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EXPONENTIAL LIFTING AND HECKE CORRESPONDENCE

VALERI GRITSENKO

ABSTRACT. We give a review of some recent results related with Siegel modular forms with
respect to the paramodular groups: Exponential Lifting (the infinite product construction),
Symmetrisation, multiplicative Hecke correspondence. We give many new examples of mod-
ular forms and new constructions of some classical Siegel modular forms (f.e. of the Igusa
modular forms of weight 35).

§1. OPERATORS OF SYMETRIZATION

In what follows we shall consider Siegel modular forms with respect to the paramodular
group I'y which is, by definition, an integral symplectic group of the skew-symmetric form
with elementary divisors (1,%). It can be realized as the following subgroup of Sp4(Q)

* I % *
* ok -1
Ty = N € Sp4(Q)| all * are integral

The quotient
Ay =T \ Hp

is isomorphic to the coarse moduli space of Abelian surfaces with a polarization of type
(1,t) (see f.e. [Ig2]).

By 9 (T'¢, x) (resp. Mk (T¢, x)) we denote the space of all modular (resp. cusp) forms
of weight k with respect to the group I'; with a character of finite order y : I'; — C*.

In [G2] we studied Hecke operators which transform modular forms with respect to I';
into modular forms with respect to I',

Symyp: Mu(Ty) = M(Typ),  Symy,:Fes Y FlM.
» Me(TiNTyp)\Tep

We call this operator the operator of p-symmetrisation. It can be represented as an action
of an element from the Hecke ring H(I'eo,;) of the maximal parabolic subgroup oo + CTIy
which consists of elements fixing an isotropic line.

To see this, we take a system of representatives

b
(e NTep) \ Tep = { Jip, V(@), bmod p}
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where

o 010 1000

0 oot!? _{o10a
Jt_(—101 o)’. V(a)_(omo)'

0 —t0 0 ‘ 0001

It is valid JtJ;%, = diag(1,p,1,p" ), thus for any F' € 9 (I';) we have

Sym, ,(F) = Fl(Ap + Y V(- )

bmodp

The last operator is defined by the following element in the Hecke ring of the maximal
parabolic subgroup I', ; of I';.

Sym, =Ap+V;, € H(lo ), where V,;,= Z Ceo tV( )

bmodp

and A, =T diag(p, 1, p~1,1). Using this description of the p-symmetrisation as a Hecke
operator in the parabolic extension of the Hecke ring (i.e., in the Hecke ring of a maximal
parabolic subgroup, see [G2], [G6]-[G7], [G10] for the theory of such rings) we proved

Theorem of Injectivity. (see [G2]) The bpemtor of p-symmetrisation is injective if
(t,p) =1.

This theorem has the following application in algebraic geometry.

Corollary 2. Let :4; be a smooth compactification of the moduli space of (1,t)-polarized
Abelian surfaces, then for arbitrary divisor d of t the operator of symmetrisation deﬁnes
an embedding of the spaces of the canonical dzﬁerentzal forms

Sym : H*0(Ag) — H>(A,).
In particular the inequality between the Hodge numbers of Siegel threefolds is valid
h3,0(2';) > h3,0(‘zl;)-

We recall that an estimation from bellow for the geometrlc genus h30(A;) of the moduli
space A; was obtained in [G1] and [G4]:

h*0(Ay) > dim J§4P

where J3';°" is the space of Jacobi cusp forms of weight 3 and index ¢. The elements from

H3 O(At) are constructed using an arithmetic lifting, which is a generahzatlon of the Maass
lifting. We recall now the corresponding construction.
Let
4(r,2) € I
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be a Jacobi cusp form of weight k£ and index ¢{. By definition (Z(Z) = ¢(7, z) exp (2mitw)

whereZ=(T z)EIHIg. Let
z W
a 0 b O
0 m 0 O
T_(m) = ; Tolo 0 a4 o €HTw), (1.2)
bmodd 0 0 01

where I'oo C Sps(Z) is the maximal parabolic subgroup of parabolic rank one, be an
element of the Hecke ring of the parabolic subgroup I'o. Then we have the following
result

Arithmetic Lifting Theorem. (see [G1], [G4]-[G5]). Let ¢ be as above. Then
Lift($)(2) = Y m*™* (¢ s T-(m))(Z) € M(Ty) (1.3)
m=1 .

is a cusp form of weight k with respect to the paramodular group T';.

The Rankin-Selberg convolution related with these modular forms is equal to the Spin
(Andrianov) L-function of Siegel modular forms. In this way one can get a very short
and clear construction of analytic continuation (together with the functional equation) of
Spin- L-function (see [G3]).

The arithmetic lifting commutes with operator of p-symmetrisation

Sym, ,(Lift(¢)) = p°~* Lift(¢x T_(p)). | (1.4)

(see Satz 2.10 and Satz 3.1 in [G2]).
Let us define the multiplicative analogue of the p-symmetrisation.

