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1. Int.roduction

Purpose of this paper is to clarify some interpolation questions related to the space
$\mathcal{H}’(\Omega)$ of analytic functionals carried by $\mathrm{a}\cdot \mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{a}\mathrm{c}\mathrm{t}}}$ set $K$ contained in the convex
open set $\Omega\subseteq C$ . In particular, I will address the issue of”grouping of terms” which
arises when one looks for exponential series representations of solutions, in the
space $\mathcal{H}(\Omega)$ of holomorphic function..s on $\Omega,$

. of $\mathrm{s}\mathrm{y}_{\mathrm{S}\mathrm{t}\mathrm{e}}\mathrm{m}.\mathrm{S}$ of infinite order differential
equations.

Virtually all of the material contained in this paper originates from [$2|,$ [ $5|$ and [6]

(but see also the recent monograph [1]); on the other hand, we are presenting this
material in a unified fashion as a background to a joint work with T. Kawai [7]

on the application of these ideas to some very classical overconvergence results ([3],

[4] $)$ . Of some interest, hopefully, is the final construction of a large class of examples
of infinite order differential $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\dot{\mathrm{a}}$tors for which ”grouping” is necessary.

Acknowledgement. The author whishes to thank the R.I.M.S. of Kyoto Univer-
sity for the hospitality during the writing of this paper, as well as Professor Kawai,
for his invitation to lecture at the workshop ”Exact $WKB$ Analysis and Fourier
Analysis in the Complex Domain”.

2. Basic Definitions

Let $p$ a subharmonic function, $p:\mathcal{O}arrow R$ , which satisfies the following conditions:
(i) $p(z)\geq 0,$ $\log(\iota+|z2|)=O(p(z))$ ;

(ii) there exists $C>0\mathrm{s}\mathrm{u}\mathrm{C}\mathrm{h}$

. that if $|z-\zeta|-\leq 1$ , then

$p(()\leq Cp(_{Z})+c$ .

Such a function will be said to be a weight, and following H\"ormander, see [1], we
define the space

$A_{\mathrm{p}}=A_{p}(C)=$ { $f\in \mathcal{H}(C)$ : for some $A,$ $B>0,$ $|f(Z)|\leq Ae^{Bp(z)}$ }.
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Remark 1. The main example we are interested in, is the case in which $p(Z)–|z|$ .

In this case $A_{p}(C)$ is the space $Exp(\sigma)$ of entire functions of exponential type,
which is isomorphic (via Fourier-Borel Transform) to the space $\mathcal{H}’(C)$ of analytic
functionals (Paley-Wlenecr theorem).

Remark 2. For every $B>0$ , one can consider the Banach space

$A_{p,B}= \{f\in \mathcal{H}(\sigma) : ||f||_{B}:=\sup_{\sigma}|f(z)e^{-B(z})p|<+\infty\}$ .

By considering an increasing, diverging sequence $\{B_{n}\}_{n\geq 1}$ of positive numbers, one
introduces an $\mathrm{L}\mathrm{F}$-topology (inductive limit of a sequence of Fr\’echet spaces) on $A_{p}$

by the equality

$A_{p}= \mathrm{i}\mathrm{n}\mathrm{d}\lim_{n}Ap,B_{n}$ .

Note that such topology is obviously independent of the sequence $\{B_{n}\}$ . In this
topology, closure is equivalent to sequential closure.

$\mathrm{S}\mathrm{i}..\mathrm{m}$ultaneously with $A_{p}$ , one may consider the space

$A_{p,0}=A_{p,0}(C)=$ { $f\in \mathcal{H}(C)$ : $\forall\epsilon>0\exists A_{\epsilon}>0$ such that $|f(Z)|\leq A_{\epsilon:}e^{6}$ }$P(z)$ .

Functions in this space are said to be of minimal type with respect to $p(z)$ . If,
as before, $p(z)=|z|$ , then $A_{p,0}$ is the space Exp0 $(\sigma)$ of functions of infraexponen-
tial type (order 1 and type $0$ ), which is isomorphic, (again via the Fourier-Borel
transform) to the space $(\mathcal{H}(\{0\}))’$ of analytic functionals carried by the origin or,

equivalently, to the space $B_{\{0\}}$ of hyperfunctions supported by the origin.

