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The generalized Whittaker functions for SU(2, 1)

Yoshi-hiro Ishikawa

Introduction. _

In the theory of automorphic forms, Fourier expansion of modular forms is a funda-
mental tool for investigation. For example, coefficients of the expansion can be used for
construction of L-functions. In spite of this importance, the theory of Fourier expansion
of automorphic forms seems still in very primitive state.

Our concern is to have a theory of fully developed Fourier expansion of modular forms
on SU(2,1), the real special unitary group of signature (2+,1—). To have such theory we
need Whittaker functions and generalized Whittaker functions of the standard represen-
tations of SU(2,1). A quite explicit result is obtained by Koseki-Oda [K-O] for Whittaker
functions. The remaining problem for our purpose is to consider the generalized Whit-
taker functions. This is the theme of the present paper.

The peculiarity of the case of SU(2,1), different from the case of SLy(R), is that the
maximal unipotent subgroup N is not abelian. It is isomorphic to the Heisenberg group
of dimension three, and has infinite dimensional irreducible unitary representations o,
which are called Stone von Neumann representations. Together with unitary characters
they constitute the unitary dual of N. The Fourier expansion of automorphic forms on
SU(2,1) is to consider irreducible decomposition of the restriction 7|y of automorphic
representations 7w with respect to N. Therefore we have to handle those terms which
corresponds to the Stone von Neumann representations.

Naive formulation of the problem is to investigate intertwiners in Homy (7| y, o) which
is isomorphic to Homg(7, Ind§ ~0) by Frobenius reciprocity. But this fails in general, be-
cause the intertwining space in question is infinite dimensional. The right formulatlon of
the problem is given by introducing a larger group R.containing N.

Here is the formulation of our main result. Let P be the minimal parabolic subgroup
of SU(2,1) with Levi decomposition L x N. And let S be the maximal closed subgroup
of L which acts trivially on the center Z(NV) of N. The group R is the semidirect product
S and N. We want to investigate the intertwining space Homg(, Ind$n) for certain irre-
ducible unitary representation 7 of R, and the images of intertwiners: these are the space
of generalized Whittaker functionals and the space of generalized Whittaker functions,
respectively. Our main results are to obtain an explicit formula for the radial part of such
generalized Whittaker functions with special K-type, and to show the multiplicity one
theorem for the intertwining space (Theorem 7.2.1, Theorem 8.2.1).

Our main concern is the theory of automorphic forms. However the author believes
that our results is also interesting for the problem of realization in generalized Gel’fand—
Graev representations.
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1 The structure of Lie groups and algebras

1.1 The Iwasawa decomposition

- We realize the identity component of the stabilizer group SU(2,1) of the Hermitian form
of three variables with signature (2+,1—) as follows

SU(27 1) = {g € SL(37C) 'thZlg = 12,1}7
where Ip; := diag(1,1,—1). We denote the group by G. Let
G = NAK

be the Iwasawa decomposition of G, then

K = S(U(2) x U(1)), N = H(®?),
. r4r-1 r—r—1
2 2
A={a,:=( 1 )|r€R>0}.
r—r-1 r4r—1
2 2 .

Here H(R?) denotes the Heisenberg group of dimension 3.
Denote the Lie algebra The Lie algebra su(2,1) of G by g and let

g = top

be the Cartan decomposition corresponding to the Cartan involution 6 : X — 12 X131
Since G/K is Hermitian, we have a decomposition p, = p +©p_ such that p_ is identified
with the holomorphic tangent space at the origin 1+ K € G/K, corresponding to the
complex structure of G/K. Put

a=R-H, bn=RE1€BRE2,+@RE2,_,

where

then
g=ndacpt

gives the Iwasawa decomposition of g.
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1.2 Root system
We fix a compact Cartan subalgebra t in £ and its basis by
t = {diag(v/—1h1, V—1hg, V—1h3) | hi € R, hy + ha + hs = 0},
H], = diag(l.—-1,0), Hj, = diag(1.0,-1).
Define linear forms 3;; on tc(i # 7,1 < 4,5 < 3) by

Bij : tc O diag(ty, ta, t3) — ti — t; €C.

