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0.0. In [Sat], M.Sato obtained a formula which describes the Fourier transform of
a complex power of a relatively invariant polynomial of a prehomogeneous vector
space over the real number field, up to.an ambiguity of certain exponential factors.
In [Gyo2], I formulated conjectures which would give a finite field analogue of the
theorem of M.Sato, without any ambiguity. Recently, J.Denef and I jointly have
succeeded to prove these conjectures [DG] based on Laumon’s product formula
[Lau]. The purpose of the present paper is to give an alternative approach based
on the mixed Hodge theory. Our main result is- Theorem 11, which includes as
a special case Conjecture A of [Gyo2] up to an ambiguity of a constant factor
of absolute value one. Tlius our result is less precise than [DG]. The result of the
present paper was obtained around 1986 with help of M.Kashiwara, and thus seems
more or less out of date, but I think it is still of some interest. The content was
announced and outlined in [Gyo2].

0.1. Our argument roughly goes as follows. Fix an isomorphism (1 — ¢)~'Z/Z =

Hom(F;‘,@x), @ — Xo, where [ is a prime number # p, and Q; an algebraic
closure of the [-adic number field.
First, we calculate the weight filtration of F(Df*) (o € Q) in the sense of the

mixed Hodge theory due to M.Saito, where D = Dcr» = C <a:1, cee T, ‘52_17 B afn >

and F is the formal Fourier transformation z; — /=1 3—2;, 'a%,» - /—1y;.

Second, using the result of the first step and by the Riemann-Hilbert corre-
spondence, we calculate the weight filtration of F+(j,Cf*[n]), where F7* is the
Sato-Fourier transformation and j : V' \.f~1(0) — V is the inclusion mapping.

Third, using the result of the second step and by the reduction modulo p, we
calculate the weight filtration of Fy(j.«f*Ly, [n]), where Fy is the Deligne-Fourier
transformation, and L, is the Kummer torsor associated to .

Finally, we deduce the desired result from the result of the third step, using the
trace formula of Grothendieck, the ‘Weil conjecture’ proved by Deligne, and a result
of Katz-Laumon on Fy. ' -

0.2. In this paper, we obtain arithmetic result starting from the mixed Hodge
theory. The author expects that, following the opposite course, we might be able
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to study the mixed Hodge structure starting from the authmetlc result of [DG].
Cf. [Maz], [Kat].

NOTATION

N1. We denote by Z, Q, R and C the ring of rational integers, the rational number
field, the real number field, and the complex number field, respectively. For a prime
number p, Q, denotes the p-adic number field and Z, its integer ring.

N2. We always assume that a commutative ring, say R, contains 1g, a homo-
morphism R — R’ sends 1g to 1g/, and 1 acts trivially on an R-module. For a
(not necessarily commutative) ring A with the identity element, AX denotes the
multiplicative group of the invertible elements. For a commutative ring R, the sub-
script R of a symbol corresponding to a scheme or a morphism between schemes
(resp. a sheaf) means that it belongs to the category of R-schemes (resp. sheaves
of R-modules). If (—)g has been already deﬁned and R is an R'-algebra (i.e., a
ring homomorphism R’ — R is given), then (—)g := (—)r ® g R, unless othermse
stated. If the ring R can be understood from the context, we omit the subscript. If
X is an affine scheme over R, R[X] denotes its coordinate ring. If X is an R'-scheme
and R is an R'-algebra, X(R) denotes the set of R-rational points.

N3. For a morphism F' between two spaces, the sheaf theoretic pull-back F* is

sometimes denoted by F~! to avoid a confusion. For a complex non-singular vauety
(always assumed to be of pure dimension), let D = Dx (resp. O = Ox) denote the
sheaf of algebraic differential operators (resp. regular functions). Let Mod(Dx)
denote the category of Dx-modules, and Mody(Dx) (resp. Mod.1(Dx)) its full
subcategory of D x-modules which are quasi-coherent over Ox (resp. regular holo-
nomic). Let D(Dx) denote the derived category of Mod(Dx ), and DSC(DX) (resp.
DY, (Dx)) the full subcategory of D(Dx) consisting of bounded complexes whose
cohomologies are quasi-coherent (resp. regular holonomic). Let Mod(Cx) denote
the category of Cx-modules, D(Cx) its derived category, and D%(Cx) the full
subcategory of D(Cx) consisting of bounded complexes whose cohomologies are
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(algebraically) constructible. Let O%* = O%* be the sheaf of holomorphic func- -