Definition of Multiplicative Symmetrisation. Let F' € 91 (I, x) be a modular form
of weight £k € Z/2 with respect to the paramodular group I'; with a character (or a
multiplier system) x : I'; — C*. Then for a prime p we define the operator of multiplicative
symmetrisation ' ’
Ms, : F > p~* %(J;) I Fl (1.5)
M;€T+NT4p\T'ep

(The additional constant p~*%/(J;) makes formulae simpler.)

It is clear that the result of the multiplicative symmetrisation is a modular form of
weight k(p + 1) -
Ms,(F) € Mi(pi1) (Tep, XP)

where x(P) is a character of I'y,. Moreover if the modular form F is zero along a Humbert
surface H; C A; of discriminant D, then Ms,(F) is zero along Ms}(H;) which is a sum
(with some multiplicities) of Humbert surfaces with discriminant D and p?D in Ay, (for
the definition of Humber surfaces see the next section). We remark that the operators of
symmetrisation and multiplicative symmetrisation were used (in particular case p =2) in
the paper of Freitag [F] in 1967. '
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§2. EXPONENTIAL LIFTING

In this section we describe a construction which gives us modular forms with divisor
equals to a union of Humbert surfaces. For our purpose it is more convenient to consider
Humbert surfaces as divisors of a double cover of the moduli space of (1,t)-polarized
Abelian surfaces A;. To define this covering we consider a double normal extension of the
paramodular group I';

0t00
+ _ _ 1 [1000
Iy =T UV, ‘4_'JZ<0001)'
: 00%0

The double quotient

of A; can be interpreted as a moduli space of lattice-polarized K3 surfaces for arbitrary ¢
or as the moduli space of Kummer surfaces of (1, p)-polarized Abelian surfaces for a prime
t = p (see [GH, Theorem 1.5]).

Any Humbert surface in A;" of discriminant D can be represented in the form

HE®) == U g({Ze ]HI2|aT + bz + tw = 0}))
gerf

where a,b € Z, D = b? —4ta, b mod 2¢ and nf : Hy — A (see [vdG], [GH]). Remark that
H{ (b) depends only on &b mod 2t.
The datum for the exponential lifting is a nearly-holomorphic Jacobi form

os(r2) = Y fln,Dg*rt e Jpb (2.1)

n,l€Z

of weight 0 and index t. Nearly holomorphic means that there exist a number m such that
A™(1)¢(7, z) is a weak Jacobi form. If we chose the minimal non-negative m with this
property then n > —m in the Fourier expansion (2.1). We recall the notations

q = exp (2wit), r=exp(2miz), s=exp(2miw), Z= (; :) € H,

and $O,t(z ) = ¢o,+(T, ) exp (2mitw). Let

() =D fo,nr! (2.2)

leZ

be the ¢%-part of ¢ (7, z). The Fourier coefficient f(n,!) of ¢¢,; depends only on the norm
4tn — 12 of (n,1) and | mod 2t. From the definition of nearly holomorphic forms, it follows
that the norm of indices of non-zero Fourier coefficients are bounded from bellow. One
can prove the following theorem which gives us a construction of Siegel modular forms as
infinity products (compare with Borcherds construction in [B]).
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Exponential Lifting Theorem. (see [GN6], [GN1]) Assume that the Fourier coefficients
of Jacobi form ¢o,¢ from (2.1) are integral. Then the product

Exp-Lift(do,)(Z) = Bs(Z) = ¢*rBsC [ (1 - qrrlstm)ftomd) (2.3)
n,l,meZ
(n,l,m)>0

where

1 1 -1
A=5D f0.0, B=353 /0., C=> 10,
1 >0 l

and (n,l,m) > 0 means that if m > 0, then | and n are arbitrary integers, if m = 0,
thenn > 0 andl € Z orl < 0 if n = m = 0, defines a meromorphic modular form
of weight I_(g_’Q)_ with respect to I'j with a character (or a multiplier system if the weight
is half-integral) induced by v2*4 x v3P. All divisors of Exp-Lift(¢o:)(Z) on AS are the
Humbert modular surfaces Hp(b) of discriminant D = b? — 4ta with multiplicities

mp,b = Zf(nza,nb).

n>0

Moreover

By(Ve(2)) = (-1)PBy(2)  with D= oy(~n)f(n,1)
n<0
leZ

where o1(n) =, d.

The infinite product expansion of modular form Az(Z). (see [GN1]-[GN2]). We
recall that there exists the unique, up to a constant, weak Jacobi form of weight zero and
index one v

poa(r,2) = 22103 _ S p ggny

24
n(r) o

= (r+10+7"Y) +q(10r~2 — 647 + 108 — 64r + 10r2) + ¢2(...)

where ¢ ; is the unique Jacobi cusp form of weight 12 and index 1 with integral coprime
coefficients. There are several formulae for Fourier coefficients of this Jacobi form. In
[EZ] one can find a formula for Fourier coefficients of ¢12; it in terms of Cohen’s numbers
(values of special L-functions at integral points)

¢12,‘1 (T, Z) = 12_2(E2(T)E4,1 (T, Z) — 'Es (T)Eﬁ,l (T, Z)) .