Then the root system ¥ associated to (ge, tc) is given by ¥ :={8;; | i # j, 1 <4,j < 3}
We fix a positive root system X, = {f;; | ¢ < j}. _

Let gg be the root space associated to § € ¥: g4 := {Xeg|[H,X]|=p(H)X,VH €
tc} We denote T and X, the sets of compact and noncompact roots, respectively. In our
choice of coordinate,

and matrix element E;; (1 < ¢,j < 3) generates the root space gg,.. We pﬁt

Yo — E;; when(i,j) # (2,1);
Bij = —E;; when(i, j) = (2, 1), -

and take it as a root vector in 95:;> because this is natural in the meaning that complex:
conjugation with respect to our choice of real form of sl(3,C) converts two root vectors
Xg,; and Xg;; mutually. Put Y, := YNXyand X, =%, Nk,.

2 Representation theory of the group R

2.1 Representations of R with nontrivial central characters

By the Stone von Neumann theorem, the unitary dual N of N is exhausted by uni-
tary characters and irreducible unitary representations which is determined by its central
character 1, up to unitary equivalence. Consider an infinite dimensional one o € N with
central character 9. Let L be the Levi subgroup of P, and Z(N) the center of N. Then L
acts both on N and Z(NV) by conjugation. Hence the stabilizer S of o in L is the central-
izer of Z(N). In particular S is independent of 0. We define the group R by semidirect
product as
R = SxN.

We extend o to an irreducible unitary representation of R.

Because the action of S on N by conjugation is faithful, S can be regarded as a
subgroup of the automorphism group of N. Passing to the abelianized subgroup N® =
N/[N : N] of N, we have S < Aut N — Aut N®. Since N is identified with R®?,
Aut N = GL,(R). Composing all these identifications, we get an isomorphism between
S and SO(2)

S — AutN — GLy(R) D SO(2),
diag(c, 8,a71) > R(36)
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by putting o = ¥, 8 = e7%%,6 € [0, 2r), where R(30) means the rotation of angle 36.

We realize o on L?(R) as

po((2,4;1))-8(€) = (t+(z+2€,9)) - B(¢ + ),

where (z,y;t) € H(R), ® € L*(R) and (, ) is the natural symplectic form on R2. This is
called the Shrodinger model of o.
By the theory of Weil representations, we have the canonical extension

wy X py : Sp,(R) x H(R?) — Aut(L2(R)).

Here Sp, (R) is the two-fold covering of SL, (R), (wy, L*(R)) its Weil representation. Identi-
fying S, N with SO(2), H(R?) respectively, the semidirect product B = S x N is regarded
as a subgroup of Sp, (R) x H(E?). Let R be the pullback R := 5 x N & 50(2) x H(R?) of
R by the covering '

pr x id : Sp,(R) x H(R?) —» SLy(R) x H(R?).

Then tensoring an odd character ¥ of SO(2) to (wy xp¢) |5 finally, we have a representation
of R
2@(60,/, Xpi/’)lﬁ : R=SxN — Aut(Lz(]R))

We denote this representation by (7, L*(R)). A character of S0(2) is called odd, if it does

not factors through the covering SO(2) -» SO(2), which is usually parameterized by some
elements u = m + 1 in 1Z\Z (m € z).

Here is a diagram explaining the above construction
R=8xN Sp.(R) x H(R2) % Aut(I2(R))

prxid

R=SxN —— SLy(R) x H(R?).

2.2 A basis of n and the action of Lie N

It is well known that Hermite functions hy(¢) := (—1)"ef*/2. %e‘fz, n=1,23,... form
an orthogonal Hilbert basis of L?(R). |
We normalize tha acton of the generators Ej, E5+ of n through p,,, as

Py, (E1).2(§) = 2v/~1s - B(¢)
Py, (Ba1)-0(€) = —V29'(€), py,(By,-).B(£) = —2V2isE - B(¢)
‘on & € L*(R), where ¢, is an additive character of R 3 ¢ + € € U(1). Then easily seen,

Proposition 2.2.1 The subspace of smooth vectors in L(R) is the Schwartz space S (R),
and the action of root vectors Ey, Ey ., E;_ on S(R) through the underlining Harish-
Chandra module of 1y, = X ® Tjy, are as follows:

