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Abstract. We present a sufficient condition for the convergence of all formal power series solutions
of nonlinear equations whose linear part does not necessarily $\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{g}r$ a so-called Poincar..\’e condition.
The condition is expressed in terms of a Riemann-Hilbert factorization condition. As an application,
we shall show the solvability of Monge-Amp\‘ere equations in case it changes its type.

$0$. Introduction
In 1974, Kashiwara-Kawai-Sj\"ostrand showed the convergence of $\mathrm{a}\mathrm{U}$ formal power

series solutions of the folowing linear partial differential equations of regular singular
type

$P \equiv\sum_{m|\alpha|=|\beta|=}a\alpha\beta(X)X^{\alpha}(\partial/\partial x)^{\beta}=f(_{X})$
,

where $m$ is an integer and $a_{\alpha\beta}(x)$ and $f(x)$ are analytic in some neighborhood of the
origin of $x=$ $(x_{1}, \ldots , x_{n})\in \mathrm{C}^{n}$ . They gave a sufficient condition for the convergence
of all formal power series solutions, a certain ellipticity condition of the equation. (cf.
(0.2) in [5] $)$ . Their condition contains, as a special case, a so-called Poincar\’e condition.
Concerning this, in the preceeding papers [7] and [8], we gave a necessary and sufficient
condition for the convergence of all formal solutions of linear irregular singular type
equations with two independent variables.

In the case of nonlinear equations there are corresponding counterparts under the
Poincar\’e condition. (cf. [4]). Nevertheless, little results are known without a Poincar\’e
condition. In the actual applications one often encounters equations without a Poincar\’e
condition. For example, let us consider Monge-Amp\‘ere equations $M(u)=f$ . Let $u_{0}$ and
$f_{0^{\mathrm{S}\mathrm{a}\mathrm{t}}}\mathrm{i}\mathrm{s}\mathfrak{h}\ulcorner$ that $M(u_{0})=f_{0}$ . We want to find a solution of the equation $M(u)=f_{0}+g$ for
analytic $g$ with order greater than that of $f_{0}$ . Here the order of a fornal power series is
defined as the smallest degree of its constituent monomials, that is, the smallest integer
$k$ such that $\partial_{x}^{\alpha}f_{0}(\mathrm{o})\neq 0$ for some $|\alpha|=k$ and $\partial_{x}^{\beta}f_{0}(\mathrm{o})=0$ for all $|\beta|\leq k-1$ . A
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curvature function $f_{0}$ may vanish or change its sign near the origin. It follows that the
equation may be either degenerate elliptic or degenerate hyperbolic or even mixed type
at $u=u_{0}$ . We note that the Poincar\’e condition is not satisfied in general. (cf. Example
1.5 which follows.)

In view of this, we shall consider a certain class of nonlinear equations including
Monge-Amp\‘ere equations without assuming a Poincar\’e condition. As we have seen in
the above example, the type of the equations may change at the origin. For such opera-
tors, even a Redholm solvabihty in a formal power series are open questions in general.
Moreover, the inverse of such a operator, if exists, often has loss of derivatives. If this
happens for linearized operators of our nonlinear equations, it causes the divergence of
formal solutions.

In order to cope with these problems, we employ the method of Riemann-Hilbert
factorization and a rapidly convergent iteration method. The former method enables
us to obtain a sufficiently good estimate for the linearized operators which are either
degenerate elliptic, degenerate hyperbolic or mixed type. The latter one ensures us to
show the convergence of formal solutions in case there are loss of derivatives in the
linearized equations.