Remark 3. $A_{p,0}$ is a Fr\’echet space whose norms are given by

.
$||f||_{m}= \max_{C}\{\{|f(Z)|\exp(-\frac{p(z)}{m})\}$

One immediately sees that $A_{p,0}$ is an FS-space.

Remark 4. If, instead of the space $\mathcal{H}(C)$ of entire functions, one considers the space
$\mathcal{H}(\Omega)$ of holomorphic functions on a convex open set $\Omega\subseteq \mathcal{O}$ , the spaces $A_{p}$ and $A_{p,0}$
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are not sufficient anymore to describe analytic functionals, and some modifications
are needed. Indeed, the space $\mathcal{H}’(C)$ of analytic functionals carried by some compact
contained in $\Omega$ is isomorphic to the space $Exp(\Omega)$ of entire functions for which there
exists a compact set $I\acute{\mathrm{t}}\subseteq\Omega$ and a constant $A>0$ such that $|f(Z)|\leq A\exp(H_{f\dot{\mathrm{i}}}’(z))$

where

$H_{K}(Z)= \sup_{w\in \mathrm{A}}Rer(z\cdot w)$

is the so-called supporting function of $I\mathrm{i}^{\Gamma}$ . The arguments are given in the next
sections for the spaces $A_{p}(C)$ and $Exp(C)$ , need to be suitably modified, if one
wants to apply them to the spaces $Exp(\Omega)$ . Unfortunately, in this lat,ter case, the
estimates and the results are not so clear as in the $A_{p}$ case. Note, as well, that
$Exp(\Omega)$ is not an algebra anymore.

3. Interpolation

A multiplicity variety in $C$ is a collection $V=\{(z_{k}, m_{k}), m_{k}\geq 1\}$ of pairs with
$z_{k}\in \mathcal{O},$ $m_{k}\in J\mathrm{V}$ , and $|z_{k}|arrow+\infty$ . Weierstrass’ theorem ensures that, given a
multiplicity variety $V$ , there is always an entire function $f$ such that $V=V(f)$ .
The space $A(V):=\mathcal{H}(C)/I(f)$ of holomorphic functions on $V$ can be identified with
the space

$A(V)=\{\{a_{k,l}\} : a_{k,l}\in C, 0\leq l\leq m_{k}-1, l\in J\mathrm{V}\}$ .

There is a natural surjective restriction map

$\rho:\mathcal{H}(C)arrow A(V)$

defined by

$\rho$ : $g arrow\{\frac{1}{l!}\frac{\partial^{l}g}{\partial z^{l}}(_{Z_{k}})\}k,l$

The fundamental problem which arises in the theory of mean-periodic functions
(i.e. functions which are solutions of a system of convolution equations) is the
identification of $\rho(A_{p}(\sigma_{))}$ . To this purpose, we begin by defining a first ”candidate”
for it.
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Definition. The space $A_{p}(V)$ is defined as the set of all sequences $\{a_{k},\iota\}$ in $A(V)$

such that, for some $A,$ $B>0$ and all $k\geq 1$ ,

$\sum_{0\leq l\leq mk}|ak,l|\leq A\exp(Bp(z))$
.

Remark 5. Using Cauchy’s inequalities for holomorphic functions, and the prop-

erty of weight functions, it is immediate to deduce that

$\rho(A_{p}(\mathcal{O}))\subseteq A_{p}(V)$ .

Remark 6. With reference to Remark 4, one can also define the space $Exp\Omega(V)$

as the space of all the sequences $\{a_{k},\iota\}$ in $A(V)$ for which there exists a compact

$K\subseteq\Omega$ and a constant $A_{\epsilon}>0$ such that

$\sum_{0\leq l\leq mk}|ak,\iota|\leq A\exp(H\kappa(zk))$
.

Also in this case it is easy to verify that $\rho(E_{X}p(\Omega))\subseteq Exp_{\Omega}(V)$ .