tions on the underlying analytic manifold X" of X, and M := M Qo O
for M € Mod(Dx). For M € Mod,;(Dx), the de Rham complex is defined by
DR(M) = DRx(M) := RHomp.. (0", M), where Hom denotes the sheaf of
local homomorphisms. Besides, put DR x = DR x[dim X]. For a morphism F' :
X — X', we define functors °F,, PF,, PF* PF' between DY, (Dx) and D%, (Dx')
so that PDR x: 0 PF, = RF,oPDR x, DR x: o P F1 = RFioPDR x, P DR x o P F* =
F*oP’DR x/, and DR x o PF' = F'o?DR x. If f € T(X,0x), and i : f~1(0) — X
is the inclusion mapping, we define the functors P £ b ¢s1 etc. of D, (Dx) to
itself so that PDR x 0 ®9; = i,95[~1]o?DR x, DR x 0P ¢5 1 = ixds,1[—1]o*DR x,
ctc. where 95 and ¢ are the nearby cycle functor and the vanishing cycle functor,
respectively [Dell]. If X is an affine variety, we put D = Dx = I'(X,Dx). Let
Mod(Dx) be the category of Dx-modules, which is equivalent to Mod,.(Dx). An
object of Mod,.(Dx) corresponding to an object of Mod(Dx) is denoted by the
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script of the same letter. Thus Mod(D X) — Mody.(Dx) by M +— M. Using this
category equivalence, we define bp,. Pp, Pp*x PFRY b Vs, ¢f 1, supp, etc. for
D-modules (satisfying appropriate condmons) as well. We denote the functors in
the category of mixed Hodge modules given in [Sai2] by the same symbol with the
superscript ¥ on the left, e.g., M F,, M2y, etc.

N4. We write, for example L(a) in place of L, on occasion to avoid multiple
indices, or conversely, L, in place of L(a) on occasion to avoid a confusion with
the Tate twist.

1. MONODROMY FILTRATION

Let 1) be an object of some abelian category (e.g., a module), N a nilpotent
endomorphism of 9, and {W,,} the monodromy filtration associated to N, shifted
by w —1 (w € Z). Cf [Del2]. Namely {W,,} is the finite increasing filtration

of 1/; characterized by the two properties NW,, C Wi and N7 : griy ;¢ —
g 1—; ¥ for any j > 0. More explicitly,

(1.1) | Weoi4m = Z Nt(ker N™H1+2),
i>0,—m
The primitive part of gr!¥_;. . % (m > 0) is by definition

Pl i i =ker(N™ | gril 1% = gre s m¥)
- Ww-—1+m N (Nm+1)—1W'w—4—m

Ww—2+m

Let m > 0. By (1.1),
. (Nm+1)—_1Ww_4_m — (Nm+1 Z Nz kerN——m 2+2z)
i>m+3
= ker N™* + ) " NV¥(ker N"‘+2’) C We—i4m.
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Hence
P ‘ker N™H1 4+ 37,5, N¥(ker N™12)
Brw—14+m Y= ZiZO N (ker Nm+2i)
ker N™t1 4 Ei>0 Ni(keer+2") ker N™t1 4 Ny
= — - — —» .
ker N™ + ..o Ni(ker N™+2) ker N™ + N1

The last surjection is the natural one, which is easily seen to be also injective. Thus
we get
ker N™t1 4+ Ny

ker N™ + Ny

(1.2) . | Pgrg’_.l_,_mz,b:



for m > 0. Similar argument shows (1.2) holds for m = 0 as well, where N should
be understood as the identity. Let mg be the integer such that N™° = 0 and
Nm™o—=1 o 0. Here we understand mg = 0 (lesp =1)if ¢ = 0 (resp. ¥ # 0 and
N = ) If mg > 1,

% =ker N™ + Ntp 2 ker N 7! + Ntp = ker N0~ 1.

Hence in any case,

(1.3) max{m >0 | Pgryy_, % #.O} =mg — 1.
Here we understand max ¢ = —1.

2. CJ[s,t]-MODULES

Let CJs,t,t™!] be the algebra defined by the relations ts = (s + 1)t and ¢! =
t~'t = 1. Let M be a CJs,t]-module (or more generally, an object of suitable
abelian category with a C[s, t]-action) such that

(2.1) M c M[t™]:= C[s,t,t "] ®cpoy M, and
(2.2) there exists 0 # b(s) € C[s] such that b(s)M C tM.

For two integers k < I, let bpu(s) = [[,ec(s - 7)™7#:) be the monic generator
of the ideal ker(C[s] — Endg(t*M/t'M)). Given v € C. Since by(s) divides
[1i< ;<1 0(s + J), there exists integers ko < lo such that byi(y) # 0 whenever k > I
or [ < ko. K <k<kyandly <1<, then b (s) divides brr(8)bri(s)bur (),
and b ()b () # 0. Hence 0 < m(v; k',1l') < m(~;k,1). Taking ky <« 0 and
lo > 0, we may assume that m(v; k,[) is independent of k£ and [ for any £ < ky and
l() < l. Put
m(y) := kglnw_m(v; k,1).

=400

2.3. 'm,.('y) depends only on (y mod Z).
Proof. Since by (s) = br—1,1-1(s + 1), m(’y) =m(y—-1). O
2.4. s — acts on t* M/t'M as an automorphism if k > lo or 1 < k.