For a very convenient formula in terms of Hecke operators see (3.7)—(3.9) below. Let us
consider the product of even theta-constants

A5(Z)=27° H ©0,b(Z) € N5(Sps(Z), x2)
a,b
tab=0 (mod2)
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which is a cusp form of weight 5 with non-trivial binary character of Sps(Z). The square
of As(Z) is the first Siegel cusp form of weight 10 (see [Ig1]). Using the exponential lifting
for the function ¢g,; we get the following result from [GN1]

2s(2)= (@) [ (—ar's™)" ™ € ty(T1x2) (2.4)
n,l,meZ
(n,l,m)>0

where f;(n, 1) are the Fourier coefficients of ¢o,1(7, 2).
The general explanation of the existence of such infinite product expansion is the fact the
modular form As defines a generalized Lorentzian Kac-Moody super-algebra (see [GN1]).

Siegel theta-constant. Let us consider the “most odd” even Siegel theta-constant

91,1.(Z)’= '12' Z exp (ﬂ'i (Z[i:ii] + 1y +l2)) = % Z (__4> (:73) qn2/8,,.nm/4sm2/8,

Iy la€Z | nmez \ "
where Z[M] = tMZM. One can prove that the function

.A1/2(<: j)) = 91,1(<2Tz Zj)) € M, /2(T4, Xs)

is a modular form of weight 1/2 with respect to the paramodular group I'y with a multiplier
system of order 8 (see [GN6]). The first non-zero Fourier-Jacobi coefficient of Ay g is the

Jacobi theta-series
n i 2 —4
I(r,2) = Z (—1)_21 exp (7rz4n T+ Tminz) = Z (E) qmz-/8 ,.m/Z’

n=1mod2 meZ

or, equivalently, _
3(r, 2) = =42 T =" ) - *r (A — ¢ (2.5)
v . n2>1 .

We can define a weak Jacobi form

9(r, 3z
¢0,4(7—7 Z) = ?(—(TL,—Z_)) = Z f4(n’ l)anl
n>0,l€Z
— 1 H (1 +qm—lr+q2m—2r2)(1 +qmr—1 +q2mr—2) H (1 _ qn,rS)(l _ qn,r—S)
m>1 n=1,2mod3
n>1
=r+1+r ) —qrt+rd—r+2—rt4r 3417 +43%(...) (2.6)

where all Fourier coefficients f4(n,l) of the weak Jacobi form are integral (in fact they
are Fourier coefficients of automorphic forms of weight —1/2). Thus according to Expo-
nential Lifting Theorem Exp-Lift(¢o4) is a modular form of weight 1/2 with respect to
the paramodular group I'} having irreducible Humbert modular surface H, as its divisor.
One can show that the quotient A;/2(Z )/Exp-Lift(¢o.4)(Z) is a holomorphic automorphic
function invariant with respect to I'}, thus it is a constant and we get the following infinite
product expansion of A /5(Z): :

1 —4 —4
5 Z (7{) (H)qn2/8,’_nm/2sm2/2 _ q1/8r1/231/2 H 1- anzs4m)f4(jm,z)'

n,meZ (n,l,m)>0
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Modular forms A;(Z) and Az(Z). Let us define two weak Jacobi forms of weight 0

-4)(12) 3m24n2 min
— R q 24 r 2
m )\ n)/

doa(r,2) = I T (3m—n)(

m ,ne€Z

= Z faln, D@t = (r+ 44771 +q(rT —8rF2 — ¥ 116) + 2(...) (2.7)
n>0,l€Z . ' '

(r*! means that we have two summands with ! and with rfl) and

oatr) = (22G2) = (525) = X ptere

n>0,1

9
é r1 (H(l + q"_lr)(l +an—1)(1 _ q2n—1,r,2)(1 _ an—lr—Q))
n>1 ’

=(r+24+r ) +q(—4rt3 —arT2 L 2rE L 4) 1 P(..) (2.8)

of index 2 and 3 respectively. Their Fourier coefficients satisfy the property: if 4tn—12 < 0
and f;(n,l) # 0, then 4tn — 2 = —1 and fi(n,l) = 1.