1. Notations and results

1.1. Statement of results. Let $x=(X_{1}, x_{2})\in \mathrm{R}^{2}$ and let $M$ be a nonlinear operator
of Monge-Amp\‘ere type

(1.1) $M(u):= \sum_{\nu,\mu=0|\alpha|\text{ノ}^{}m}\sum_{==I,,|\beta|\mu}a\alpha\beta(\partial\alpha)(\partial\beta u)u+=|\sum_{|\alpha|\beta|\leq m}A\alpha\beta(x)\partial^{\alpha}(x\beta u)$ ,

where $a_{\alpha\beta}\in \mathrm{C},$ $m\geq 1$ is an integer, $A_{\alpha\beta}(x)$ is analytic at the origin, and where
$\partial^{\alpha}=(\partial/\partial x_{1})^{\alpha}1(\partial/\partial x_{2})^{\alpha}2,$ $\alpha=(\alpha_{1},\alpha_{2})$ and so on.

Let $u_{0}(x)$ be a polynomial such that $\partial^{\alpha}u_{0}(0)=0$ for all multiindices $\alpha,$ $|\alpha|<2m$ . We
set $f_{0}(x)=M(u_{0})$ . For $g$ analytic at the origin such that $\partial^{\alpha}g(\mathrm{O})=0$ for all $\alpha,$ $|\alpha|\leq 2m$

we are interested in the convergence of $\mathrm{a}\mathrm{U}$ formal power $\dot{\mathrm{s}}$eries solutions of the equation

(1.2) $M(u_{0}+w)=f_{0}(x)+g(x)$ .

Let $M_{u_{0}}$ be the linearized operator of $M$ at $u=u_{0}$ ;
(1.3)

$M_{u_{\mathrm{O}}}v:= \sum_{\nu,\mu=0|=}^{m}\sum_{|\alpha\nu,|\beta|=\mu}^{\cdot}a_{\alpha}\beta((\partial\alpha u_{0})(\partial^{\beta}v)+(\partial^{\alpha}v)(\partial^{\beta}u0))+\sum_{|\alpha|=|\beta|\leq m}A_{\alpha\beta}(X)\partial\alpha(x^{\rho_{u)}}$ .

Let $\tilde{u}_{0}$ be the homogeneous part of degree $2m$ of $u_{0}$ . Let us define the operator $P$ by

(1.4)
$P \equiv P(X,..\partial):=]\alpha||\sum_{=\beta 1=m}a\alpha\beta(\partial^{\alpha}\tilde{u}0\partial\beta\alpha)+\partial^{\beta}\tilde{u}_{0}\partial+\sum A|\alpha|=|\beta|=m\alpha\beta(0)\partial^{\alpha}(x^{\beta}u)$

.

We denote by $p_{m}(x,\xi)$ the principal symbol of $P$, where $\xi=(\xi_{1},\xi_{2})$ is the covariable of
$x$ .
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We define the two dimensional torus $\mathrm{T}^{2}$ by $\mathrm{T}^{2}:=\{z=(z_{1}, z_{2})\in \mathrm{C}^{2};|z_{1}|=1,$ $|z_{2}|=$

$1\}$ and we set $\mathrm{R}_{+}^{2}=\{(\eta_{1},rn)\in \mathrm{R}^{2};\eta_{1}\geq 0,\eta_{2}\geq 0\}$ . Then the Toeplitz $\mathrm{s}_{\mathfrak{M}}\mathrm{b}\mathrm{o}1\sigma_{u\mathrm{o}}(z,\eta)$ ,
$(z\in \mathrm{T}^{2}, \eta\in \mathrm{R}_{+}^{2})$ at $u_{0}$ is defined by

(1.5) $\sigma_{u_{0}}(z,\eta)=p_{m}(z1\eta 1, z2\eta 2;z^{-},z-)1211$ ,

namely, we set $x=(z_{1}\eta 1,Z2\eta 2)$ and $\xi=(z_{1}^{-11},Z_{2}-)$ in $p_{m}(x,\xi)$ .
We assume the following conditions

(A.1) $\sigma_{u_{\mathrm{O}}}(Z,\eta)\neq 0$ for all $z\in \mathrm{T}^{2},$ $\eta\in \mathrm{R}_{+}^{2}$ .