Proof. Take a(s), ¢(s) € C[s] so that a(s)bri(s)+c(s)(s—~) = 1. Then ¢(s)(s—7) =
lonttM/ttM. O

2.5. ker((s —y)™ | t* M/t' M) is z'ndependent of m>m(y), if k <koandl>ly.
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Proof. Let byi(s ) = (s — y)™"d(s). For i > 0, take a(s), c(s) € CJ[s] so that |

a(s)(s —7)* + c(s)d(s) = 1. If (s — 4)™M+ig = 0 for some z € t*M/t'M, then
0=a(s)(s —7)* (s — 7)™z +c(s)d(s) - (s — )™Mz = (s — )™Mz, O



120

2.6. Let My be a module over a polynomial ring Z[T), and My D My D M3 D My
Z[T)-submodules. Assume that the T-actions on My /M, and M3 /My are invertible.
Then the natural morphzsm M, /M4 — My/M3 — My/M; induce isomorphisms

ker(T' | My/My) — ker(T | My/M;) — ker(T | Ml/M3)

Proof. Consider T-actions on the exact sequences 0 — M3/My — My/My —
M;/M3 — 0 and 0 — My/M3 — M1/M3 — M1/M; — 0. Then apply the snake
lemma. O

By (2.4)-(2.6), we can see that

2.7. ¥ = 9, = ker((s — )™ | t* M/t' M) does not depend on m > m(y), k < ko
nor [ > lg.
Let N = N, denote the endomorphism of ¢ induced by s — vy

2.8. If m(y) > 0, then N™ =0 and N™ # 0 for 0 < m < m(7).

The proof of (2.8) is easy and omitted. Applying (1.3) to the above (¢, N) and
understanding max ¢ = —1, we get the monodromy filtration {W,,} of ¢ shifted by
w — 1, and we get

2.9. max{m >0 | Pgt!_, ¢ #0}=m(y)-1
(Here we include the case m(y) = 0.)

2.10. Remark. If (degby(s))/(l — k) is independent of k and [, then m(y) =
card{a € C|b(a) =0, o« =+ mod Z} (including multiplicity).

| 3. 'D;MODULES
Let C[s], Cl[s,t], C[s,t,t"1] be as in §2. Put D[s] = D ®c C|s] etc.

3.1. D-Module D[s](f*u). Let X be a connected non-singular variety over C, 0 #
f eT(X,0x), Xy := X\ £71(0), M a coherent Dx,-module, and u = (u1, -, Up)
a p-tuple of elements of I'(Xp, M). Consider the left Dx[s]-submodule Z of Dx|s]?
consisting of (Py(s),-- ,Pp(s)) € Dx[s]P such that Y2 (f™ *Pi(s)f*)u; = 0
liolds in C[s] ®c M whenever m € Z is sufficiently large. Put N := Dx[s]?/T.
Denote by (f°u); the element ((0,---0,1,0,--: ,0) mod Z), where 1 appears at

the i-th place. Put fou = ((f*)1, -+ ,(f°u)p). Then N' = YP_ Dx[s](f*u)s.
For o € C, put N(a) := N/(s — a N and fou = ((fw)1, -, (f*u)p) = (f'u
mod (s — a)N). Then N(a) = 3°F_, Dx(f*u);. We often write N' = Dx/[s](f*w),

N(e) = Dx(fu), Y0 1 Dx,us = ony etc.

3.2. Dis,t]- Module structure. Define a D[s, t]-module structure of N' = Dx[s](f*u)
by t (S0, Pi(s)(fou)i) = S8, Pi(s + 1)f(f*u);. Then N[f~'] has a natural
Dx|st, = ] module structure, N' C N[, and N[f7] = N[t71).

3 3. b-Functlon Assume Dx,u to be hOlOIlOIIllC and let B(s, u) = B #(s,u) be
the monic minimal polynomial of s € End(N/tA). Cf [Kas3].
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3.4. Assumption Al. We assume that

(1) Dx,u s regular holonomic,

(2) the zeros of B(s,u) € Cl[s] are rational numbers, and

(3) there exists N € Zsq and a complez of Z[N~1]-sheaves Ko zin-1) on Xo such
that DR(Dx,u) ~ Ko.c. (Cf. (N2).)

These assumptions are satisfied if M is a regular holonomic Dx,-module such
that DR(Dx,u) is a locally constant sheaf whose monodromy is finite and defined
over Q. Cf. [Gyo3, (5.14)]. (In the subsequent argument, we assume several
conditions including the above one. We have in mind an application to the theory
of prehomogeneous vector spaces, where all these conditions are satisfied.)

3.5. Vanishing cycle sheaf. Fix v € C. Applying the construction of §2'to M =
Dx|s.t](f*u) = Dx[s](f°u), we can define m(y) = m(y,u), szf () (Dxou) :=
, = 9, and a nilpotent endomorphism N = N, of 9, where e(y) := exp(2~ \/— 7).
Cf. (2.3). By (3.4, (2)), m(y) =0 unless v € Q Put

Py #(Dxw) = P PV se()(Pxow), and
v€Q/Z

P (t,u) = b3P(t,u) = H (t — e(v))™).
1€Q/Z

Then

(1) b°*P(t) is the minimal polynomial of the endomorphism T of © Y (Dxou) induced
by the s-action on M. (Cf. (2.8).)

Here 6P (z, u) is determined only by Dx,u, and is independent of the special choice

of the generator system u. Thus we sometimes write b*P (¢, Dx,u) or b**?(¢,”DR x, (D Xol u))
for b°*P(t,u). We follow the similar convention for m(vy, u); m(y,u) = m(y, Dx,u) =
m(7y,PDR x,(Dx,u)). By [Mal], [Kas2], we have

(2) DR(P4(Dx,u)) = ixts(DR(Dx,u))[-1], and the m‘ght hand side is
iP5 Ko zin-1)[—1] ®z;n-1) C by (3.4, (3)), wherei: f~1(0) = X is the mcluszon '
mapping and s is the nearby cycle functor [Dell], and

(3) T corresponds to the Picard-Lefschetz monodromy of i« Kp.