N(E1).hp = 2/ ~15 - hy,
1 . .
N(Ee,4).hy = 7—§hn+1 —Von-h,_,, n(E,,_).hy = —/2is - Bni1 — 2V 2isn - hy_;.
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3 Representations of maximal compact subgroup

3.1 Parameterization of irreducible K-modules

The set L} of Z,+-dominant T-integral weights is given by L¥ = {(m,n) € 2®%m > n}.
For each p = (u1,p2) € L7, the vector space V,, spaned by {vy 1 0 <k < d,} with
#--action as

Tw(Z)vg = (1 + po)vg,

Tu(Hi)vy = {p—(dy — k)Br}(H'2)vf = (2k —dy)vf,
w(H )y = {p—(dy — k)Br}(H's)vf = (k+ p)vl,
Tu(Xﬂlz)Ul‘: = (k + 1)U;:+1,

Tu( X )vy = (k- dy — )vg_;.

gives an irreducible K-module (7,,V,) via the highest weight theory.

3.2 Tensor products with p,

We regard the 4-dimensional vector space p¢ as a Ec-module via the adjoint representatlon
ad. Then p, and p_ are invariant subspaces, and

py =CXps ©CXp,y = Vp, b= CXﬂaz O CXgy, = Vg,,.

Given an irreducible K-module V,, we have V, ®pc = (V,®p.) ® (V,, ®¥_), and Clebsch-
Gordan’s theorem tells us the following decomposition of V, ® p,.: '

Vi®p: = Viisis © Virgos, Vi®p_ = Viigs, ® Viipy,
Here we understand V,, = (0) if v € L7 is not dominant. We hence have
Vi®pe 2 VeV, ;
V; = Vutpis O Vit sa Vu_ 1= V13 © Vs

under the above convention.
The decompositions of V), ® pc induce the followmg projectors:

Phs (1) : Vi ®9c = Viigigs p323 (1) : Vu® pe = Vs,
Py (1) : Vi ® Pc = Virges Py (1) 1 Vi ® pc = Viegys,s
In terms of {v;}, they are expressed as follows:
Proposition 3.2.1 ([K-O] Prop 2-3)
P ()0 ® Xp,3) = (B + Dogii™®, 0, () (vh © Xipg) = (du — K + 1Yo ™P13,
P () (0 @ Xpo) = —(k + Do {T*2,  p3, () (of ® Xp,) = (du — b + 1)f 2,
u—ﬂ32 n—pB32

pdﬁi-za(/‘l’)(v;: ® Xﬁl3) = - b pﬂ23 (I“l‘)(vk ® Xﬁzs) = Uk ’

PEla(N)(?f ® Xﬂsz) = ’U,’: ﬁ13, ' ' pﬂls(”)(vk ® Xﬂ:u) = Uf: ﬁ13’
for k=1,...,dx. Here one should note that dysp,, = dysp,, =d, £1. 0
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4 vGen»er_alized Whittaker models

4.1 The space of the generalized Whittaker functionals

Let 7 be a unitary representation of R with representation space S defined in section 2.
We call the C*-induced representation Ind$n of n from R to G with representation space
C°(R\G) :={f:G -8 | fisa C*-function satisfying,
f(rg) =n(r).f(g), Vr € R,Vg € G}
on which G acts via right translation, the reduced generalized Gelfand-Graev represen-
tation. Here we used standard notation by S°° meaning the subspace consisting of all
smooth vectors in S.

We can now define the space of the generalized Whltta.ker functionals as the space of
intertwining operators.

,Deﬁnition For an irreducible admissible representation (m,#,) of G, we identify the
underlining (g¢, K)-module of m with 7 itself, and call the space of intertwiners

Iy = Hom x)(r*,Ind%n)
of (g, K)-modules the space of the algebraic generalized Whittaker functionals.

4.2 Generalized Whittaker functions with fixed K-type

In order to mvestlgate algebraic generalized Whittaker functionals [ € I, we study the
functions I(v*) € Ind$y : the image of vectors v* belonging to (7*, ;) by I. To describe
these functions explicitly, we specify a K-type of 7 and consider vectors v* belonging to
this K-type.
For a K-type (7,V;) of m, choose a K-equivalent injection ¢, : 7 < , and pullback a
generalized Whittaker functional [ by this injection ¢,

Homyg. i)(7*, IndSn) 3 I — 12(!) € Homg(7*, Ind§n|x).
Here we note the isomorphism

Homg (7*, Ind$n|x) = (IndSy|x ® 7)¥.