(A.2) $\mathrm{i}\mathrm{n}\mathrm{d}_{1}\sigma_{\mathrm{u}\mathrm{o}}=\mathrm{i}\mathrm{n}\mathrm{d}_{2}\sigma_{u0}=0$.

Here $\mathrm{i}\mathrm{n}\mathrm{d}_{1}\sigma_{u\mathrm{o}}$ (resp. $\mathrm{i}\mathrm{n}\mathrm{d}_{2}\sigma_{u0}$ ) is defined by

(1.6) $\mathrm{i}\mathrm{n}\mathrm{d}_{1}\sigma_{u0}=\frac{1}{2\pi i}\oint_{|\zeta_{1}|=1}dz1\log\sigma(u\mathrm{o}\zeta 1, z_{2,\xi})$.

Remark. The conditions (A.1) and (A.2) are $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ as the Riemann-Hilbert factorization
condition for $\sigma_{u_{0}}(Z,\eta)$ .
Theorem 1.1. Suppose (A.1) and $(A.\mathit{2})$ . Then there exist an integer $N\geq 2m$ depend-
ing only on $u_{0}$ such that, for any analytic $g$ such that $\partial_{x}^{\alpha}g(0)=0$ for all $|\alpha|<N$ the
equation (1.2) has a unique analytic solution $w$ in some neighborhood of the origin such
that $\partial_{x}^{\alpha}w(0)=0$ for all $|\alpha|<N$ .

The following theorem gives a generalization of K-K-S in [5] to Monge-Amp\‘ere type
equations

Corollary 1.2. Suppose (A.1) and $(A.\mathit{2})$ . Then, for every $g$ being analytic at the oriin
such that $\partial_{x}^{\alpha}g(0)=0$ for $all|\alpha|<2m$ all formal solutions of the equation (1.2) converge
in some neighborhood of the $\mathit{0}\dot{n}_{\mathit{9}^{in}}$.

Remark. We note that $P$ in (1.4) maps every set of homogeneous polynomials to
itself. If $P$ is injective on every set of homogeneous polynonials degree $k\geq N$ , the
integer $k_{0}$ in Theorem 1.1 satisfies $k_{0}\leq N$ .

Example 1.3. In the following, we shall give three examples which illustrate our
results in case $M$ is a $\mathrm{M}_{\mathrm{o}\mathrm{n}\mathrm{g}\triangleright}\mathrm{A}\mathrm{m}\mathrm{p}\grave{\mathrm{e}}\mathrm{r}\mathrm{e}$ equation. For the sake of simplicity, we write
$x_{1}=x,$ $x_{2}=y$ . Let us consider the equation

(1.7) $M(u):=u_{xx}u_{yy}-u_{xy}^{2}+c(x,y)u_{xy}=f(x,y)$ ,

where $c(x,y)$ and $f(x, y)$ are given functions and we abbreviate $u_{xx}=\partial_{x}^{2}u,$ $uyy=\partial_{y}^{2}u$ ,
and so on. In what follows we assume that $u_{0}(x, y)$ is a homogeneous polynomial of
degree 4 and $c(x,y)$ is a homogeneous polynomial of degree 2. We define $f_{0}(X, y)$ by
$f_{0}(x,y)=M(u_{0})$ .
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. For $g$ analytic in some neighborhood of the origin such that $\partial^{\alpha}g(00):=0$ for any
$|\alpha|\leq 4$ we are interested in the solvabihty of the problem

(1.8) $M(u_{0}+w)=f0(_{X},y)+g(x,y)$ .

Let $P=M_{u_{0}}$ be the linearized operator of $M$ at $u=u_{0}$ .
(1.9) $P:=(u_{0})yyx+\partial 2(u0)_{xx}\partial^{2}+(yC(x,y)-2(u0)_{x}y)\partial_{xy}\partial$ .