Hence

(4) b*®(t,u) € Q[t].

In other words,

(5) if e(y) and e(y') (fy,fy € Q) are con]ugate over Q, then m(y) = m(vy').
By (3)

(6) if deg B¢ (s, u)/n is independent of n € Zso, b3 (t,u) has the following simple
expression. If By(s,u) = [[(s + ay), then b5 e(t, u) [1(t —e(e;)). (Cf. (2.10).)
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3.6. Applying (2.9) to P9 ;1(Dx(fou)) = Dz/zf,e(a)(ng), we get a monodromy
filtration {W,,} shifted by w — 1, and we get ,

max{m >0 | Pgrl_,,.(Pp 1a(fw)) # 0} =m(~a—1) - L.
By (3.5, (5)), the right hand side is m(a) — 1.

4. M1xEp HODGE MODULES

- Here we study some (mixed) Hodge modules. As for the Hodge modules (resp.
mixed Hodge modules), the basic reference is [Sail] (resp. [Sai2]). A brief account
can be found in [Tan]. We fix a positive integer ¢ throughout 84.

'4.1. Locally constant sheaf H(c)z. Put ( = (. = e(1/c), and E(c) := {d/c €
¢c'Z |0 < d < c(cd) =1} For any f € E(c), there is a umque element

o3 € Gal(Q(¢:)/Q) such that og(e(1/c)) = e(8). Then Gal(Q({.)/Q) ={op | B €
Z(c)}. Define a locally constant sheaf of Z-modules on C* = {teC|t+#0} by

H.z =H(c)z = ={ Z os( u)tﬁ I u € Z[(]}-
' BEE(c)

Here we take the single-valued branches ~tﬁ (B8 € Z(c)) locally on C* as follows.
First take any single-valued branch of ¢1/¢ locally on C*. Then put t¥/¢ = (t!/¢)¢
in the domain where t1/¢ is defined. Let T be the generator of m;(C>) defined by
the oriented circle {e(t) | ¢ : 0 — 1}. Consider the natural action of 71(C*) on the
set of single-valued branches of t° (=monodromy action). Then T(t}/¢) = (/¢
and T(t4°) = ¢34 = 6,4/.((.)t%°. Hence H(c)z is well-defined. For any vy € E(c),
define a locally constant sheaf of Z[(]-modules on C* by 4

L.y z1¢) = L(7)z(q = Z[C]t”
in the same way as above.

4.2. Variation of Hodge structures (H(c)q,F) and polarization S. For
B € E(c), let B’ € Z(c) be the element such that 5+ 8 € Z. (Ifc> 1, f/ =1-p.
Ifc=1,8=p =1.) Then og(u) = 05(u) (v € Z[(]), and

H(c)r = { Z ’U,ﬂtﬁ l ug € C, ugr =@}
BEE(c)

Consider the tensor product of sheaves H(c)o := H(c)z ®z O = @Ppez() Ot =
@Ppez(o) PtP. where O = Ocx and D = Dcx. Define a decreasing filtration
{FP}pez of H(c)o by FP = H(c)o if p < 0 and = 0 if p > 0. Then (H(c)q, F)
is a variation of Hodge structures of weight 0 on C*. See [Sail, 5.4] or [Tan, 1.1].
Define a C-bilinear form S on 3 5=,y CtP by S(t#,17) := é . Then

S(Y op(u)t?, >0y ()t) = 0s(ud) € Z
B Y B



123

for u,v € Z[(], and
SO upt? > upt?) = ugug = Jugl?
B B B B

for 3 5 upt’® € H(c)r. Hence S gives a polarization of (H(c)q,F). Cf. [Tan,
1.3, (p5)] and [Del4, (2.1.15)]. Let MH(X,Q,w)? be the category of polariz-
able Hodge modules of weight w [Sail, 5.1.6]. Cf. [Tan, 1.3]. Put H(c) :=
(H(c)o, F,H(c)qll]) e MH(C*,Q,1)?, where O = Ocx.

4.3. Assumption A2. Besides (A1), assume further that
(1) f: Xo — C* is smooth, and
(2) Dx,u is underlying a pure Hodge module MHDXO u € MH(X,,Q,w)?.

4.4. Hodge module M(c). Let A : Xy — Xy X X, be the diagonal embedding,
and put

M(c) = MXO(C) = MHA*(MHf *H(C) X MHDXO @)[‘nh
where n = dim X. By [Sai2, 2.25], M(c) € MH(X,,Q,w). By (3.4, (3)), the
underlying perverse sheaf of M(c) is

(f*H(C)z Rz Ko,z[Nfl][dinl X]) ®Z[N—1] Q

Let j : Xo — X be the inclusion mapping. By the definition of the category
MH M (X) of mixed Hodge modules [Sai2, 4.2.11], M¥j, M(c) € MHM (X) can be
defined. Its underlying Dx-moduleis B ez 27, (Dx, (fPu)) = Dpez(o Px(fP~ u))
(k> 0). Cf. [Gyo3, (5.16, (2))].

