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 Convergence of formal solutions of fully
nonlinear equations of Monge-Ampeére type

MASAFUMI YOSHINO (597 £2 )

Department of Mathematics, Nice Univeristy
(Faculty of Economics, Chuo University)

Abstract. We present a sufficient condition for the convergence of all formal power series solutions
of nonlinear equations whose linear part does not necessarily satisfy a so-called Poincaré condition.
The condition is expressed in terms of a Riemann-Hilbert factorization condition. As an application,
we shall show the solvability of Monge-Ampére equations in case it changes its type.

0. Introduction .
In 1974, Kashiwara-Kawai-Sjostrand showed the convergence of all formal power
series solutions of the following linear partial differential equations of regular singular

type 7
P= )" aup(@)2*(8/02)° = f(x),

la|=|B]=m

where m is an integer and a,g(z) and f(z) are analytic in some neighborhood of the
origin of x = (z1,...,z,) € C™. They gave a sufficient condition for the convergence
of all formal power series solutions, a certain ellipticity condition of the equation. (cf.
(0.2) in [5]). Their condition contains, as a special case, a so-called Poincaré condition.
Concerning this, in the preceeding papers [7] and [8], we gave a necessary and sufficient
condition for the convergence of all formal solutions of linear irregular singular type
equations with two independent variables.

In the case of nonlinear equations there are corresponding counterparts under the
Poincaré condition. (cf. [4]). Nevertheless, little results are known without a Poincaré
condition. In the actual applications one often encounters equations without a Poincaré
condition. For example, let us consider Monge- Ampeére equations M (u) = f. Let ug and
Jo satisfy that M (up) = fo. We want to find a solution of the equation M(u) = fo+g for
-analytic g with order greater than that of f,. Here the order of a formal power series is
defined as the smallest degree of its constituent monomials, that is, the smallest integer
k such that 92 fo(0) # O for some |a| = k and 8%f,(0) = 0 for all || < k—1. A
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curvature function f, may vanish or change its sign near the origin. It follows that the
equation may be either degenerate elliptic or degenerate hyperbolic or even mixed type
at u = up. We note that the Poincaré condition is not satisfied in general. (cf. Example
1.5 which follows.)

In view of this, we shall consider a certain class of nonlinear equations including
Monge-Ampere equations without assuming a Poincaré condition. As we have seen in
the above example, the type of the equations may change at the origin. For such opera-
tors, even a Fredholm solvability in a formal power series are open questions in general.
Moreover, the inverse of such a operator, if exists, often has loss of derivatives. If this
happens for linearized operators of our nonlinear equations, it causes the divergence of
formal solutions.

In order to cope with these problems, we employ the method of Riemann-Hilbert
factorization and a rapidly convergent iteration method. The former method enables
us to obtain a sufficiently good estimate for the linearized operators which are either
degenerate elliptic, degenerate hyperbolic or mixed type. The latter one ensures us to
show the convergence of formal solutions in case there are loss of derivatives in the
linearized equations.

1. Notations and results

1.1. Statement of results. Let = (z1,x2) € R? and let M be a nonlinear operator
of Monge-Ampere type

@) Mw=Y Y ap@u@®w+ Y Ap@07(Pu),
v,u=0 |a|=v,|B|=p le|=|B]<m

where a3 € C, m > 1 is an integer, A,p(z) is analytic at the origin, and where
0% = (0/011)*1(8/0x3)*2, a = (a1, 2) and so on.

Let ug(z) be a polynomial such that 0%ug(0) = 0 for all multiindices o, |a| < 2m. We
set fo(x) = M (ug). For g analytic at the origin such that 3%g(0) = 0 for all o, |a| < 2m
we are interested in the convergence of all formal power series solutions of the equation

(1.2) M (uo +w) = fo(z) + g(z).

Let M, be the linearized operator of M at u = ug;

(1.3)

Myo:= Y ) aa'ﬁ‘((aauo)(aﬁv) +(0%0)(0%u0)) + Y Aap(@)d*(2Pu).

v,p=0 |a|=v,|B|=p la|=|B|<m

Let tg be the homogeneous part of degree 2m of ug. Let us define the operator P by

(14) P=P@,0):= Y  aap(07600” +08%600%) + D Aap(0)0*(cPu).

lo|=|8=m |  lal=IBl=m

We denote by p,,(, &) the principal symbol of P, where £ = (£;,£5) is the cqvariablé of



66

We define the two dimensional torus T? by T? := {z = (21, 22) € C%;|2;| = 1, |23| =
1} and we set RZ = {(m1,m2) € R%;m; > 0,772 > 0}. Then the Toephtz symbol o, (z,7),
(2 € T2, n € R2) at ug is defined by -

(15) Tug (27 77) = pm(zlnla Z2772; Zfla Zé—l):

namely, we set £ = (2171, 2272) and £ = (21 ) 25 1) in pp.(z,&).
We assume the following conditions

(A.1) Ouo(2,m) #0 forall z € T2, n e R2.