We first find a formal power series solution $u$ of (1.8) in the form $u=u_{0}+v$ ,
$v= \sum_{j=5}^{\infty}v_{j},$ $k=degu_{0}$ , where $v_{j}$ are homogeneous polynomials of degree $j$ . For
simplicity, let us assume that $c(x)\equiv 0$ . Note that $f_{0}$ is homogeneous of degree 4 and
the Taylor expansion of $g$ has powers greater than 5. Let $g= \sum_{j=5}^{\infty}.gj(X, y)$ be the
expansion of $g$ with $g_{j}$ being homogeneous polynomial of degree $J$ . By substituting
the expansions of $u$ and $g$ into (1.8) we see, from the condition $f_{0}=M(u_{0})$ that the
homogeneous part of degree 4 vanishes. Hence, by.comparing the homogeneous part of
degree 5 we have the relation

(1.10) $Pv_{5}=g_{5}$ .

Similarly, by comparing the tems of homogeneous degree $\nu(\nu\geq 5)$ we have

(1.11)
$Pv_{\nu}=g_{\nu}..+ \sum_{>i+j=\nu+4,i>4,j4}((v_{i})_{x}x(v_{j})_{yy}+(v_{i})_{x}y(vj)xy)$

.

We note that in the second term of the right-hand side of (1.11) there appears no $v_{\nu}$ .
Hence we can determine $v_{\nu}$ formally if $P$ is surjective.

If we denote the set of homogeneous polynomials of degree $n$ by $S_{n},$ $P$ maps $S_{n}$ into
$S_{n}$ . Hence the surjectivity of $P$ on $S_{n}$ follows from the injectivity of $P$ on $S_{n}$ . The
integer $k_{0}$ in Theorem 1.1 could be the smallest integer $m$ such that $P:S_{n}arrow S_{n}$ is
injective for $n\geq m$ . The convergence of all formal solutions and the solvability follows
if we assume (A.1) and (A.2). For more detail, we consider three cases.

Example 1.4. Let $u_{0}(x, y)=x^{2}y^{2},$ $c(X,y)=kxy$ and $f_{0}(X,y)=4(k-3)x^{2}y2$ in (1.7),
where $k$ is a real constanty. Then, the linearized operator $P,$ $(1.9)$ is given by

$P=2x^{2}\partial^{2}x+2y^{2}\partial_{y}^{2}+(k-8)xy\partial_{x}\partial_{y}$ .

The Toeplitz symbol is given by

(1.12) $\sigma_{u_{0}}(Z,\eta)=2(\eta_{1}^{2}+\eta_{2}^{2})+(k-8)\eta 1\eta 2$,

and the condition (A.1) is equivalent to

(1.13) $2+(k-8)\eta 1\eta 2\neq 0$ $\forall\eta\in \mathrm{R}_{+}^{2},$ $|\eta|=1$ .
Because $0\leq\eta_{1}\eta_{2}\leq 1/2$, it follows that (A.1) is equivalent to $k>4$ . It is not difficult
to see that (A.2) is automatically satisfied under this $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}’$ . $\mathrm{C}\mathrm{l}\mathrm{e}\mathrm{a}_{\mathrm{f}}1\mathrm{y},$ $P$ satisfies a
Poincar\’e condition if (A.1) and (A.2) are satisfied.
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Now we study the type of our Monge-Amp\‘ere operator at $u=u_{0}$ . By simple com-
putations of the characteristic polynomiak, we see that the $\mathrm{M}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{e}- \mathrm{A}\mathrm{m}\mathrm{f}\grave{\mathrm{f}}\mathrm{r}\mathrm{e}$operator at
$u=u_{0}$ is an elliptic operator outside the set $xy=0$ if and only if $4<k<12$ . Note
that if $k>12$ the equation is degenerate hyperbolic. In any case, the degeneracy occurs
on the line $x=0$ or $y=0$ . Hence the type does not change at the origin. We will see
in the folowing example that the type may change at the origin in general if Poincar\’e
condition is not satisfied.