4.5. Weight filtration of ¥#j_M(c). We can describe the weight filtration of
MH; M(c) using the description given in the proof of [Sai2, 2.11] as follows. (See also
[Sai2, 2.8].) | |

(1) For any m € Z, the weight filtration Wm(MHj*M(c)) is of the form
Dz Won(Pix(Dx, (fPu))) with some Dx-submodule W (P.(Dx,(fPuw))) of

Pje(Dxo (£Pu)). ‘
(2) max{m > 0| g}y, ,,(%j«(Dx, (f°w))) # 0} = m(B).
Proof. Put M = image(MZjM(c) —» MHj M(c)). Then M € MH(X,w)P.
Apply [Sai2, (2.11.10)] to the present situation, using (3.6). O

Note that m(/3) is independent of 3 € E(c). (Cf (3.5,(5)).) Put m(E(c)) := m(B)
(6 € E(c)). Then (

(3) max{m > 0] g1?%, (M71.(M(0))) # 0} = m(E(c)).

4.6. (The description of the weight filtration given in this and the next paragraphs
is due to M.Kashiwara, which I learned from him in 1986. Here I include this result
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by permission of M.Kashiwara, to whom I am very grateful. In the present paper,
(4.6) and (4.7) will not be used.) Let k < 0 and I > 0. Put My, := t*Dx[s, ¢](f*uw).
Then My /(s — B)My = Dx(fP+*u) = Pj.(Dx,(fPu)). Put

(1)
Wr'n(Dj*(on(fﬂu)))_ := image ({U € My | (s —B)"uv € M} — (3—*%’1—1:) a
Then : _ ‘ . :
) gt (Piu(Dxo(fP1)) = P grlym—2 ("% £.1(Dxo (F70)) by (1.2)
= gy (Pj.(Dx,(f%u))) by [Sai2, (2.11.10)]-
Hence A
(3) Win(P+(Dxo(£7u)) = Wi (Pj4(Dxy (F°0))),

and the underlying D x-module of Wm(MHj*(M(c))) is @ﬁeé(c) W! (Pj.(Dx, (fﬁg))).

4.7. Microlocal structure of the weight filtration. Let 7 : T*X — X be
the cotangent bundle of X, and £ = £x the sheaf of microdifferential operators on
T*X. Since £ is flat over 71D, we can see '

Ex @p-1py T Wi(P5,(Dx, (fPu))) is equal to the right hand side of (4.6, (1))
with M; replaced with Ex @z-1py T 1 M;. :

Now let us consider the case where X is a complex non-singular algebraic variety on
which a connected algebraic group G acts. Assume that f is relatively G-invariant,
and that A is an irreducible component of the characteristic variety ch(Dx f#) on
which G acts prehomogeneously. Let by (s) be the local b-function of f on A [SKKO]

(cf. [Gyod, 6.1]). Put ba(s) = H;l;l(s + ;) and wa(B) = #{j | B+ a; € Z}. Let

us apply (2.9) and (4.6, (2)) to the £-modules appearing in (1). Then we get
(2) | |
0=Wy= =Wy s)-1 G Wur = =Ex [P 1= Ex @p1p, 71 (Dx fF7F)

on A, where Wy, := Ex Q@r-1py T Wi (Pj.(Dx, fP)) for m € Z. (Note that
(3)  Ex ®p-1py T 1P u(Dxo fP) = Ex @u1py m H(DxfP7%) (k<0)
is simple holonomic on A [SKKO], and hence (2) is equivalent to

(4) - Bluy(e) 7 0

on A.) In terms of characteristic variety, (2) can be also expressed as

(5) Cil(Wm(Dj *(D}(Ofﬂ))) DA wp(a) L ml,

or '

(6) | ~ch(grin (P «(Dx, 7)) D A & wa () =m.
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5. FOURIER TRANSFORMATION OF D-MODULES

5.1. Let V = C" ( > 0), VV be its dual space, z = (z1,--- ,Zn) & linear
coordinate of V and y = (y1. - ,¥n) its dual coordinate of VV. Then Dy =

C<:Ela"'s'»l"naaima"'aar >a,lldDVV—C<y1, 'aynaa_'zla"'aay > (Cf ( ))
Define an algebra isomorphism F : Dy — Dyv by

Z 5

]:(.Tj)z\/—lg and F( ) V—1y;.
o Yj 8

For a Dy-module M, define a Dy v-module structure on M using this isomorphism
F (cf. [Gyol, 2.7.1]). We shall denote this Dyv-module by F(M), and call it the
Fourier transform of M. '

5.2. Assumption A3. Let f € C[V], f¥ € C[VV], @ =V \ f~Y0), Q" =
VYA VH0), j: Q@ = V and jV : QV — VV be the inclusion mappings. Besides
(A1) and (A2), assume that there ezists a szmple Dqv-module 0 # MY = MV (a) €
Mod.1 (V) such that F(Pj.D(fu)) =PjyMV.

5.3. Put F(Wyim(PiD(f*u))) =: MY.. Then MY, c Pj¥MV, ;V-1MY c MV,
and
jv—le £0 ij—le :lMV @jv_l(Dj!\/Mv/MXL) —0

1
W Py MY IM), =0 My, =25 MY.

(The first and the second lines are equivalent since ], Y MV does not have a non-
zcro quotient supported by fY~1(0). Note that PjY MY € Mod(Dyv), since
RjY(PDR (MV)) is a perverse sheaf [BBD, 4.1.3].) Hence

F(grupm(PjD ( feu))la¥ #0

& JVTHMY /MY, 1) #0

&VTIMY £0 and jVTIMY_ =0

o MV 4G MV D]VMV ‘ |

& Wurm-1(Pj+D(f8) G Wurm(PjD(f*w)) = Pj.D(f*w)

&S m= m(q).