Definition. A multiplicity variety $V$ is said to be interpolating (with respect to

the weight $p$) if
$\rho(A_{p}(C))=A(pV)$ .

This definition (and a similar one which could be given for $Exp(\Omega)$ ) immediately

raises two questions which we will address in the rest of the paper:

(a) find conditions for $V$ to be interpolating;

(b) describe $\rho(A_{p}(\sigma_{))}$ .

While a complete solution to (a) and (b) does not exists for the most general case,

things are fairly simple when one considers the case $p(z)=|z|$ . In fact, one has the

following result (see [1] and [2] for many related results as well):

Theorem 1. Let $f\in Exp(\sigma)$ . Then $V(f)$ is interpolating if and only if there are

constants $A,$ $B>0$ such that

$| \frac{1}{m_{k}!}\frac{\partial^{m_{k}}f}{\partial z^{m_{k}}}(z_{k})|\geq Ae-B|z_{k}|$ (1)
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for all $k=1,2,$ $\ldots$ .

Remark 7. Theorem 1 is not true (without additional assumptions) for weights
which are not radial and satifying the $\mathrm{d}\mathrm{o}\dot{\mathrm{u}}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}$ condition $p(2z)=O(p(Z))$ . For
every weight $p$ , however, condition (1) is still sufficient.

Remark 8. The reason why $p(z)=|z|$ behaves differently is the fact that, in
$Exp(\mathcal{O})$ , we have the Lindel\"of theorem which claims that if $g,$ $f\in Exp(C)$ and $\frac{g}{f}$

is entire, then $\frac{g}{f}$ is still in $Exp(C)$ . This can be rephrased by saying that the ideal
$I(f)$ is closed in $Exp(\sigma)$ . This property is not true anymore for different weights
(unless conditions on $f$ are imposed), nor it is true that any non-principal ideal in
$Exp(\sigma)$ is closed.

An (almost) immediate consequence of Theorem 1 is the following necessary condi-
tion for interpolation, which we will be using shortly:

Theorem 2. Let $f\in Exp(C)$ . Then if $V(f)$ is interpolating, there are positive
constants $A,$ $B$ such that, if we set $d_{k}:= \min\{1, \min_{i\neq k}|z_{i}-z_{k}|\}$ , then

$d_{k}^{m_{k}}\geq Ae^{-B|z|}k$ . (2)

Remark 9. Once again, this theorem is not valid in arbitrary $A_{p}$ spaces (or in
$Exp(\Omega))$ , unless additional conditions are imposed on $f$ .

In order to describe $\rho(Exp(\sigma))$ for the case in which the variety $V$ is non-interpol-
ating, we need to discuss an important property of entire functions of exponential
growth, which is essentially the basis for Lindel\"of theorem.

Theorem 3. Let $f\in Exp(C)_{f}f(\mathrm{O})=1$ . Then there exists a sequence of radii
$\{R_{n}\}_{y}R_{n}\uparrow+\infty_{f}R_{n+1}\leq 4R_{nf}$ such that for some positive constants $A,$ $B$

$\min|f(Z)|\geq A\exp(-BRn)$ .
$|z|=R_{n}$
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The proof of this result is essentially a consequence of the minimum modulus

theorem for holomorphic functions. The result is crucial is establishing the closure

of the ideal generated by $f$ in $Exp(\sigma)$ , and also plays a crucial role in constructing

the image $\rho(Exp(C))$ . Since, in the sequel, we will be considering infinite order

differential equations, we now consider an element $P(z)\in Exp0(\sigma)\subseteq Exp(C:).$, and

we take a sequence $\{R_{n}\}$ of radii such that

$\min|P(z)|\geq A\exp(-BRn)$ ,
$|z|=R_{n}$

as given by $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}\sim.3.,$ $\mathrm{F}:$in.ally, we d.e.note by

$V=\{\{\alpha_{k},m_{k}\}, k=1,2, \ldots, m_{k}\geq 1\}$

the multiplicity variety associated to $P(z)=0$ , and we assume that the roots $\alpha_{k}$

have been ordered so that... $\leq|\alpha_{k}|\leq|\alpha_{k+1}|\leq\ldots$ .
Let

$V_{n}=\{(\alpha_{k}, m_{k}) : k_{n}\leq k<k_{n+1}\}$

be the subset of $V$ for which $\alpha_{k}\in C_{n}$ , where

$C_{1}=\{z :. |z|<R_{1}\}$

and

$c_{n}=\{z : R_{n-1}<|z|<R_{n}\}$ , $n\geq 2$ .