Next we want to estimate the integer $k_{0}$ in Theorem 1.1. For this purpose, we
study the injectivity $P$ on the sets of homogeneous polynomials when $k>4$ . Because
$P$ preserves homogeneous polynomials we may consider $P$ on the set of homogeneous
polynomials of degree greater than 5. By definition a mononial $x^{\nu}y^{\mu}(\nu+\mu\geq 5)$ is in
the kernel of $P$ if and only if

(1.14) $2\nu(\nu-1)+2\mu(\mu-1)+(k-8)\nu\mu\neq 0$.

$\mu=2.\mathrm{I}\mathrm{f}\nu=\mu=3\mathrm{i}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}k>4,$$\mathrm{w}\tilde{\mathrm{e}}\mathrm{e}\mathrm{a}\mathrm{S}\mathrm{i}\mathrm{l}\mathrm{y}\mathrm{S}\mathrm{e}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}_{\mathrm{h}}\mathrm{t}(\mathrm{o}\mathrm{u}\mathrm{o}\mathrm{W}\mathrm{s}1.1\mathrm{m}(1.14)\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\neq 4)\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}_{k}1\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}k\neq \mathrm{l}6/3.\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\Gamma \mathrm{l}\mathrm{y},\mathrm{i}\mathrm{f}\nu=3,\mu=416/3,9/2\mathrm{i}\mathrm{f}\nu=2_{\mathrm{o}\mathrm{r}}\mathrm{o}\mathrm{r}$

$\nu=4,$ $\mu=3$ we get $k\neq 5$ . More generally, if $\nu+\mu=n(n\geq 5)$ the condition (1.14) is
equivalent to $k\neq 8-2(n^{2}-n)/(l\text{ノ}\mu)\leq 4+8/n$. The equality holds when $\nu=\mu=n/2$ .

Therefore, the injectivity of $P$ on $S_{n}$ holds in each of the following cases: a) $k>16/3$ ,
$n\geq 5,$ $\mathrm{b})k>5,$ $n\geq 7,$ $\mathrm{C})k>4+8/n,$ $n\geq 8$ .

Example 1.5. We consider the case $u_{0}(x,y)=x^{4}+kx^{2}y^{2}+y^{4}$ and $c(x, y)\equiv 0$ , where
$k$ is a real number. $f_{0}=M(u_{0})$ is given by $f_{0}(x,y)=12(2kx^{4}+2ky^{4}+(12-k^{2})Xy^{2})2$ .

The linearized operator $P,$ $(1.9)$ is given by

(1.15) $P=12y^{2}\partial_{x}^{2}+12x^{2}\partial_{y}2+2k(y^{2}\partial_{y}^{2}+x^{2}o_{x}^{2})-8Xy\partial x\partial_{y}$.

The Toeplitz symbol is given by

(1.16) $\sigma_{P}(z,\eta)=2k(\eta_{1}^{2}+\eta_{2}^{2})-8\eta_{1\eta_{2}}+12(z_{1^{Z}2}^{2-22}\eta 1+z_{2}^{2-}z_{1}\eta_{2}^{2})2$ .

Clearly, Poincar\v{c}ondition is not satisfied in this case. The (A.1) is equivalent to

(1.17) $k-4\eta_{1}\eta_{2}+6(\eta_{1}^{2}t^{2}+\eta_{2}^{2}t^{-2})\neq 0$ $\forall t\in \mathrm{C},$ $|t|=1\forall\eta\in \mathrm{R}^{2}+’|\eta|=1$ .