According to Exponential Lifting Theorem Exp-Lift(¢o,3) is a modular form of weight
1 with respect to I'3 with a character of order 6 and Exp-Lift(¢o 2) is a modular form of
weight 2 with respect to I'y with a character of order 4. One can calculate the Fourier
expansion of these modular forms. It turns out that (see [GN6])

—4\ /12 6\ ,
M@= Y (T)(M) > (;)qm"'”smﬂ
M>1 m>0,leZ al(n,l,m)
n,m=1mod6 )

4nm—312=M?
. % .;_ % 1—q" ! 3m fa(nm,l) mcusp F+
=ger2s ( qrTs ) € (3aX6)
n,l,meZ
(n,l,m)>0

where the character ¢ : I's — V/1 is induced by v x vy and

—4 —4
-y 3 G5 (e
N>1 m>0,leZ al(n,lm) “
n,m=1mod4
2mn—12=N? : .
—girdst [ (1-grte) Y e gt )
n,l,meZ
(n,l,m)>0

where x4 : I7 — {¥/1}. Moreover the divisor of these modular forms is the irreducible
Humbert surface H;

DIVA;—(Al(Z)) =H1, DIVA;}—(AQ(Z)) =H1.
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These modular forms are discriminant of the moduli space of special K3 surfaces (see
[GN3]). One can prove also that A% and A% are the cusp forms of the minimal weights with
respect to I's and I'; respectively. Using information about divisors of these modular forms
one can easy prove the rationality of the moduli space of Kummer surfaces A} =T} \ H,
associated with (1,2)- and (1,3)-polarized Abelian surfaces.

Similar to the arithmetic lifting and the p-symmetrisation (1.4), the exponential lifting
commutes with the multiplicative symmetrisation Ms,, (see (1.5)).

Theorem. Let ¢ € J&? be like in Exponential Lifting Theorem. Then for an arbitrary
prime p we have

Ms, (Ezp-Lift(¢o;)) = Ezp-Lift(¢o+|T—(p))-

Proof. We give a proof of this theorem to illustrate the methods we use and to clarify the

exponential lifting construction. : _‘
Firstly we use the following special representation of the exponential lifting. Let us
decompose the product of the exponential lifting in two factors

B¢(Z) — qATBSC H (1- anl)f(o,l) X H (1- anlstm)f(nm,l) (29)
(n,l,0)>0 n,l,meZ
m>0

and let us calculate the Fourier expansion of the logarithm of the second factor:

log( H (1_q r Stm)f(nm l)) _ Z f(nm l) Z qc"r el gemt

n,l,meZ n,l€Z ,m>0 e>1
m>0

b
— Z ( Z d_lf(gga ))qa bgte
a,b,c€Z dj(a,b,c)
c>0

Like in Arithmetic Lifting Theorem the last sum can be written as the action of the formal
Dirichlet series (a formal Hecke L-function of SL2(Z)) >°,.5, m~1T_(m) on the Jacobi

form ¢+ where T_(m) (see (1.2)) are Hecke elements from the Hecke ring of the parabolic
subgroup, Thus we obtain '

log( H Zm ¢0tlT—(m))(Z)

h,l,méZ m>1
m>0 )

This expansion shows us that the second factor in (2.9) is invariant with respect to the
action of the parabolic subgroup I', ; whenever the product converges.

It is easy to see that the first factor in (‘) 9) is equal to a product of Jacobi theta-series
and Dedekind eta—functlons

I(r, 1z eTl'ilzw F(0,0)
ArBsC H (1— l)f(O B — p(r)f©0) H( (r,12) > .

(n,1,0)>0 >0 n(T)
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The last identity explains the form of the factor ¢4r®s€ in the definition of the function
of the theorem. Thus we proved that

qArBsC H (1 — ¢*rlsm)f(nmd)

n,l,meZ
(n,l,m)>0
I(r, Lz erilfw FOD _
=n(r)f OO H(%——) exp (- Y m 1o T (m)(Z)) (2.10)
m2>1

>0

whenever the product converges. Thus By(Z) transforms like a 'y, ;-modular form of
weight ﬂg—@ with the >multiplier system of the theorem. It is useful to write down the
whole product By(Z) in terms of Hecke operators T_(m). We can get such expression
using the involution V;

Exp-Lift(¢o,:)(Z2) = By(Z) =

= g*rPsCexp (= Y m g0 T-(m)(Z)) exp (= Y m~H (@) + 4DIT- (m)|Ve(2)).
m>1 m>1 (2.11)

The functions ¢(O) =3, F(0,))r! and ¢(0)(Z) = >, f(0,1)r!st are not Jacobi forms, and
we fix the standard system of representatives in T"_(m) to define the corresponding formal
action. The exponent of the function (,75 ©) in (2.11) defines the subproduct over all (n, [, 0)

with n > 0 in (2.9). The exponent w1th the function ¢Ot’ which does not depend on T
and w, defines the finite subproduct over (0,1,0) with [ > 0. The representation (2.11)
shows us analogy between the exponential lifting and the an’chmetlc lifting of holomorphlc
Jacobi forms.