Now, given any function $\varphi$ holomorphic on $C_{n}$ , one can construct the interpolating

function
$\varphi_{n}(z)$ $:= \frac{1}{2\pi i}\int_{\partial C_{n}}\frac{\varphi(\zeta)}{P(\zeta)}\cdot\frac{P(()-P(z)}{\zeta-z}d\zeta$

defined and holomorphic on $C_{n}$ .

One immediately sees that

$\varphi_{n}(z)=\varphi(Z)-\frac{P(z)}{2\pi i}\int_{\partial C_{n}}\frac{\varphi(\zeta)}{P(\zeta)}$ . $\frac{d\zeta}{\zeta-z}=$
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$=\varphi(z)+P(z)\psi_{n}(z)$

with $\psi_{n}$ holomorphic on $C_{n}$ . As a consequence we have that

$\rho_{n}(\varphi_{n})=\rho_{n}(\varphi)=\{a_{k},\}(n_{l})\cdot=\{a_{k}l : \alpha_{k}\in C_{n}\}$ .

If we now define, on $A(V_{n})$ the norm

$||a^{(n)}||_{n}:=||a_{k}^{(},|n)|ln \inf=\{||\varphi||_{\infty} : \varphi\in A(C_{n})_{)}\rho_{n}(\varphi)=\{a_{k,\iota}^{(}\}n)\}$ ,

we see that, $\mathrm{f}\mathrm{o}\mathrm{r}$

’

any $\varphi\in Exp(C)$ ,

$||\rho n(\Psi)||n\leq A\exp(B|z|)$ , $z\in C_{n}$ ,

for some positive constants $A,$ $B$ , which do not depend on $n$ . Now, if $\underline{a}\in A(V)$ , $\underline{a}$

can be written as a sequence

$\underline{a}=\{a_{n}\}_{n},$ $a_{n}\in A(V_{n})$ ,

and we can define

$A_{*}(V)= \{\underline{a}=\{a_{n}\}\in A(V) : \exists D>0\mathrm{s}.\mathrm{t}. ||\underline{a}||_{D}:=\sup_{n}||a_{n}||_{n}e^{-DR_{n}}<+\infty\}$

and the following crucial result can be established [2]:

Theorem 4. There is a topological isomorphism between $\rho(Exp(\sigma))$ and $A_{*}(V))$

where $A_{*}(V)$ is endowed with its natural inductive limit topology. In particular,

$\frac{Exp(C)}{I(P)}\cong A_{*}(V)$ .

4.. Ex. $\mathrm{p}_{\mathrm{o}\mathrm{n}\mathrm{e}}.$.
$\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}1$ representation

The $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}- \mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ material which we have $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{C}\mathrm{u}\mathrm{S}\mathrm{s}\dot{\mathrm{e}}\mathrm{d}$ in $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ previous sections,
$\dot{\mathrm{w}}\mathrm{i}\mathrm{l}\mathrm{l}$ now allow us to prove the representation theorem for holomorphic (entire) so-
lutions for an infinite order differential equation. We recall, in this respect, that

29



the space of infinite order differential operators is, in fact, isomorphic to the space

Exp0 $(\sigma)$ of entire functions of infraexponential type. Specifically, any infraexpo-

nential type function $P(z)$ acts as a $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{b}_{0}1$. for a differential operator $P(d/d_{Z)}$ , and

we have the following result:

Theorem 5. Let $P\in Exp_{0}(\mathcal{O})$ , and let

$V=\{z : P(z)=0\}=\{(\alpha_{k},m_{k}) : |\alpha 1|\leq|\alpha 2|\leq\ldots\}$ .