The latter space is

@ is a C*-function satisfying, }

CRARNG/K) = {: G -+ S @V, | olrgh) = n0)r () " (o)
Vre R,Vge G ,Vke K

We study functions F' € C;j.(R\G /K) representing ¢X(l). By definition,
I(w)(g) = (v, F(g))k

v* € V*. Here (, )x means the canonical pairing of K-modules V¥ and V..

Definition We call the above function F' corresponding to ¢(l), | € I, the algebraic
generalized Whittaker function associated to representation = with K-type 7. Moreover if
we impose the slowly increasing condition for the A-radial part of F such a function is
called the generalized Whittaker function. '
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5 Differential equations for generalized Whittaker func-
tions of the discrete series

5.1 The Schmid operators
We denote the space of V)-valued functions on G with the 7y-equivalence by
CR(G/K):={p:G—=Vy | ¢isa C®function satisfying,
o(rgk) = ma(k)".(g) ,Vg € G ,Vk € K}.
We can regard p as a K-module through the adjoint representation Adp The dlfferentlal

operator
Vn : CR(G/K ) — Cleng,.(G/K)

Vne = ZRX.~<P ® X,

i=1
is a K-homomorphism. Here {X; (i =1 ~ 4)} is an orthonormal basis of p with respect
to the Killing form on g and Rx¢ means the right differential of function ¢ by X € g.
The operator V., is called the Schmid operator. We take as orthonormal basis of p,

C(Xs+X_p), CV-1(Xg-X_p),

where 3 is B3 or Be3 and C is a positive constant depending on the normalization of the
fixed Killing form. Then, using this basis, the Schmid operator V,, can be written as

VTACP = 2C? Z RX_5Q0®Xﬂ+2C2 Z RXBCP®X—[§-
B=P13,023 B=p13,823

Here we note that {Xg,,, Xg,, } is the set of root vectors corresponding to positive noncom-
pact roots. The above description of V, in two terms corresponds to the decomposition

of pc=p,®p_.
Now we define two differential operators as following

Vi OR(G/K) - Clgns,, (G/K)

er(p = RX_;;ls(P ® Xp,s + RX_523<P ® X545
VTA(p = Rxﬁls(P ® X—ﬂla + RX523()0 ® X—ﬂzs'

For later use, we prepare the =+(-shift operators for every positive noncompact root
B € L and A € L.

DI . C2(G/K) - C2, (G/K)

Trx8

DP0(9) = p5(Vae(9)
Here pF are the projectors 7, ® Ad,, - Ty.4 defined in subsection 3.2.
B Pt s

All the operators constructed above can be defined similarly for C35, (R\G/K).
VU,TA : n 1'>‘ (R\G/K) - 17 U@Ad, (R\G/K)

VT:;:T,\ : 11 ™ (R\G/K) — 7'>‘®Ad (R\G/K)
D2 C (R\G/K) = Cx,., (R\G/K).
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5.2 Yamashita’s characterization

Here is a variant of a result of Yamashita which characterize the space of the algebraic
minimal K-type generalized Whittaker functionals for discrete series representations. This
is fundamental for our purpose. Let

Xf = {2, B13, Pas}, Tir = {Br2, Bs2, Bis}, iy := {Br2, Bs2, P}

and =; be the set of Harish-Chandra parameters correspond to positive root systems
¥3(J = I,1I,1II) compatible with the positive compact root system ¥.,. We under-
stand p, the half-sum of the compact positive roots and pJ of the noncompact ones in
1.

