. The converses are also true.

Let p be an integer in 2 < p < m. If (d(2p+1)[30],d’) = 0 and
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(dP=[sq], @) # 0, then (Cond)3* and (Cond)y*

2p—1,(@,s0),top
(Proposition 4.8-2). Therefore, by Proposition 5.2-2-(c), the order
of pole of ¢]"*(@,s) at s = sp is | L] if i < 2p, is p = |22EL ) if
¢ = 2p, and is not larger than p = [3’%1— if 2 > 2p. Then , by
Corollary 3.7, the order of P[a’s](x) at s = sg is p. The converses
are also true.

If (d?™=1[so], d’)# 0, then (Cond);" (d.50) top (PTOPOsition 4.8-
2). Therefore, by Proposition 5.2-2-(d), the order of pole of ¢{** (&, s)
at s = spis || if i < 2m—1,is mif i = 2m — 1, and is not
larger than m if 7 > 2m — 1, Then , by Corollary 3.7, the order of
Pl3s](z) at s = s is m. The converses are also true.

Consider the case that m > Z. Then, s < —-”—J{l, and we can
apply Proposition 5.1. Let n’ := [9-'2'"—1_|
If (dM[so],@ = 0, then (Cond)** is satisfied (Proposi-

0,(a,s0),top

tion 4.8-1). Then we have (Cond)a’zé.*s()) o- By Proposition 5.1-2-

(2), all the coefficients ¢}**(d@, s) for 0 < i < n are holomorphic at
s = So. Then , by Corollary 3.7, Pl@sl (z) is holomorphic at s = sg.
The converses are also true. |

If (d®[s0],@) = 0 and (dMW[se], @) # 0, then (Cond)I:E&.’so),top and
(Cond)a’zé*s()) top are satisfied (Proposition 4.8-1). Therefore, by

Proposition 5.1-2-(b), the order of pole of ¢}**(@, s) at s = s is 1
if 1 <2, and is not larger than 1 if ¢ > 2. Then , by Corollary 3.7,
the order of Pl%4](z) at s = sq is 1. The converses are also true.

2p—3,(a,s0),top



Let p be an integer in 2 < p < n'. If (d@Pt1)[so],&@) = 0 and

(d®=Y[se], &) # 0, then (Cond);;_l’(a.’so)mop and (Cond);;:_?’,(
are satisfied (Proposition 4.8-2). Therefore, by Proposition 5.1-2-
(c), the order of pole of ¢{**(@,s) at s = so is | &L if i < 2p,ispif
i = 2p, and is not larger than p if ¢ > 2p. Then , by Corollary 3.7,
the order of Pl&*l(z) at s = sg is p. The converses are also true.

Suppose that n is-odd (resp. even). If (d™[so], @) # 0, (resp.

,50),top

. <d(n-1)[30],a> #0,) then (Cond);’:zy(a,%)”top (resp. (Cond)>”*

n—3,(@,50),top

) by Proposition 4.8-2. Therefore, by Proposition 5.1-2-(d), the or-
der of pole of ¢!"* (@, s) at s = sp is | 5+ | forall iin 0 < 2 < m. Then
_ by Corollary 3.7, the order of P1%*)(z) at s = sp is |2t =
i.e. the largest order of the poles of ¢;*(@,s) at s = so. The
converses are also true.

Thus, we complete the proof of Theorem 2.3.

5.3. Proof of the theorem on the support. In thissection we shall give
a proof of Theorem 2.4. '

In the proof, we let sg := —912'1. By Proposition 3.8, we have (50):
Supp(PS*)(2)) = ( U s (129)

cg’k(c'f, s) has a pole of
(¢,7)€Z?;0rder > —w for some k
in0<k<tats=s0

Therefore, we have to calculate the orders of the coefficients cg’k(('i, s) at
s = so. Since we have supposed that Pl%31(z) has a pole of order p at s = so

in this proof,
1 1
o[t 25 -

by (31). We let

o
Ulso,p) := 4 (i,5) € Z% c’* (@, s) has a pole of order > p for some 131
(s0,P) {(zy) kzinOSkSiatszso (131)
1. First, suppose that ¢ is an even integer. ,

Lemma 5.3. Suppose that 0 < i < —2w. Then we have

| (¢,7) & U(so, —w).