Then there exists a sequence a sequence of indices $k_{1}<k_{2}<\ldots$ such that every

entire solution $f$ of
$P(D)f=0$

can be written an

$f(z)= \sum_{\geq n1}(_{k_{n}\leq\iota}\sum_{k<k_{n+}}P_{k}(_{Z)}e^{\alpha}kz)$ ,

where $P_{k}$ is a polynomial of degree less than $m_{k}$ , and where the sequence $\{P_{k}\}$

of such polynomials satisfies growth conditions necessary to the convergence of the

grouped series on the right hand side of (3).

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}.\cdot$ First, we consider. t.he map

$\beta$ $:= \rho\cdot \mathcal{F}:\mathcal{H}’(C)arrow\frac{Exp(C)}{I(P)}$

where $\mathcal{F}$ is the Fourier-Borel isomorphism between $\mathcal{H}’(C)$ and $Exp.(.C)$ . It is imme-

diate to see that $\beta$ is a continuous surjective map between DFS-spaces. Then, by

a well known result from functional analysis, its transpose map

$\beta^{t}$ : $( \frac{Exp(C)}{I(P)})’arrow \mathcal{H}(C)$

has closed image, and is a topological isomorphism onto its own image. Moreover,
$Im(\beta^{t})=(ker\beta)\perp$ and since $F(ker\beta)=I(P)$ , we obtain (since $\mathcal{F}^{\cdot}$ is an isomor-

phism) that $ker\beta=P(D)(\mathcal{H}’(\sigma_{))}$ , and so, finally,

$(ker\beta)^{\perp}--\{f\in \mathcal{H}(\mathcal{O}) : P(D)f=0\}$
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is the kernel in $\mathcal{H}(C)$ of the infinite order differential operator $P(D)$ . Since we know
that $Exp(\mathcal{O})/I(P)$ is topologically isomorphic to $A_{*}(V)$ , our proof will be concluded
by simply describing the dual $(A_{*}(V))’$ of $A_{*}(V)$ . To do so, let $\underline{b}\in(A_{*}(V))’$ ; then
$\underline{b}=\{b_{n}\}_{n\geq 1}$ with $b_{n}\in(A(V_{n}))’$ for any $\prime n$ , and with norms $||\cdot||_{n}’$ in these dual
spaces given by

$||b_{n}||_{n}’:= \max\{\langle a_{n}, b_{n}) : ||a_{n}||_{n}\leq 1\}$ ,

where

$(a_{n}, b_{n}):= \sum_{k,l}a_{k}^{()},\iota kb^{(n)}n,\iota$

with (hopefully) obvious meaning of the symbols. On the other hand, $\mathrm{i}\mathrm{f}\underline{a}=\{a_{n}\}_{n\geq 1}$

is an element of $A_{*}(\dot{V})$ , then th.$.\mathrm{e}$re exists $C>0$ such that

$\sup_{n}||a_{n}||_{n}e^{-CR_{n}}<+\infty$ ,

and therefore if $\underline{b}$ is an element of $(A_{*}(V))’$ , then we have that for every $D>0$ ,

$|| \underline{b}||’:=\sum_{n\geq 1}||b|n|_{n}’e^{DR_{n}}<+\infty$

and now the duality bracket is obviously defined by

$\langle\underline{a},\underline{b}\rangle=\sum_{\geq n1}$

(an’ $b_{n}$ ).

Consider now a solution $f$ of the differential equation

$P(D)f=0$ ;

then there exists a unique $\underline{b}\in(A_{*}(V))’$ such that $f=\beta^{t}(\underline{b})$ . Then, for every
$S\in \mathcal{H}’(\sigma)$ ,

$\langle S,$ $f)=\langle S,$ $\beta^{t}(\underline{b}))=\langle\beta(S),\underline{b}\rangle=\langle\rho(F(S)),\underline{b}\rangle$ ,

with the series at the right side which (by the definition of the topology in $\mathcal{H}’(C)$ )
converges uniformely for every bounded family of analytic functionals $S$ . In partic-
ular, for $z$ in a fixed compact set in $\mathcal{O}$ , we can take $S=\delta_{z}$ . Then