(The second and the third lines are equivalent because of the simplicity of M. The

equivalence of the third and the fourth lmes follows from (1). The last equivalence
follows from (4.5,(2)). ) : :

6. FOURIER TRANSFORMATION OF SHEAVES ON cn

6.1. Sat’o-Fourierrtransformation.‘ ([BMV], [Bry]). Let hotation_be as in §4.
Let Z = {z € C| Re(z) <0}, ¢ : Z — C be the inclusion mapping, Lt = ,Cz,
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pr:VVxV — Vand prV : VV V — VV be the projections, and { } : VVxV — C
the natural pairing. For K € D*(Cy), put F*(K) := Rpr) (pr*(K) ® ()" L*)[n],
which is called the Sato-Fourier transform of K [SKK], [KaSSch] [BMV], [Bry],
[HK].

. Define h: C* x V — V by h(t, v) = tv. Let ¢ be a positive integer, a € E(c),
and put
Db

mon, a

V):= (K € D*(Cy) | 'K = Ly® K}.

(See (4.1) for L, = Lo c.) If a subvariety X C V is C*-stable, we can similarly
define D}, o(X).

'6.3. Put 7t(a) = RT(CX,Lo ® L*)[1]. Since C* N Z is homeomorphic to

(0,00) x [£,3%], 7 (a) = H('}(Cx,La ® Lt)~C.

6.4. Let Q := {(vV,v) € V¥V x V| (vV,v) =1}, e: Q —» VV x V be the inclusion
mapping, consider the natural morphism v : e€e’ CvaV — Cyvxy, and let w be
its mapping cone; w := cone(7y).

6.5. Radon transformation. For any K € Dmon V),
FHK)~FHK)® 1T ~ Rpr) (pr*(K) ® w)[n] =: R(K).

(This isomorphism is not canonical.) The right member is called the Radon trans-
form of K. We omit the proof, since the proof of (7.7) below is essentially the same,
and the latter is included in [DG].

6.6. Assumption A4. (1) Koc € D5, o, () for some o € C.
(2) f and fV are homogeneous polynomials.

6.7. Define a filtration {W,,} of the perverse sheaf Rj.(f*L_o ® Koc)[n] (cf
[BBD]) by *DR.(Won (25, Da(f*w))) = Win(Rjs(f*L-a ® Ko.c)[n]). Then

m = m(a)

& F(gram(PixDa(few)IQY #0 by (5.3, (2))

& FHetW, o (Rjs(f*L_a ® Ko,c)[n]))|2V # 0 by (A4) in (6.6), and [HK]
& R(GY, m(Ris(f*L_a ® Ko,c)[n])I2Y #0 by (6.5).

7. FOURIER TRANSFORMATION OF [-ADIC ETALE SHEAVE

7.1. Let V., VY, (), f, fY etc. be as in §5 and §6. In this section, we assume
that these objects are defined over a finite field Fy. Let p = char(F,), I be a prime
number # p, and for a variety X over F,, Db(X,Q,) the triangulated category
defined by Deligne. See [Del2, (1.1.1)-(1.1.3)] and also [Lau, (0.5)-(0.6)].
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7.2. Artin-Schreier torsor. Fix a non-trivial additive character ¢ € Hom(F,, Q- ).
Let L, be the Artin-Schreier torsor on A'. The Frobenius endomorphism Frob,
acts on Ly 5 (z € Fq) as the multiplication by (z). See [Del3, 1.4].

7.3. Lang torsor. For x € Hom(F;‘r,@x), let L, be the Kummer torsor of order
g—1on G, = A'\{0}. The Frobenius endomorphism Frobg acts on Ly , (z € FY)

as the multiplication by x(z). Fixing an isomorphism 11qu /Z ~ Hom(F;‘,Ex),
Q — Xq, We sometimes denote L, = L(«) for L, . See [Del3, 1.4].

7.4. Deligne-Fourier transformation. ([KL]). Define a functor Fy, : D3(Vg,, Q;) —
Dg(Vl.Yq,_Q—l) by Fy(—) = Rpr)(pr*(—=) ® ()" Ly)[n], which is called the Deligne-
Fourier transformation.

7.5. Define h : G, X V¢, = VF, by h(t,v) =tv. For x € Hom(F;‘,@x), put

Dponx(VF,) = {K € DY(Vr,, Qu) | 'K = Ly R K}.

mon,x

7.6. Put 7(x,%) = RI‘C(Gm,f‘q,LX ® L,/,)[i]. Then we get a (non-canonical) iso-
morphism 7(x,¥) = H (Gm ,, Ly ® Ly) ~ Q; (cf. [Del3, 4.2]).

7.7. Radon Eansformation.‘ (Cf. (6.5).) Consider the natural morphism
7 : eeQ — Q. Put w := cone(y). For K € Dt Vr,), define its Radon

mon x(

transform by RprY (pr*K ® w)[n] =: R(K). In [DG], we get
(1) Fp(K) ~ Fy(K) ® 7(X,¥) ~ R(K) (non-canonically).