Suppose that $\eta_{1}=\eta_{2}$ . It follows ffom $|\eta|=1$ that $\eta_{1}=\eta_{2}=1/\sqrt{2}$. Hence (1.17) imphes
that $k\not\in[-4,8]$ . On the other hand, if $\eta_{1}\neq\eta_{2}$ we have that $2iIm(\eta_{1}^{2}t^{2}+\eta_{2}^{2}t^{-2})=$

$(\eta_{1}^{2}-\eta_{2}2)(t^{2}-t-2)$ . This quantity vanishes only if $t^{2}=\pm 1$ . Because $k$ is real (1.17) is
verified if $t^{2}\neq\pm 1$ . On the other hand, if $t^{2}=\pm 1,$ $(1.16)$ is written in $k\neq 4\eta_{1}\eta_{2}\pm 6$ ,
which is equivalent to $k\not\in[-6, -4]$ and $k\not\in[6,8]$ since $0\leq\eta_{1}\eta_{2}\leq 1/2$. Therefore
condition (A.1) is equivalent to $k<-6$ or $k>8$ .

In order to see (A.2) we take $\eta_{1}=0,$ $\eta_{2}=1$ . Then it follows that $\sigma_{P}(z, \eta)=k+6t^{-2}$ .
Hence (A.2) is equivalent to $k>6$ or $k<-6$ . Therefore, the conditions (A.1) and
(A.2) are equivalent to $k<-6$ or $k>8$ . If the condition holds and if the degree of the
perturbation $g(x,y)$ is sufficiently large, then (1.8) has a solution by Theorem 1.1.
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Let us see how the type of our Monge-Amp\‘ere equation changes in this case. It is
easy to see that if $k>8$ the zero set of $f_{0},$ $f_{0}(x,y)=0$ consists of four lines in $\mathrm{R}^{2}$ which
intersect at the origin. It folows that $f_{0}$ changes its sign if one crosses one of these lines.
This implies that the equation is mixed, hyperbolic-elliptic in some neighborhood of
the origin. On the other hand, if $k<-6$ we see that $x=y=0$ is the only zero of $f_{0}$

in $\mathrm{R}^{2}$ . Hence the linearized operator $M_{u_{0}}$ and (1.9) may be degenerate hyperbolic at
the origin. Note that without a Poincar\’e condition, the equation may be of degenerate
mixed type at the origin. .

Example 1.6. We consider $u\mathrm{o}(x, y)=x^{4}+bx^{2}y^{2},$ $c(x, y)=cxy$ , where $b>6$ and $c$ is a
constant chosen later. By the same argument as above the linearized operator is given
by

(1.18) $2bx^{22}\partial_{x}+2(6x^{2}+by^{2})\partial_{y}^{2}+(c-8b)Xy\partial_{x}\partial_{y}$.

We note that in this case the equation is degenerate elliptic operator which degenerates
on the line $x=0$ . The Toeplitz symbol is given by $\sigma_{P}(z,\eta)=2b+12\eta_{1}^{2}z_{12}2_{Z}-2+(c-$

$8b)\eta_{1}\eta 2$ . The condition (A.1) is given by

(1.19) $2b+12\eta_{1}^{2}t^{2}+(c-8b)\eta 1\eta 2\neq 0$ , $\forall t,$ $|t|=1,$ $\forall\eta\in \mathrm{R}_{+}^{2},$ $|\eta|=1$ .

The condition holds if $\eta_{1}=0$ or $t^{2}$ is not real. Hence we may restrict ourselves to the
case $t=\pm 1$ . Because $b>6$ and $0\leq\eta_{1}\eta_{2}\leq 1/2$ it folows that (1.19) is satisfied if
$c-8b$ is sufficiently large positive number. On the other hand, the condition (A.2) for
$\eta_{1}=0,\eta_{2}=1$ is trivialy satisfied by definition. By Toeplitz operator method we can
show the bedhohmess of the linearized operator $P$ on the set of analytic functions.
Moreover, it folows from Theorem 1.1 that (1.8) has a solution if the order of $g$ is
sufficiently large.

The proof of these results wil be published elsewhere.
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