$\rho(F(\delta_{z}))=\rho(e^{z})\omega=\{\frac{z^{j}e^{\alpha_{k}z}}{j!}\}_{k\geq 1,0\leq}j\leq mk$
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so that

$( \delta_{z}, f\rangle=f(Z)=\sum_{1n\geq}(_{k_{n}\leq\cdot 0}k<k_{n}.+1,\leq j<mb_{k,j}\sum_{k}\frac{z^{j}e^{\alpha_{k}z}}{j!}\mathrm{I}$

with uniform convergence of the series on each compact set in $C$ .

$\bullet$

Now that we have completed the proof, we would like (in order to prepare
for the examples in the next section) to see whether it is possible to make the
estimates on the coefficients $\{b_{k,j}\}$ a little more explicit. For the case in which
$V$ is an interpolating variety, the situation is quite simple, since $A_{*}(V)=A_{p}(V)$

( $=Exp(V)$ in our case), and therefore there are no more groupings. Indeed, if $V$ is
interpolating, it possible to choose the circles $\{R_{n}\}$ in such a way that (discounting

multiplicities), only one zero of $P(z)$ falls between $R_{n}$ and $R_{n+1}$ , for every $n$ . In
this case we see that

$((Exp(V))l=\{\underline{b}=\{b_{k,j}\}s.t$ . $\forall D>0,$ $\sum_{k,j}e^{B||}(\alpha_{k}\sum_{jo\leq<mk}|b_{k,j}|)<+\infty\}$

which is as explicit as we can get, and gives us the necessary and sufficient condition
for the convergence of the series (with no groupings).

In the case in which the variety is non-interpolating, groupings may become
necessary, and the precise description of the bounds becomes much subtler. The
method which Berenstein and Taylor used in [2] (see also [1]) consists in using
Newton’s divided differences as a way to compute explicitely a choice for an inter-
polating function on $V$ . The method is a bit complicated, but our purposes will
be satisfied if we quote the result, at least for the case of groupings whose points
all have $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{C}\sim \mathrm{i}\mathrm{t}\mathrm{y}.\mathrm{o}\mathrm{n}\mathrm{e}$ (some- further modifications would be necessa..ry for the
general case).

Assume we have, in $V_{n}$ , the distinct simple points

$(n)$ $(n)$ $(n)$
$\alpha_{1}$ , $\alpha_{2}$ , . . . , $\alpha_{k_{n}}$ .
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Construct the $t_{n}\cross t_{n}$ square matrix $J=J^{(n)}$ (where the $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{x}.(n)$ has been
eliminated troughout its entries for the sake of readibility):

$J=$;

it should be noted that the construction of this matrix can be described explicitely
in terms of the divided differences of different orders at the points in $V_{n},$ $[1]$ . Given
this matrix, the estimates on $\underline{b}=\{b_{n}\}$ become quite explicit. Specifically, $\underline{b}$ is an
element of $(A_{*}(V))’$ if for $\mathrm{a}\mathrm{n}\mathrm{y}_{e}D>0$ , and every choice of points $\beta_{n}\in V_{n}$ ,

$\sum_{n\geq 1}(_{j=1}\sum^{t_{n}}|c(n)|j\mathrm{I}e^{D|\beta_{n}|}<+\infty$ ,

where the $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}_{\mathrm{o}\mathrm{r}}\underline{c}^{()}n$ is defined by $\underline{c}^{(n)}=J\cdot b_{n}$ .