8. SPECIALIZATION FROM D%(V(C),C) To D2(Vr,Q;)

8.1. Since H.q, = H.z, ® Qi and Ko,q, = Ko,z @ Qi, we can consider their
‘reduction modulo p’ (p > 0). See [BBD, 6.1]. (See (Al, (3)) in (3.4) for Ky.) We
denote the resulting Q;-sheaves on Vg _ by the same letter and thus each of such
symbols has two meanings.

8.2. Assumption A5. Assume that

(1) f € Q[V], f¥ € Q[VV], and
(2) Ko,q,[n] € DY(Vr,,Qu) is pure of weight w.

8.3. Wn(Rj.(f*H.q, ® Ko.q,)[n]) € D3(V(C), Qi) (=the perverse sheaf under-
lying the weight filtration of the mized Hodge module, whose coefficient ring is ex-
tended to Q) specializes (by the comparison theorem and by ‘QF,’) to the perverse
sheaf of the same name in Di’(VFq , Q1) (=the weight filtration of the mized perverse
sheaf) if char(Fg) > 0 and if 1 is a prime which does not divide ¢N. Here N 1is the
integer appeared in (3.4, (3)).
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Proof.-Let V be a smooth scheme over Z[ Ny~ (N1 € Zso), 7 V — V a projective
morphism such that f := fom is normal crossing relative to Z[Ny 11'and 7 induces
an isomorphism 2 := V \ f~1(0) — Q [Hir]. Let j : Q — V be the inclusion
morphism. Then it is easy to see that (8.3) holds if f and j are replaced with f
and j. Put K := Rj.(f*H.q, ® ™Koq,) and K := Rj.(f*H.,q, ® Ko,q,). Then
Rm.K = K. From the exact sequence of perverse sheaves

0 = Wem(Kln]) = K[n] — Wsm(K[n]) = 0,

we get an exact sequence

PHO (B (Wem(K[n])) <> Kln] = PHO(Rra(Wsm(K[n))),

and consequently, image(a) = Wem(K|n]) in the both sense of (8.1). Thus we get
(8.3). O '

8.4. Continue to assume (A1)-(A5). By (6.7) and by the scalar restriction, we get

(1)
m = m(2(c)) & R(gY,m(Ris(f*Heq, ® Koq)[n])IQY # 0 in D(VY(C), Qu).

Since the Radon transformation R(—) is compatible wjth the ‘reduction modulo
» (p > 0), we may understand the right member of the above equivalence in

DS(VI-}‘/,I»Ql)' Since Hc,'@ = ®ord X=c LX’

R(grovs m(Rix(f*Ly ® Ko.q,)[n])|2Y # 0 for some x of order ¢
= R( grupm(Rjs(f* Heq ® Ko,q)n]))I0" # 0

(2)

Take [ so that Z[¢,] ® Q is an integral domain. Then Qi(¢c) = Z[¢:] ® Qi and it
acts on H, q, in-several ways, giving Q;((.)-sheaves Ly for all x of order c. Hence

(3) = R(grW o (Risx(f*Ly ® Ko.q,)[n]))|2Y # 0 for any x of order c,

for the specific [ as above, and hence the same holds for any I.

Theorem 9. Assume (A1)~(A5) and that char(Fy) > 0. Then Fy(Rjx(f*Ly ®
Ko.q,)n))|QY is pure of weight w + n +m with m = m(E(ord x)).

Proof. By [KL, (2.2.1)], Fs(8m(=) = 8174 pm(Fy(—). Hence (8.4, (1)-(3))
(8.3), and (7.7, (1)) yields the result. O o ‘

10. PREHOMOGENEOUS VECTOR SPACES .

10.1. Let us review [Gyol] and [Gyo3]. Let G be a connected reductive group,
p: G — GL(V) a finite dimensional rational representation, and assume that every-
thing is defined over an algebraic number field K (C C). Assume that (G,p,V)®C
is a prehomogeneous vector space, i.e., G(C) has a dense orbit in V(C). Let
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pV : G — GL(VV) be the contragradient representation of p, ¢ € Hom(G, G,),
0 ;é f € Q[V], 0 # f" € Q[VV], and assume that f(gv) = ¢(g9)f(v) and
fVigvV) = ¢( ) LfV(@Y) for any g € G(C), v € V(C) and vV € VV(C). Put
Q= V\f10) and Q¥ = VV\ fV~1(0). Then there exists a unique closed
G(C) -orbit Ol(C) (resp. OY(C)) in Q(C) (resp. QV(C)). Let i : 07 — Q

and 7V : 0Y — QV be the inclusion morphisms. Put n = dimV = dimVV and
m = dim O; = dimOy. Define F: Q — V¥V and FV:QV — V by F := gradlog f
and FV = gradlog f¥V. Then F and FV induce smooth morphisms F : Q — Oy
and FV : QY — O;. Let 7V : OY — OY be the two fold covering defined in [Gyol,
3.14]. Let L(wY)z be the cokernel of Zpoy — =,/ Zoy. Then L(w’ V)z is a locally
constant sheaf on Oy (C).