Proof. By Proposition 5.1-1 and Proposition 5.2-1, ¢;*(d@,s) has a pole

of order strictly less than —w at s = sg if 0 < ¢ < —2w. Thus we have

the result. ' » O

On the other hand, if 0 < i < —2w, then

ssinNe U sh=0.

1>—2w
05 <n—i



Thus , if 0 < ¢ < —2w, then

s{ﬂ( U Sy =0. (132)

(1.7)€U(s0,~w)

Lemma 5.4. Ifi > —2w and (i,7) € U(so, —w), then

sic( U s (133)
(i,j)gU(so,—w)

1=—2w

Proof. Suppose that ¢« > —2w and that c{"(c‘i, s) has a pole of order
> —w. Then, from Proposition 4.5 and Proposition 4.3, there exists
an integer jo in j < jo < j + (7 + 2w) such that ¢’} (@, s) has a pole

—2w

7o

Zaw» and hence we

of order > —w at s = s9. Then, we héve Sf CcS
, | 0

have the desired result.

Therefore, we have

U sic U s
()EUGo—w)  (i)EU(s0,—w)

1> —2w 1=—2w

and hence

U S? = U S,
(i,5)€U (s0,~w) - (5,§) €U (s0,~w)

122w 1==2w
Thus, by (132), we obtain ' |
U si= U si (134)

(4,7)€U(s0,~w) (2:3)€U(s0,—w)

1=—2w

Lemma 5.5.
{(3,5) € U(so, —w);i = —2w} = {(~2w, ) € 2% (d\"")[s0), @) # 0} (135)

Proof. In order that ¢ (@,s) has a pole of order —w at s = s,

it is necessary and sufficient that (Cond)'_’;w_z(d.,s())’top, is satisfied,
by Proposition 4.5-2. Then by Proposition 4.8-2, it is equivalent that
(d('zw) [s0], @) # 0 and sp < w are satisfied. Since the condition s < w
is valid by (130) and the assumption —w < p, we have the result. [
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Therefore, when ¢ is an even integer,

Supp(Pl3*l(z)) = U | S{ (by Proposition 3.8)
(27.7)GU(50 :_w)

= U s (by(134)

(.4 €U (s0,~w)
1=—2w

= U S, (by (135))
0<j<n+2w
(42 so],a)0

This means the result (23).
. Secondly, suppose that ¢ is an odd integer.

Lemma 5.6. Suppose that 0 < ¢ < —2w — 1. Then we have
 (6,5) ¢ U(so, —w).

Proof. 1t is proved in the same way as the proof of Lemma 5.3. a

On the other hand, if 0 < 7 < —2w — 1, then we have
siNC U sH=e. (136)
(3,5)€U(s0,—w) '

Lemma 5.7. Ifi > —2w —1 and (i,5) € U(so,—w), then

sictc U s (137)
(‘i,j')—GUz(so,I'w)

Proof. Suppose that ¢ > —2w—1 and that c{" (@, s) has a pole of order
> —w. Then, from Proposition 4.5 and Proposition 4.3, there exists
an integer jo in j < jo < j+ (¢ + 2w + 1) such that ¢, _,(d@,s) has

a pole of order > —w at s = sp. Then , Sf: C Sj_"2w_1, and hence we
have the desired result. O

Therefore, we obtain

U si= U s 0 (133
(1.J)€EU(s0,~w) (4,7)€U(s0,—w)

1=—2w-1

in the same way as the proof of the case that ¢ is even.

Lemma 5.8.

90

{(i,) € Ulso, ~w)yi = —2w — 1} = {(~2w - 1,7) € 22 (d 72 Vsq), @) # 0}

(139)

Proof. 1t is proved in the same way as the proof of Lemma 5.5. O



Therefore, when ¢ is an even integer,

Supp(Pl*l(z)) = U s (by Proposition 3.8)
' (.9)€U(s0,~w)

= U st eyassy

(i »J)GU(so,—W)

t=—2w-—1
= U S g1 (by (139))
0<j<n+2w+1 '

({7 [so],@)#0

This means the result (24).
Thus, we complete the proof of Theorem 2.4.
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