Proposition 5.2.1 ([Ya] Theorem 2.4) Let w5 be a discrete series representation of
G with Harish-Chandra parameter A € Z;, Blattner parameter A = A + py — 2p., and
1 be the representation constructed in section 2. Assume A is far from walls, then the
image of Homg. r) (%, Ind%n) by the correspondence of subsection 4.2 in Cg5, (R\G/K)
s characterized by

(D) : D—ﬂ F =0 (VBeZinX,).

n ,TA

In short
Homg (73, Indgn) = [\ KerD;’.
BeXINT,

6 Difference-differential equations for coefficients

6.1 Radial part of Schmid operators

For the representation (7, L*(R)) constructed in section 4 and for any finite dimensional
K-module W, we denote the space of the smooth S(R) ®: W-valued functions on A by

C®(A;S(R) ®c W) = {¢: A — S(R) ® W | C*-function}.
Let

resy Crs, (R\G/K) — C>(4;S(R) ®c V3),

resax  COffeaa,, (R\G/K) — C®(4;S(R) & Vi ®c p2)

n

be the restriction maps to A. Then we define the radial part R(Viy, ) of VI _ on the

image of res4 by -
RV r5a0) = 1651V 0)

Let us denote by ¢ and 9 the restriction to A of ¢ € C35, (R\G/K) and the generator H

of a, respectively, d¢ = (H.¢p)|4. We remark & = r&: the Euler operator in variable r.

Proposition 6.1.1 ([K-O] Prop 4-1) Let ¢ be the above element in C*°(A; S(R)®c V>).
Then the radial part R(V}, ) of Vi is given by

0 RVi)s
= 200~ VoI (B — 4.0 ® X,) + 1 (12 ® Adp ) (His).(6© X,)

—%T{U(E2,+) - \/_—I-U(E2,—)}'(¢ ® Xﬂzs) + (1 ® Adp+)(Xﬂ12)-(¢ ® Xﬂzs)'
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Similarly for the radial part R(V,.)of V., we have
() R(V;,)6

= 1O+ VT(E:) ~ 4.6 ® X)) — £ © Ady )(His).(6© X,

"%T{TI(E2,+) + \/jl—ﬂ(Ez,—)}-W@ Xpg) + (A ® Adp_)(Xﬂzl)-(¢ ® Xgy, ).

6.2 Compatibility of S-type and K -type
If we write ¢ = ¢|4 € C°(4;S(R) ® V)) as

Ood)‘

$a) = >3 cu(a)(hn @ v})
n=1 k=0
in terms of basis {hn|n € No} and {v}|k = 0,...,d\} of S(R) and V) respectively, the
compatibility of S-action and K-action implies the vanishing of many coefficients c,j.
Here is the precise statement.

Let (1, S(R)) be the representation constructed in section 2 as a tensor product Xu ®
(wy X py)|z- Here X, is an odd character of S & S0O(2) parameterized by a half integer
p. Culculate g(mam™"), m € S = M,a € A in two different ways, first, $p(mam™1) =
¢(a) since M = Zg(A), second, ¢p(mam™") = n(m)r\(m).¢(a) since ¢ = |4, ¢ €

Cy, (R\G/K), then we have next linear relation between n and k.

Lemma 6.2.1 (1) The image of resy in C°(4; S(R) ®c Vi) is zero unless

—A1 4+ 2 A1+ 22 1
A M A e N
3 €Z and 3 23 +u
(2) Assume £, € Z, then the A-radial part ¢ of p € Cro, (R\G/K) is written as
dx

) = 3 exler)Ch ®)),

where c(a,)’s are C*®-functions on A and the indez n is given by

2Ai—/\2 1 ‘
n = —k+T—2—u.

6.3 Diﬁ'erence—diﬁ'erential equations

We first write down the A-radial part R(D;,%') of the S-shift operators D, E,\ in terms of
coefficient functions cx(a,)’s of ¢. |

In [K-O], there is a misprint in the formula (ii). The symbol — after 8 is + correctly.
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Proposition 6.3.1 Let ¢ be any function in C*(A; S(R) ®c Vy) which is the A-radial
part of p € C, (R\G/K). By using the lemma 6.2.1, we can express ¢ as

, o
- #la,) = Z Ck(ar)(hnu,x(k) ® 'U,?),

k=0

where we denote —k + g—"‘—;ﬁ — 3 — u by ny (k). Then for an arbitrary noncompact root
B, the action of the A-radial part R(D;2 ) of the (3-shift operator is given in terms of ct’s

L/ DN
as follows:
dy_g
R(D2)d(ar) = Y ;P(ar)(hn,n sy @ %)
k=0 :
with
- 1 ‘ : 1+ 2s
() = 5{(d,\ —k+1)(@+k— A2 —2r%s).c(ar) + k 7 - ck-1(ar)},
1+2s