Consider a D-module Dovu satisfying the following condltlon

10.2. Assumption A6. Doy uV is a regular holonomic D-module such that
—AuY = x(A)u" (A € Lie(G)) and DR(Doyu") is a locally constant sheaf of rank
one. (Note that A € Lie(G) induces a vector field on Oy, which can be regarded as
a differential operator of first order.) Put Ky := DR(DoyuY), Ky := fV*La® Ky,
and K, := F*K). :

Lemma 10.3. [Gyo3, 6.21]. Assume (AG). Then (1)F+(Rj*f* Kq[n]) =jViY(KY®
L(w¥))[m], and (2) F*(jif*Ka[n]) = Rj)i) (K5 ® L(w"))[m].

10.4. Assume that char(F,) # 2 and let x;/; be the unique character of F of
order 2. For vV € VV(F,), let AV (vY) be the discriminant of the quadratic form

determined by (%(v )) (Cf. [Gyo2, §7].) By [DG, 3.5.4], we have

trace(Frobg | L(w")q,vv) = x1/2(hY(vY)) x C1, for vV € Of (Fy)

for any Frobenius action on L(wV)q,, where C; is some constant independent of
vV. In the situation of the following theorem, all the assumptions (A1)-(A6) are
satisfied.

Theorem 11 Assume that f € Q[V], f¥ € QV[VV] and char(F,;) > 0. Fiz an
1somorphism (—l{—aZ)/Z = FY, a Xa, and put Ly := Ly, . Then the following
holds in DY(VE,, Qy)-
a) If we forget the Flobenius action, then
1) Fy(Rjxf*L-aln]) = j)'i (fV*L ® L(w )im],
(2) -'F (RJ*(f*L-a®F*L( ))[n)) = jViY fV* Lalm],
3) f.—( i (fV* Lo ® L(w¥))[m]) ~ ji f*L a[n]
)F¢(RJ,Y ,.YfV*L—a[m] ~ ji(f*La ® F*L(w")[n],
") Fy(rf*Laln]) = RjY i) (fV*L_a ®L(wv.))[m]
(J'(f* a ® F*L(wY))[n]) = Rj/i) fV*L_o[m]
Fu (/e (fV*La ® L(w"))[m]) ~ Rjuf*L_u[n]
Fp( i) fV*La[m]) =~ Rju(f*L_o ® F*L(w"))[n]
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(b) Assume that the Frobenius action on Lo and L(w) are the natural ones. Then
the left hand sides of (1)-(4) and (1')- (4’) restrict to pure sheaves on 2 or QV. The
weights are

(1) n+m(e, CQ[TL]),

(2) n + m(a, F*L(wY)[n]),
(3) n+m(e, LVL v)[m])
(4) n+m(a, iy Coy[m])
(1) n —m(a,Cg[n}),

(2') n —m(a, F*L(wY)[n]),
(3') n—m(a,iy L(w")[m]),
(4') n.—m(a, i) Coy[m]),

respectively. (For m(a, —), see the lines following (3.5, (1)).)

Proof. (a) (1) and (2) follows from (10.3) as in [Gyo2]. By the Verdier duality, (%)
& (i) fori=1,---,4. By ‘Fp=F;, (U') & (3) and (2') & (4).

(b) (1)-(4) follows from Theorem 9, from which (1')-(4') follows by the Verdier
duality. O '

Corollary 12 Keep the notations and the assumptions of the above theorem.
(a) There exist constants C1,- -+ ,Cy such that

(1) ™ ). XalF(@)P(v¥,v))

veQ(Fy)

N { C1 - Xa(fY(0Y)™1) - x172(hV(vY)) for vV € OY (Fy)

o for vV € (QV\ OY)(F,).
2) ¢ Y. XalF@)xa/2(RY(F()¥((v",v))

vEQ(Fy)

[ Ca-xalf¥(wY)TY) forv¥ € OY(Fy)

- { 0  forvY € (QV\ OY)(F,).
3 ™ > XalFYO)xa(RY @))Y((Y, )
' vV €OY (Fyq) ‘

=C5 Xa(f(v)™") forv e QF,).
4 ™ D xalfYOV)P((0Y.v)
vV E€OY (F,)
= Cs - Xa(f() Dx1/2(hY (F(v))) for v € QF,).

The constants C; and Cy (resp. Cs and Cy) are independent of v¥ € Oy (Fy)
(resp. v € Q(F,)), but depend on the other parameters. (see [DG] for the precise
formula.)

(b) The values of w; := log|C;|/ log \/q are given by the following formula.

(1) wy = —m — m(a, Ca[n]).

(2) wp = —m — m(a, F*L(w")[n]).
(3) w3 = —m — m(a, 3y L(w")[m]).
(4) wy = —m — m(a, zVCov [m]).
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Corollary 13. **P(t,Cq[n]) = b*P (¢, F*L(wV)[n]) = be"P(t Y L(w")[m])
= b%2(£, 1Y Coy [m)]).

Proof. By [DG], we can write down explicitly the constants C; (1 < i < 4), and we
get C1 = C4 and C2 = C3. Then by (1) and (4) of (12, ( )), and by (3.5, (7)), we get
b¥P(t,Cq[n]) = b*P(t, i) Coy[m]), and b*P(t, F*L(w")[n]) = b*P(t, zVL (w¥)[m]).
By [Gyo3, 6.19], (=1)¢Bs(—s — 1,1) = va(s,f(fo)). Hence b3 (s, Caln]) =
DY (s, 1) = bR (s, F(f°)) = b3 (s,4Y L(w") [m]). |
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