(A2) i_ndlcruo = indzouo =0.
- Here ind; 0y, (resp. indy 0, ) is defined by

1
1.6 ind; 0y = =
(-9 T 2w S

dz1 log Uuo (Cla 22, £)~
Remark. The conditions (A.1) and (A.2) are called as the Riemann-Hilbert factorization
condition for o, (z, 7).

Theorem 1.1. Suppose (A.1) and (A.2). Then there exist an integer N > 2m depend-
ing only on ug such that, for any analytic g such that 8Sg(0) = 0 for all |a| < N the
equation (1.2) has a unique analytic solution w in some neighborhood of the origin such
that 02w(0) =0 for all |a| < N.

The following theorem gives a generalization of K-K-S in [5] to Monge-Ampére type
equations

Corollary 1.2. Suppose (A.1) and (A.2). Then, for every g being analytic at the origin
such that 05 g(0) = 0 for all |a| < 2m all formal solutzons of the equation (1.2) converge
in some neighborhood of the origin.

Remark. We note that P in (1.4) maps every set of homogeneous polynomials to
itself. If P is injective on every set of homogeneous polynomials degree k& > N, the
integer kg in Theorem 1.1 satisfies kg < N.

Ezample 1.3. In the following, we shall give three examples which illustrate our
results in case M is a Monge-Ampére equation. For the sake of simplicity, we write
1 =z, 3 = y. Let us consider the equation

(1.7 M(u) == umuyy uzy + c(z, Y)uqzy = f(z,9),

where ¢(z,y) and f(z,y) are given functidns and we abbreviate uz, = 02u, uy, = 3 u,
and so on. In what follows we assume that ug(z,y) is a homogeneous polynomlal of
degree 4 and c(z,y) is a homogeneous polynomial of degree 2. We define fo(z,y) by

fol, 3) = M(uo).
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- For g analytic in some neighborhood of the origin such that 3%g(0,0) = 0 for any
|a| < 4 we are interested in the solvability of the problem

(1.8 M(uo +w) = fo(z,y) + g(,y)-
Let P = M, be the linearized operator of M at u = ug.
(1.9) P := (ug)yy02 + (uo)mag + (c(z,y) — 2(uo)2y)020y.

We first find a formal power series solution u of (1.8) in the form u = wug + v,
v = Z;is vj, k = degug, where v; are homogeneous polynomials of degree j. For
simplicity, let us assume that c(z) = 0. Note that fy is homogeneous of degree 4 and
the Taylor expansion of g has powers greater than 5. Let g = Z — 5 9j(z,y) be the
expansion of g with g; being homogeneous polynomial of degree j. By substituting
the expansions of u and g into (1.8) we see, from the condition f; = M (up) that the
homogeneous part of degree 4 vanishes. Hence, by comparing the homogeneous part of
degree 5 we have the relation

(1.10) Pug = gs.

Similarly, by comparing the terms of homogeneous degree v (v > 5) we have

(1.11) Pv, =g, + Z ((98)z2(V3) gy + (V5)zy(V;)ay)-

i+i=v+4,i>4,j>4

We note that in the second term of the right-hand side of (1.11) there appears no v,,.
Hence we can determine v, formally if P is surjective.

If we denote the set of homogeneous polynomials of degree n by S,,, P maps S,, into
Sn. Hence the surjectivity of P on S,, follows from the injectivity of P on S,. The
integer ko in Theorem 1.1 could be the smallest integer m such that P : S,, — S, is
injective for n > m. The convergence of all formal solutions and the solvability follows
if we assume (A.1) and (A.2). For more detail, we consider three cases.

Ezample 1.4. Let up(z,y) = 2%y?, c(z,y) = kzy and fo(z,y) = 4(k — 3)2%y? in (1.7),
where k is a real constant. Then, the linearized operator P, (1.9) is given by

= 22202 + 2202 + (k — 8)xy0,0,.
The Toeplitz symbol is given by
(112) Ouo(2,m) = 2072 +13) + (k — 8yms,
and the condition (A.1) is equivalent to
(1.13) 2+ (k=8mne #0 VneRZ, |n =1

Because 0 < m172 < 1/2, it follows that (A.1) is equivalent to k > 4. It is not difficult
to see that (A.2) is automatically satisfied under this condition. Clearly, P satisfies a -
Poincaré condition if (A.1) and (A.2) are satisfied.