The formula for the multlphcatwe symmetrlsatmn (see (1.5))

Ms,(F)(2) = F(<pz pw>) II F ( Q:%>)éMk(p+l)(rtp7X(p)).‘

bmodp

shows that Ms, can be written as the action of Sym,, on the function under the exponent
in (2.11). Let us consider the product of the formal Dirichlet series > o _;, T (m)m™1
over the Hecke ring H(I'e ) with Sym, = A, + V. According to the definition of the
normalizing factor of Hecke operators in the case of weight zero, we can consider the Hecke
ring H(I'w,:) modulo its central element A(p) = I'e:(pFs). Le. for any X € H(I' 1)
the Hecke operators X and A(p)X are identical. We recall that A(p)A, = T_(p, p) where
T_(p, p) is the embedding of T'(p, p) = SL2(Z)(pE2)SL2(Z) € H(SL3(Z)) into the Hecke
ring H(Too,¢). Using the definition one can check that

pT—(m) if m=0mod p

T =
(m)Vey { VipT-(m) if m # 0 mod p.
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Thus
| <§;T' (m) m_1> (T-(p.p) + Vip)

= Z (T_(mp) + pT— (%)T_ (p, p)) m~! + Z Vipl- (m)m“1

m2>1 (m,p)=1

T ()Y T m T 4V Y Tom)m™, (212)

m2>1 (m,p):l

since T(m)T(p) = T(mp) + pT(p,p)T (%) in H(SL2(Z)).
Let us consider the representation (2.11) for the exponential lifting of ¢o . According
to (2.12) we have the following identity for the main factor in (2.11)

exp (— > (Bo.lT- (m))ISymp(Z)> = exp (—

m2>1

S (FoulT-(P)IT- (m)(Z>) ,

m>1
since V;, defines zero operator on the space of Jacobi functions of weight 0 and index :

($04|Ve)(2) = Box(2) - Y exp(%"?):o.

bmodp

Let us consider the second exponent in (2.11). We have the formal identity

Vt‘(Ap-+ 3 V) =T @i (V5B

bmodp

where we consider T (p) as the formal sum of the left cosets fixed in (1.2) and V; is the
involution defined in the beginning of this section. The second exponent in (2.11) is not
[ t-invariant, but it is invariant with respect to the minimal parabolic subgroup I'gg
* which is the intersection of I ; With the subgroup of the upper-triangular matrices in I';.
This parabolic subgroup is the semidirect product of the subgroup of all upper-triangular
matrices in SL2(Z) with the Heisenberg group. Thus we still can consider 7 (m) as an
element of the Hecke ring H(I'gp) of this minimal parabolic subgroup if we take 7_(m) in
the standard form (1.2). (See [G9], where Hecke rings of parabolic subgroups of this type
were considered for GL,, over a local field.) Thus for the second exponent in (2.11) we get

exp (— S m (@, + 4R IT- (m) VilSymm, (Z))

m2>1

= exp (= X @ + BT DIT-(m)IVe (2) ).

m>1

This finishes the proof.
O

Many examples of using the multiplicative symmetrisation see in [GN6].
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§3. MULTIPLICATIVE HECKE OPERATORS

Let F' € 9 (T¢, x) be a modular form of integral weight and

X =T,MT, =) Tigi € Ha(T) = Q) Hp(T) 2 Q) H,(T0)

(p,t):l (p’t):]-

be a Hecke element with a good reduction modulo all primes dividing {. Then we can
define a multiplicative Hecke operator :

[Flx = HF|kgi. (3.1)

This is again a I';-modular form. We call it the Hecke product of F defined by X.

It is well known that the arithmetic lifting (1.3) commutes with the action of Hecke
operators (see f.e. [G2], [G8]). In Theorem A.7 of [GN4, Appendix A] we proved that the
exponential lifting commutes with multiplicative Hecke operators. More exactly we have

Functoriality of Exponential VLifting. For arbitrary ¢ € J&? and X € H,(T;) the
identity
[Exp-Lift(¢o,e)]x = ¢ - Exp-Lift (¢| 75" (X)) (3.2)

1s valid, where jét) is a natural projection of the Hecke ring H,([';) into the Hecke-Jacobi
ring of the parabolic subgroup of T'y (see [G2], [G6], [G8]) and c is a constant.

Remark. The operator jét) is the same one which appears in the commutative relation
between the arithmetic lifting and Hecke operators (see [G8]).

To prove this theorem one should use only some considerations related with parabolic
extension of local Hecke rings, similar to the proof of the commutativity of the exponential
lifting with multiplicative symmetrisation. :

We consider below some examples related with the Hecke operator of index p T'(p) =
I':diag(1,1, p, p)I'; in the case of good and bad reduction. If T(p) € H(I;) ((p,t) = 1) we

have
p00O0O 10a1 a2
vy -r.( $i8) + (315
0001 a1,a2,a3 modp 000 p
10a0 ’I); OObO
—b1 10 ba/t
+ ZFt(Ss’SS + Ft(o*mi{ - (33)
amodp 0001 " by,bz modp 0 00 p
and | _
Jo(T(p)) =To(p) +p* +p | (3.4)

where Ty(p) is the Hecke-Jacobi operator

10c b p0 a ab p> 00 0
- Z Oppb0 Z 0 p ab ab? Z pAp0 0
TO(p) - ) FOO<OOP2 0) + Foo 00 p O + Foo 001 -x )" (35)
‘bmodp 000D a,bmodp 000 p Amodp 000 p/
cmodp? a#0
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The element .To (p) defines an operator on the space of Jacobi forms which does not change
the index
To(p) : Tkt = k-

It coincides (up to a constant) with the Hecke operator T}, defined in [EZ, §4].