1
c;ﬁls(ar) = 5{(6 +k—2dy - Ay — 1 —2r%s).ceya(ar) — 2 - crlar)},

™) = SHO-k+d—2+27) ()
V(L + 28) i (K) + )7 - chpa(an)},
%i(q) = %{k(a kDot 2y + 1+ 2%) s (ar)
H(dr — k + VAL + 28)(mpak) + 1)r - cular)}-

O

Using the above proposition, we can write the differential equations (D) in Proposition
5.2.1 in terms of the coefficient functions c; of the A-radial part ¢ of the algebraic gen-
eralized Whittaker function F' € C®. (R\G/K), which comes from [ € I, ,. As for the

L/ 7XBY
- system of the difference-differential equations satisfied by cx’s, see [I] subsection 7.3.

7 An explicit formula and the multiplicity one theo-
rem

7.1 An explicit formula for coeflicients

Now we are in a position to formulate the generalized Whittaker functions with analytic
condition. Let us define the generalized Whittaker model for the representation © of G
with K-type 7 as follow

Whi(r) == {F € C(R\G/K) | F|a(a,) is of moderate growth when r — oo,
l(’U*) = (v*aF(')>K7 le I1r,q, 'U‘,! c V,,.*}.

We call the elements in the space above the generalized Whittaker functions associated to
the representation m with K-type 7.



209

Proposition 7.1.1 Let ¢ = F|4 be a function in C*(A4; S(R) ®¢ V3) which comes from
| € Homy k) (WA,Indgn), A € Zr1. And c’s are the coefficient functions of ¢ expanded
with respect to the basis {h,} and {v}} of S(R) and V), respectively. Then each ¢ (0 <
k < dy — 1) satisfies the following differential equation.

{0* — (2dy + 4)0 + Gx(r)}.ck(ar) = 0

where
Gi(r) = —4s*r* — {42 —k+dy—1)s+ (ng+1)(1+25)*}r? — (k—2dr— Ao — 2) (k— A2+ 2).
Here we abbreviated ny (k) = —k + 2’\13—"\2 —u— % as ny. | O

As a result, we obtain an explicit formula of the coefficient functions cy’s of the minimal
K-type generalized Whittaker functions for large discrete series representations.

Theorem 7.1.2 The coefficient functions cy’s of the A-radial part of the minimal K -type
generalized Whittaker functions F’s € Wh)(ma) for the large discrete series representa-
tions mp’s (A € 1) of SU(2,1) are of the form

ck(ar) = (comst.) x T W, ox/2(2]s|r?)
with parameters .
k= {—(a—k+dy—1)s — (n +1)(2s +1)%/4}/2|s],

k=0,...,d,. Here A = (A, \p) is the Blattner parameter of m. Function W, ,(z) is
the classical Whittaker function. ' O

In the cases of the holomorphic and the antiholomorphic discrete series representa-
tions, the differential equations satisfied by the coefficient functions are of the first order.
Consequently the solutions are essentially exponential functions.

Proposition 7.1.3 Let ¢ = F|4 be a function in C®(A; S(R) ®c Vi) which comes from
! € Hom, k) (7a, Indgn). And ¢ ’s are the coefficient functions of ¢ expanded with respect
to the basis {h,} and {v}}. Then eachcy (0 < k < dy+1) satisfies the following differential
equation
{6+Gk(r)}.ck(a,) =0
where
Gilr) = { —2s1> — (A2 + k) when A € Tp;
2512+ (A2 + k) when A € Zppr.
O

Hence we have an explicit formula of ¢’s.

Theorem 7.1.4 The coefficient functions ci’s of the A-radial part of the minimal K -type
generalized Whittaker functions F'’s € Wh) () for the holomorphic (resp. antiholomorphic)
discrete series representations wp’s (A € Xr(resp.Xrrr) of SU(2,1) are of the form

ce(ar) = (const.) x rr2tker?

k=0,...,d\ with s <0, (resp.