5. Examples of the necessity of groupings.

In this final section I will show how to construct a large class of examples of differ-
ential operators of infinite order such that the exponential representation of their
entire solutions requires necessarily the use of groupings. Examples of this kind
(but with different growth conditions) have been given by Schwartz and by Leont’ev
(see [8] or [1] and the references therein). Our simple, but explicit, construction has
been, however, the starting point for the forthcoming work of Kawai and the author
[7], in which we examine a new treatment of Bernstein-Ostrowski overconvergence
phenomena [3], [4] based on the properties of infinite order differential operators.
In principle, the idea for the construction for such an example is simple. Since
$ker(P(D))=(A_{*}(V))’$ , and $(A_{*}(V))’=Exp(V)$ if and only if $V$ is interpolating,
then one may assume that the ”grouping” phenomenon will occur whenever the
variety $V$ is not interpolating, and it is therefore sufficient to construct a variety $V$ ,
whose points are the only (simple) zeroes of a function $P$ of infraexponential type,
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and such that $V$ is not interpolating. However, the condition of $V$ being interpolat-
ing is only sufficient to guarantee that no groupings are necessary. In fact, while we
have no examples to the contrary in the case of varieties of infraexponential type,
we know that if $p(z)=|Imz|+\log(1+.|z|)$ , it is possible to find (and characterize)
classes of varieties which, even though they are not.interpolating, they still define
convolutions operators whose solutions can all be represented as exponential series,
whose convergence does not require grouping procedures. These varieties are called
”weakly interpolating”, [2], and, for the case of $p(z)=|z|$ , it is known that the
notion of interpolating an.d weakly interpolating varieties coincide.
To construct the variety we need, consider a sequence $\alpha_{k},$ $|\alpha_{k}|\uparrow+\infty$ of zero density
(i.e. $\lim_{narrow+\infty}\frac{n}{\alpha_{n}}=0$ ) so that we know that there exists $P_{1}\in Exp_{0}(\sigma)$ such that
$V(P_{1})=\{\alpha_{k}\}$ . We now choose, for every $k$ , a quantity $\epsilon_{k}$ such that for any $A,$ $B>0$ ,
$|\epsilon_{k}|<Ae^{-B|\alpha_{k}|}$ . This can be easily done by taking, for example, $\epsilon_{k}=e^{-|\alpha_{k}|^{2}}$ Now
consider the new sequence of points

$\beta_{k}:=\alpha_{k}+\epsilon k$ .

Obviously
$\lim_{narrow+\infty}\frac{n}{\beta_{n}}=narrow+\lim_{\infty}\frac{n}{\alpha_{n}+\epsilon_{n}}=0$ ,

and so we know that a second function $P_{2}$ exists in Expo $(\sigma)$ , such that $V(P_{2})=$

$\{\beta_{k}\}$ . Now the function
$P=P_{1}\cdot P_{2}$

is still in Expo $(C)$ , which is an algebra, and $V(P)=\{\alpha_{k}\}=\{\beta_{k}\}$ . On the other
hand, we may use Theorem 2 to immediately see that $V$ is not an interpolating
variety, since condition (2) is violated for $d_{k}=\epsilon_{k}$ . I claim that the operator whose
symbol is $P$ is such that groupings are necessary to represent all the solutions
to $P(D)f=0$ . To see this, we will assume that each sequence $\{\alpha_{k}\}$ and $\{\beta_{k}\}$

is, by itself, interpolating. This request is not strictly necessary, but will make
our computations easier. In order to ensure that $\{\alpha_{k}\}$ is interpolating, it will be
enough (see [1], for a discussion of this well known result of Levinson) to ask that,
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for example,
$|\alpha_{k}-\alpha_{h}|\geq 2|k-h|$

for all indexes $h$ and $k$ . In this way we$\cdot$ are also guaranteed that an analogous
estimate holds for the sequence $\{\beta_{k}\}$ , which is therefore automatically interpolating.
This shows that if we apply Th.eorem 5 to the equation

$P(D)f=P_{1}(D)(P_{2}(D)f)=0$ ,

then the groupings produced by the proof (but which, a priory, may still not be nec-
essary) are composed of two roots each, namely we are grouping the pairs $\{(\alpha_{k}, \beta_{k})\}$

for any value of $k$ (th.$\mathrm{e}$ reader may want to compare this example with the one given
by Bernstein in the second chapter of [3] $)$ . Thus every entire solution of

$P(D)f=0$

can be represented by the grouped series

$f(_{Z})= \sum_{k=1}^{+\infty}(A..ke^{\alpha}kz+Bke^{\beta k)}z$

where the coefficients $A_{k}$ and $B_{k}$ must satisfy suitable growth conditions to ensure
that the series is convergent in the topology of $\mathcal{H}(C)$ .