We want to use (3.2) with X = T'(p) for the modular forms A5(Z), A2(Z), A1(Z) and
A1/2(Z) from §2. To write down the right hand side of (3.2), we need a formula for the
action of Ty(p) on the Jacobi forms of index t for a divisor p of t. Let ¢ (7, 2) be an
arbitrary Jacobi form of weight zero and index ¢ with Fourier expansion

g%;(Z) = Z g(n,1) g"rlst = Zg(N) exp (2mitr(NZ))
N

n,leZ

where N = ( N i 2) € M,(Z) (t is fixed). In accordance with (3.5) we get

/2t
| bo.|To(p)(2) =
Yo ¢dMi(2)=p D 9((]2"7)) exp (2mitr(p72N[(55)]2))
M; €T \To(p) I=0modp

n=0mod p*

+ ) Gp(N)g(N)exp (2mitr(NZ)) + D> g(N) > exp (2mitr(N[(29)]2))
n,l€Z ‘ n,l€Z Amodp
where N[M] =tMNM and we denote by Gp(N) the Gauss sum

‘ lab + tab?
Gp(n,l,t) =—p+ Z exp (271'2' natiad +ie )
a,bmodp p

Changing N to N[M~1] in the first and third sum, we get the formula for the Fourier
coefficient g,(n, ) of Jacobi form ¢ +|To(p)(, 2) of index ¢

. \ 2,
gp(n, 1) = pPg(pPn, pl) + Gp(n, L, t)g(n, 1) + D g(miRhprt Lizdi) (3.6)
Amodp

where we put g(n,l) =0ifn g Z or I € Z. In the case of a good reduction, when (p,t) = 1,
the G,(N) is given by the formula '

—(4nt — 12
Gp(n7l7t) =p<_%>7 (pyt) =1
If p|t, we can represent the formula for G, in the form useful for exact calculations

. 0 if lI£0modp
Gp(n,l,t)=p¢ p—1 if (n,1)=(0,0) mod p
—1 if n#0mod p, and ! =0 mod p.

For the Fourier coefficients depending on ) in (3.6) we have det(N[(??)]) = p?det(N).
If (t,p) = 1, then n + Al + A2t is a full square mod p for 4nt — I2 = 0 mod p?. Thus there
exists only one A mod ¢ which gives us a non-trivial term in the third summand in (3.6).

Therefore we prove
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Lemma. Let us suppose that the Fourier coejfﬁczent g(n,1) of the Jacobi form ¢g + of weight
zero and indez t depends only on the norm N = 4nt — I € Z. We denote g(N) = g(n,l).
For any prime p such that (t,p) = 1, the Fourier coefficients of ¢o.t|To(p) are gwen by the
formula

9p(N) = p’g(p*N) +p(%>g(N) +9<£—)v2-)
where we set g(%) =0 if ﬂg €7Z. |

The Igusa modular form Ag5(Z). The Igusa modular form Ags(Z) is the first Siegel
modular form of odd weight with respect to I'; = Sps(Z). It has weight 35 (see (Ig1]). We
defined this modular form in [GN4] as a Hecke product of Ag(Z).

Let us take the modular form Ag(Z) which has the divisor H; in A;. Using the system
of representatives T'(p), we then get

[As(2)lr@) = [] As(2g2, 22, zte) T As(12, 25,223) A5(221, 25, 2232)

a,b,c mod?2 amod?2

X A5(221, 222,223) H A5(2Z1, —2z1 + 29, Z]—2z22iZ3j;b).
bmod?2

One can check that div.4, ([A5(Z)]T(p)) = (p+1)®H, + Hpe. Thus

[As(Z)]r(2)

Al = TR 2y

= Exp-Lift (¢0,1 |(To(2) — 2)) € N3s(T'1)

and

(2) 2
ASS(Z) = q2'r32 (q — 5) H (1 anlSm) 1 (4anm—1?)
nilymez .
(n,l,m)>0

where f)(4n —I2) = fy(n,l) are the Fourier coefficients of ¢, (, 2) (see (2.4)) and