68

Now we study the type of our Monge-Ampére operator at u = uy. By simple com-
- putations of the characteristic polynomials, we see that the Monge-Ampére operator at
u = ug is an elliptic operator outside the set zy = 0 if and only if 4 < k < 12. Note
that if k£ > 12 the equation is degenerate hyperbolic. In any case, the degeneracy occurs
on the line z = 0 or y = 0. Hence the type does not change at the origin. We will see
in the following example that the type may change at the origin in general if Poincaré
condition is not satisfied. ‘

Next we want to estimate the integer ko in Theorem 1.1. For this purpose, we
study the injectivity P on the sets of homogeneous polynomials when & > 4. Because
P preserves homogeneous polynomials we may consider P on the set of homogeneous
polynomials of degree greater than 5. By definition a monomial z*y* (v + p > 5) is in
the kernel of P if and only if

(1.14) (v —1)+2u(u — 1) + (k — 8)vu # 0.

Since k > 4, we easily see that (1.14) is equivalent to that k # 16/3,9/2 if v = 2 or
p=2. lf v=p =3 it follows from (1.14) that k # 16/3. Similarly, if v = 3,4 = 4 or
v=4,p =3 we get k # 5. More generally, if v + u = n (n > 5) the condition (1.14) is
equivalent to k # 8 — 2(n? —n)/(vu) < 4+ 8/n. The equality holds when v = y = n/2.

Therefore, the injectivity of P on S,, holds in each of the following cases: a) k > 16/3,
n>5b) k>5n>7c¢) k>4+8/n,n>8.

Ezxample 1.5. We consider the case ug(z,y) = z*+ kz?y? + y* and c(z,y) = 0, where
k is a real number. fo = M(uo) is given by fo(z,y) = 12(2kz* + 2ky* + (12 — k2)z2y?).
The linearized operator P, (1.9) is given by

(1.15) P =124202 + 129:263 + 2k(y?02 + £202) — 8zy0,0,.

The Toeplitz symbol is givén by

(1.16) ap(z,m) = 2k(n? +n3) — 8mnz + 12(2225 202 + 227 %3).

Clearly, Poincaréondition is not satisfied in this case. The (A.1) is equivalent to
(L17)  k—dmma+6(njt® +n3t™%) #0  VteC, [t|=1VpeR?, |n =1

‘Suppose that 7, = 1. It follows from || = 1 that 5, = 5, = 1/+/2. Hence (1.17) implies
that k ¢ [—4,8]. On the other hand, if 7; # 7, we have that 2i Im (2t 4+ n3t~2) =
(n3 —n3)(t* — t~2). This quantity vanishes only if #2 = +1. Because k is real (1.17) is
verified if £ # £1. On the other hand, if 2 = 41, (1.16) is written in k # 4,72 + 6,
which is equivalent to k ¢ [-6,—4] and k ¢ [6,8] since 0 < 717, < 1/2. Therefore
condition (A.1) is equivalent to k < —6 or k > 8. _

In order to see (A.2) we take 7, = 0, 7o = 1. Then it follows that op(2,7) = k+6t2.
Hence (A.2) is equivalent to k > 6 or k < —6. Therefore, the conditions (A.1) and
(A.2) are equivalent to k < —6 or k > 8. If the condition holds and if the degree of the
perturbation g(z,y) is sufficiently large, then (1.8) has a solution by Theorem 1.1.
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Let us see how the type of our Monge-Ampere equation changes in this case. It is
easy to see that if k£ > 8 the zero set of fo, fo(z,y) = O consists of four lines in R? which
intersect at the origin. It follows that f; changes its sign if one crosses one of these lines.
This implies that the equation is mixed, hyperbolic - elliptic in some neighborhood of
the origin. On the other hand, if £ < —6 we see that = y = 0 is the only zero of fj
in R2. Hence the linearized operator M, and (1.9) may be degenerate hyperbolic at
the origin. Note that without a Poincaré condition, the equation may be of degenerate
mixed type at the origin.

Exzample 1.6. We consider uo(z,y) = 2* + bz?y?, c(zx,y) = czy, where b > 6 and ¢ is a
constant chosen later. By the same argument as above the linearized operator is given

by
(1.18) 2bx%02 + 2(62% + byz)afl + (¢ — 8b)zyd,0,.

We note that in this case the equation is degenerate elliptic operator which degenerates
on the line z = 0. The Toeplitz symbol is given by op(z,n) = 2b + 127222252 + (c —
8b)m1m2. The condition (A.1) is given by

(1.19) 2o+ 12032 + (c — 8b)mm2 #0, Vi, |tl=1, VpeRE, |n| =1

The condition holds if 77; = 0 or t? is not real. Hence we may restrict ourselves to the
case t = +1. Because b > 6 and 0 < m7m3 < 1/2 it follows that (1.19) is satisfied if
¢ — 8b is sufficiently large positive number. On the other hand, the condition (A.2) for
m = 0,72 = 1 is trivially satisfied by definition. By Toeplitz operator method we can
show the Fredholmness of the linearized operator P on the set of analytic functions.
Moreover, it follows from Theorem 1.1 that (1.8) has a solution if the order of g is
sufficiently large.

The proof of these results will be published elsewhere.
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