In order to determine the exact nature of these growth conditions, we proceed to

construct the matrices $J^{(k)}$ for this specific case (note that here we have $t_{k}=2$ for

all values of $k=1,2,$ $\ldots$ ). We immmediately see that it is

$J^{(k)}=$
and that the corresponding element $b_{n}$ is given by $b_{k}=(A_{k}, B_{k})$ and $\underline{b}=\{b_{k}\}$ is

an element of $(A_{*}(V))’$ if and only if $carrow=J^{(k)}\cdot b_{k}$ satisfies (4). A simple matrix

multiplication shows that

$c=(\sim A_{k}+B_{k}, (\alpha k-\beta_{k})B_{k})$
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and therefore the estimates (4) give (see Remark 10 below)

$\lim_{karrow+\infty}\frac{\log|A_{k}+B_{k}|}{|\alpha_{k}|}=\frac{!\mathrm{o}\mathrm{g}|Ak+Bk|}{|\beta_{k}|}=-\infty$ (5)

and
$\lim_{karrow+\infty}\frac{\log|\alpha_{k}-\beta k||\beta k|}{|\alpha_{k}|}=\frac{\log|\alpha_{k}-\beta k||\beta k|}{|\beta_{k}|}=-\infty$ . (6)

Remark 10. Note that (4) can be rewritten as

$\sum_{n\geq 1}||\underline{\mathrm{c}}^{(n}|)|e^{D}|\rho_{n}|<+\infty$

for any $D>0$ and any choice of points $\beta_{n}\in V_{n}$ . This condition is obviously

equivalent to
$||\underline{c}^{()}n||e^{D|\beta|}n=O(1)$ .

Since all norms are equivalent in finite dimensionale spaces, $||\underline{c}^{(n)}||$ can be interpreted

as either $l^{1}$ or $l^{\infty}$ norm; if we now take the logarithm, we obtain (5) and (6).

Remark 11. Condition (6) looks misleadingly asymmetric. However, since

$|A_{k}|\leq|A_{k}+B_{k}|+|-B_{k}|$ ,

we see that (6) actually is equivalent to a condition in which $|B_{k}|$ is replaced by
$|A_{k}|$ . .

Now note that since $|\alpha_{k}-\beta_{k}|=e^{-|\alpha_{k}|^{2}}$ , we obtain

$\log|\alpha_{k}-\beta_{k}|=-|\alpha_{k}|^{2}$ ,

and therefore condition (6) becomes

$\lim-|\alpha_{k}||\beta_{k}|=-\infty$ ,
$karrow+\infty$

which is satisfied (for example) by any sequence $\{\beta_{k}\}$ bounded away from zero.
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At this point we see that the choice $\{A_{k}=1\},$ $\{B_{k}=1\}$ satisfies both (5) and (6);
as a consequence the series

$f(z)= \sum_{=k1}^{+\infty}(e^{\alpha z}.k-e^{\beta_{k}})z$

is an entire solution to

$P(D)f=0$ .

However, if we were to remove the condition of ”grouping” in the series, we would
lose convergence immediately. Indeed, if the series were convergent without group-
ings, its general term would be bounded at every point. But now, by simply taking
$z=1$ , we have, with $A_{k}=1$ ,

$|A_{k}e^{\alpha_{k}z}|=|e^{\alpha_{k}}|arrow+\infty$

as $karrow+\infty$ .

This simple argument shows that groupings cannot be eliminated a priori from the
statement of Theorem 5. In the terminology of [3] (but see also [7]) we say that the
abscissa of convergence of the series $\sum_{k=1}^{+\infty}ake^{\gamma z}k$ (for $a_{k}=(-1)^{k+1},$ $\gamma_{2k-1}=\alpha_{k}$ ,
$\gamma_{2k}=\beta_{k})$ is zero, while its abscissa of overconvergence is $-\infty$ .
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