(2)(N) = 8f1(4N) +2(< N) ~1)f1(N) +f1(%)

according to Lemma above. Remark that we cannot construct Azs(Z) as an arithmetic
lifting of a holomorphic Jacobi form. Nevertheless we get A35(Z) as a finite Hecke product
of the lifted form Ajs(Z). In particular, from the infinite product formula follows the
formula for the second Fourier-Jacobi coefficient ¢35 2 of the Igusa modular form '

$35,2(T,2) = ?’]ég(T)ﬂu(T, 2z) = —qzr_l.H (1- q"_lrz)(l -~ q"r‘z)(l - q")79.

n>1

(Remark that ¢35, =0.)
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The modular form Dg(Z). Using (3.2)—(3.3) and Lemma above we get modular forms
with divisor Hp2 in A} and A$ respectively

- [A2(Z)]T " :
FP@) =it Z)(p+§’;l = Exp-Lift (02| (To(p) — p— 1)) € Mappe—1)(T2),
[A1(2)]r .
F(2) = ey 720 = Bxp-Lift (90,0 (To(p) = p— 1)) € Myip—1) (T3, x5

where p # 2 for Az and p # 3 for A;. The character X(p ) is trivial or has order two.
(The cp, are constants which can be easily calculated ) In particular we get the modular

form
227, (Z )]T(2)
N (2)°

De(2) = = EXP-Lift(¢o,3|(To(2) - 3)).

Thus according to (3.9) where

5O (7, 2) = dosl(To(2) = 3)(1,2) = S gs(n, Dg™r =2 —r +12 =17 £ 24 (...

n,l

Example. Hecke product for p = t = 2 and p = t = 3. Using (3.6) we can con-
sider the cases of bad reduction p = t = 3 and p = t = 3. The Hecke operator
T+(2) = T’} diag(1,1,2,2)I'5 from the Hecke ring H(I';) of the maximal normal extension
'} contains 18 left cosets: the 15 cosets from (3.3) and

—a 2 b‘ 0
Z r+ 1 0 0 b/2
R 2 0 0 0 1
a,0 mo
(a,6)#(0,0) 0 0 2

Therefore the modular form [Az]r+(2) of weight 36 has divisor 2H, + 9H; and we obtain
the identity

_AH(Z)2 (Lift(r? (r)9(, 22))* = (Exp-Lift(¢532’ (2)))°
— clAalr+ 2)(2)/Da(2) = Exp-Lift($o2ITo(2))(2)

where

1
Bo2 = $0aIT-(2) — 2002 = #3,1 — 20602 = 5%0.2|To(2). (3.7)
because v | |
$02|To(2)(7,2) = 2r* +44 +2r " +q(...).

The identity (3.7) gives us relations between the “fundamental” Jacobi forms ¢o,1 and

bo,2-
Similarly to the case p = 2 we obtain for p =t = 3 the Jacobi form ¢ 3|To(3)(7, 2z) =

2r3 + 68 +2r~3 + ¢(...). Therefore the Hecke product for p = 3 of I's-modular form A,
is related with ' ’

o g1 .
F{3(Z) = Exp-Lift ('2‘¢o,3|(T0(3) —2)) € Myg(T3, vy X idp)
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with divisor Hg. One can construct this modular form using multiplicative 3—symmetnsat10n
of As. In terms of Jacobi forms it is equivalent to the relation

$0,3/T0(3) = 2¢0,1|T-(3) — 60 3.

Recall that the Jacobi form ¢g 3(7, 2) is the square of an infinite product (see (2.8)).

Example. I'y-modular forms with Hpz-divisors. Our next examples are connected with
the Jacobi form ¢g 4 (see (2.6)). In the case of good reduction (p # 2), we can define the
same function as above. Since

@0,4|To(p)(T, 2)—r”+pr+(p +1)+r P+ prt +q( ) (p#2)
we obtain a modular form
F$9(Z) = Exp-Lift (¢o,4|(To(p) — p — 1)) € Mp(p_1y2(Ta, 2% 7 x idpr)

with divisor Hy2. For instance for p = 3 we get a modular form of weight 12 with divisor
Hg in A}. Using (3.6) for p = 2, we obtain a very nice identity

$0,4|To(2)(7, 2) = ¢o,1(7, 22). (3.8)

It gives us the second new formula for the generator ¢ 1(7, z) (see [2.7]). We can represent
it in an equivalent form using the operator A} dual to A%. One can check (see [G2]) that

10 a pb P

— . 01 b 0
PITo(p) Ay =Ty (L) = > Fw(oop2§)+ > Foo<o
- 00O 0

a,b,c mod p® p a,bmodp
cmod p?
a#0
p> 00 0O
+ 2. Foo(‘o“é?fa>-
amodp 000p
cmod p?
Thus (3.8) is equivalent to
8¢0,1(T, Z) = ¢0,4 |T+ (1, 4)(T, Z). (39)

We recall that ¢ 4(7, 2) is given by an infinite product (see (2.6)). One can find a formula
for the action of T, (1,4) on Fourier coefficients of Jacobi forms similar to the formula
(3.19) for T'(2).