2

—Az——ke——sr ,

ck(ar) = (const.) xr

k

0,...,dx with s > 0). Here variable a, is an element of A. O
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Remark These explicit formulae of generalized Whittaker functions for the holomorphic
and the antiholomolphic discrete series representations are compatible with the classical
theory of Fourier-Jacobi expansion of holomolphic modular forms on SU(2, 1), or on the
associated symmetric domain SU(2,1)/K. We just remark here that the conditions on
parameter s of the central character of py, in Theorem 7.1.4 is the consequence of the
moderate growth condition on Wh (7).

7.2 The multiplicity one theorem for the discrete series

Assemble the parts prepared in previous sections, then we obtain simultaneously the mul-
tiplicity one theorem and an explicit form of elements in the minimal K-type generalized
Whittaker model Why>(7) for the discrete series representations m’s-of SU(2,1).

In order to formulate the multiplicity one theorem we have to introduce a (g¢, K)-
submodule A,(R\G) of C°(R\G).

cs.n|a(ar) is of moderate growth

cyp is right K-finite and | }
when 7 — oo, Vh € (n,S(R))

A(R\G) = {1 e R

where cy, is a C-valued function on G defined as s, r(9) = (f(g),h)y and csp|a is the
A-radial part of cz 5. It is easy to see that A, (R\G) is a (g¢, K)-submodule of C°(R\G).

Theorem 7.2.1 The discrete series representation my of SU(2,1) with Harish-Chandra
parameter A € E and Blattner parameter A = (A1, \g) € LE has multiplicity one property
i.e. :
diInCHom(ﬂc,K) (H;A ) ‘Aﬂ,mp (R\G)) =
if and only if

201 — A2 1 =1+ 2\

= ez, S4p< T2

3 g THE T3
Under this condition, the minimal K -type generalized Whittaker model Whp (ma) of ma
has a basis F» whose A-radial part is given as follows.
1) When A € Eyr (i.e. mp is a large discrete series representation),

F(a,) = Zr"*“W e=2(2]s]r?) - ( ,,M(k)®v,’c‘),

where
k={—-(A2—k+dxr—1)s— (ng +1)(2s + 1)2/4}/2]s].
2) When A € By (i.e. mp is a holomorphic discrete series represemtation ),

FTA ar ZTA2+k sr? ( (k) ®’Uz‘),

where s < 0.
3) When A € Eqyy (i.e. mp is an antiholomorphic discrete series representation),

dy
FJA(ar) = Z T—Az—ke_srz : (hn,,x(k) ® ’UII:‘)’
k=1 .
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where s > 0.
Here v € R»9, and the index of each base h, of n is

VD PR |
n(k) = —k + ‘3 2—§—ﬂ.

8 The case of principal series representations

The case of the principal series representation 7, = Indg(l N @€’ ® xx), where
e’ : A> a8 ¢ c*
Xk : M > diag(e”, e %) » ™ € U(1),
we can obtain an explicit formula for the corner K-type generalized Whittaker function by

solving the differential equation arose from the Casimir action. For details and notation,
see [I] 89, [K-O] §7.

8.1 Radial part of the Casimir operator

Proposition 8.1.1 Let ¢ € C™(A; S(R)®c V;) be the A-radial part of p € C,(R\G/K).
Then the radial part R(Q) of Q is given by

1 1
R(Q)d) = 5{32 — 40 + gkz - T4'I'](E1)2

—2V/=1r’(E1)7(H}3) + r*(n(Bs,4)? + n(E,-)?)
+27'77(E2+)T(Xﬂ12 + Xﬂzl) + 2\/__1T77(E2—)T(X612 - Xﬁzl)}¢-

8.2 An explicit formula and the multiplicity one theorem

Theorem 8.2.1 The irreducible principal series representation Tk 0f SU(2,1) has mul-
tiplicity one property i.e.

dimCHom(Bc,K) (ﬂ-;,w Aﬂ“,‘p (R\G)) =

if and only if : L
1

3 H—3 6 Z g.

Under this condition, the corner K -type genemlzzed Whittaker model Wha ™9 () has
a basis Fy ™™ whose A-radial part is given by

B (a,) = W z(2ls|r?) - (hno ® ’Ug),
where .
k= {—ks — (2no + 1)(4s* + 1)/4}/2|s|.
Here r € Ry, and the indez of the base hy,, of 1 is

_k 1
n0—3 H 2
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