goooboooobgon 55
1002 0 1997 0O 55-69

An explicit formula for the Fourier
coeflicients of Siegel-Eisenstein series

EWTRAPTHE S ( Hidenori KATSURADA )

1 Introduction

Siegel-Eisenstein series is one of the most important subjects in number theory
(cf. Bécherer [B], Kudla [Ku], Shimura [Sh3], and Siegel [Si] ). In this note, we
give an explicit formula for the Fourier coefficients of Siegel-Eisenstein series of

any degree. We will state our main result explicitly. Let k be an even integer
and

Eni(Z,5)= Y det(CZ+ D)™* | det(CZ + D) |2 det Im(2)*
_ {c,D} '

Siegel Eisenstein series of degree n and of weight k, where {C, D} runs over a
complete set of representatives of the equivalence classes of coprime symmetric
pairs of degree n, and Im(Z) denotes the imaginary part of a complex symmetric
matrix Z of degree n. We note that the function E, 4(Z,0) of Z is the classical
Eisenstein series defined by Siegel. To explain - the Fourier expansion of the
Eisenstein series, for a commutative ring R, we denote by M,,.(R) the set of -
(m, n) matrices with entries in R, and especially write M.(R) = M,,.(R). We
often identify an element a of R and the matrix (a) of degree 1 whose component
is a. If m or n is 0, we understand an element of M,..(R) is the empty matriz
and denote it by ¢. Let GL,(R) be the group consisting of all invertible elements
of M,(R), and S,(R) the set of symmetric matrices of degree n with entries in
R. Further for an integral domain R, let Hn(R) denote the set of half-integral
matrices of degree n over R, that is, H,,(R) is the set of symmetric matrices (ai;)
of degree n with entries in the quotient field of R such that a;; (t=1,..,n) and
2a;; (1 <1 # j < n) belong to R. We note that H,.(R) = S,(R) if R contains
the inverse of 2. Further if R is the field of real numbers, we denote by S,(R),
the subset of S,(R) consisting of all positive definite matrires. For two square
matrices X and Y we write X 1Y = ( i)( )9 ) . We often write z LY instead
of (z) LY if (z) is a matrix of degree 1. - , ,

Let Q, be the field of p-adic numbers, Z, the ring of p-adic integers, and Z,
the group of p-adic units. For a complex number z put e(z) = ezp(2i z), and
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for a p-adic number z put e,(z) = e(z’), where z' denotes the fractional part of
z. Further for a square matrix X, let ¢7(X) denote the trace of X. Then for a
half-integral matrix B of degree n over Z, we define the Siegel series b(B;s) by

bB,s)= ),  e(tr(BR))u(R)™,
RESw(Q)/Sn(2)

where u(R) denotes the product of denominators of elementary divisors of R.
Further for a half-integral matrix B of degree n over Z, we define the confluent
hypergeometric function =(g, h; a, §) defined on S, (R)+ x S,(R) x C x C by

E(g,h;s,s') = /Sn(R) e(—tr(hz))det(z + ig)~* det(z — ig)™* dz.

Then by Maass [Mal] we have -

Epp(X +1Y,s) = (detY)"

Y)Y S SH(B, 25 + HE(YIg), By s + k, s)e(tr(BLqlX)),
’ J=1BeH(Z) 9

where ¢ runs over a complete set of representatives of GL;(Z)— equivalence
classes of primitive (n, j)— matrices with entries in Z. For further information
on the Fourier expansion of F, x(X +1Y, s), see Mizumoto [Mi]. See also Shimura
[Sh2] for the Fourier coefficients of Siegel Eisenstein series with respect to I'g(IV).
We now focus our attention on the Siegel series because the analytic properties of
the confluent hypergeometric function have been deeply investigated by Shimura
[Sh1]. To investigate the Siegel series, for a prime number p and a half-integral
matrix B of degree n over Z, define the local Siegel series b,(B, s) by

bp(B,s) = Y ep(tr(BR))p=ordrlu®)s,
R

where R runs over a complete set of representatives of $,,(Q,)/Sn(Z,) and u(R)
is the product of denominators of elementary divisors of R. The we easily see
that for a half-integral matrix B of degree n over Z we have

b(B,s) = [] b(B, s).