Anti-symmetric Modular Forms.

The arithmetic lifting provides us with modular forms which are invariant with respect
to the main exterior involution V; of the group I'; (see the beginning of §2). Using the
exponential lifting, one can construct anti-invariant modular forms, i.e. forms satisfying
F(Vy(Z)) = —F(Z). For example for t = 1 the Igusa modular form Azs(Z) is anti-
invariant. ' '
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Existence Theorem. (see [GN6]) For arbitrary t > 1 there erists an anti-symmetric
modular form of weight 12 with respect to I'y with trivial character.

We construct below such forms for ¢t = 2, 3, 4 and show that for these t anti-symmetric
form of weight 12 is unique.
Let us consider the function g 4(7, 2) = A(7) "1 E12,4(7, 2) where

A(r)=q [J(1 - ¢*)* =q—24¢% +253¢° +. ..

n>1 -

and FEj3+(7, 2) is a Jacobi-Eisenstein series of weight 12 and index ¢.

There exists a formula for Fourier coefficients of Ej.; in terms of H. Cohen’s numbers
(see [EZ, §2]). One can find the table of the values of Fourier coefficients of Ej (7, 2)
and Eg1(,2) in [EZ, §1]. Using the basic Jacobi forms ¢o2(7,2) = r¥l +4+ ...,
$0,3(7,2) = r¥1+2+... and the forms ¢(()f21) =r+24924 .. and qbé?% =2 _pEl 124,
which are the data for the exponential liftings in §2. We define v

Yo,2(7, 2) = A(r) " Ee1(r, 2)% — 2005 (7, 2) + 17640,2(7, 2)

= Z ca(n, )g™r —q“1+24—|—q(.,..),
n>0,leZ

Yo,3(7, 2) = A(T)” 1R, a(T, 2)3 — 3¢(6) (1,2) — 1710 3(T, 2)
- Z es(m, Dgrt =q 1 +24 +q(...).

n>0,l€Z

The Jacobi forms %o,, (p = 2, 3) contain the only type of Fourier coefficients with indices
of negative norm. This is ¢~ of norm —4p. Thus we can use both functions to produce

the exponential liftings

v{9(2) = Exp-Lift(¢ ¢ J] @-qrris?™)=mmd e oy (ry),
n,l,mez (310) '

(n,l,m)>0

¥ (Z) = ExpLift(o3) =q [] (1—g"rls¥)=0mD e muyy(Ts).
n,l,meZ : (3.11)
(n,l,m)>0

According to Exponential Lifting Theorem

Hg forp=2

(P) (P) (p)
V < 7Z> Z 2,3 and Div \Il =
( ) ( ) (p ) ' AP( ) { ng for p= 3.

The Fourier-Jacobi expansion of \Il(p ) starts with coefficients
(p)(Z) = Aja(1) — A12(T)¢o,p(1' 2) exp (2mipw) + .

Therefore the constructed modular forms \Ilgg)(Z ) (p = 2, 3) are not cusp forms.
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If we do the same for ¢ = 4, we get a Jacobi form we used to construct Ass(Z). Let us
take the Jacobi form

¢0,13(To(2) —2)(1,22) = g_1 + (7‘4 + 70 4+ r_4) +4q(...).

Its exponential lifting is zero along two Humbert surfaces with discriminant 16. To delete

the second component, we consider the additional Jacobi-Eisenstein series which has the

constant term equals zero (such a series exists if the index contains a perfect square). For

t = 4 this Jacobi-Eisenstein series is the eight power of the Jacobi theta-series (7, z).
Usmg I(7, 2)®, we define

0,4(7,2) = (¢0,11(To(2) + 26)) (7, 22) — A(r) T Ea(r)0(, 2)® — 8(¢0,4|(To(3) +4)) (7, 2)

= Z ca(n, g*rt = q~ +24—{_—q(...).
n>0,leZ ) ‘

Slmllarly to to,2 and ) 3 the Jacobi form 9 4 contains only the Fourier coefficients of type
¢! with index of negative norm. Takmg its exponential lifting we obtain the I'y-modular
form of weight 12

¥{0(2) =ExpLift(04)(2) =¢ [[ @ —grts"™)emD e myry).  (3.12)
n,l,mez .
(n,l,m)>0

The modular form \11(4)(Z ) is anti-invariant and Div A4(\Il§é) ) = Hg(0).

Uniqueness of \I/(t) for t = 2,3,4. Arbitrary anti-invariant modular form is automat-
ically zero along the Humbert surface H4(0) = m{r — tw = 0}. The modular forms
constructed above have this surfaces as full divisor. Thus they are unique.

Remark. After this conference a preprint of Ibukiyarﬁa and Onodera [OK] has been ap-
peared where an anti-invariant modular form of weight 12 with respect to I'; was con-
structed in terms of Siegel theta-constants.
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