Then our main theorem gives an explicit form of b,(B; s) for any non-degenerate
half-integral matrix B over Z, (cf. Theorem 1). As a result we show that
the Siegel series b(B;s) of a half-integral matrix B over Z can be determined
completely in terms of certain invariants of B (cf. Theorem 2). It contains all
the results concerning this subject. Our main result for the case n = 2 and 3 has
been treated by Kaufhold [Kau] and by the author [Kat2], respectively, though
they have not been formulated in the form in the present paper (cf. Section 4).
We should remark that our result is new even in the case of n = 4.



2 Main result

For a non-zero element a € Q, we put x,(a) = 1, —1, or 0 according as Q,(a'?) =
Q,, Q,(a'/?) is an unramified quadratic extension of Q,, or Q,(a'/?) is a ramified
quadratic extension of Q. Further let (, ), be the Hilbert symbol over Z, and
h, the Hasse invariant (for the definition of Hasse invariant, see [Ki5]). Let B be

a non-degenerate half-integral matrix of degree n with entries in Z,. If n is odd,
define n,(B) by

np(B) = hy(B)(det B, (—1)""D/? det B),(—1, —1)§" /*,
and if n is even, define &,(B) by

&(B) = Xp((_l)n/2 det B),

and call it the sign of B. Further put

&(B) = 1+ &(B) — &(B)".

From now on we often write {(B) instead of £,(B), and so on if there is no fear
of confusion. '

Let B be a non-degenerate half-integral matrix of degree n with entries in
Z,. We define several invariants of B as follows.

First let p # 2. Let ¢ be an element of Z;, not contained in Z;z. Then B is
equivalent, over Z, to

pel Ul_L ...... _Lpe, U.s;
where ey, ..., e, are non-negative integers such that e1 > ez > ... > e, and

n;i—1

e e
U,’ =111..11 _L‘U.,'

with u; € {1,¢}. We call the above form a canonical Jordan form of B and
denote it by J(B). We remark that e, ..., e,, n1, ..., n, and uy, ...., u, are uniquely
determined by B, and so is J(B). Let b; be the i-th diagonal component of J(B)
and put J; = b; L...1b,. Then for each 1 = 1,2, ...,n put d,;(B) = ord,(det J;),
and 6,; = 2[(d,;(B) + 1)/2] or d,;(B) according as n — i+ 1 is even or odd. We
note that d,;(B) = ord,(aj...an—i+1), where ay, ..., a, are elementary divisors of
B such that a; | as.... | a,. Further we define invariants &,;(B) (: = 1, ..., [n/2])
and 7,;(B) (i=1,....,[{(n —1)/2]) of B by

, | &(J-1) if nis even
&i(B) = { E(Jz,-)l if nis odd,

and : ( )
. | n(Jy if n is even
Tpi(B) = { N(Jai-1) if nis odd.

Further put 0,,(B) = 7,(B) = 0 for any i = 1, ...., n.
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1/2 0 1/2 1
[W] B is equivalent, over Z,, a unique matrix of the following form:

Nextletp=2.PutH=( 0 1/2)andY=<’1 1/42)..The‘nby :

LI 2 (Ui LVY),

where :
: Ui = -Lfélcij with k‘,‘ 2 O,Cij S Z;

and
Vi=¢, HLHL. . \H, orHLHL. .. 1H1Y

satisfying the following conditions:

(c.1) ca =1or-3if ki = 1 and (ci1, ci2) = (1, £1),(1,43), (=1, —1),0r (=1, 3) if
ki =2,

(c2) ki =k;=0if V,=HLHL..1LHL1Y,

(c.3) —detU; =1mod 4ifk;=2and V;_;, = HIHL..lH1Y,

(c.4) (=1)*det U; = 1 mod 4 if k;, kiys > 0,
(C<5) U; # ( 01 _(;2 ) if ki—l > 0:

1 0 -1 0
0 +£1 '\ 0 -1 |
The matrix satisfying the conditions (c.1) ~ (c.6) is called a canonical form and
denote it by J(B). Put K = H or Y. Write the canonical form of B as

(c.6) Ui=g (1), ( if kiys > 0.

J(B) =2™b,L.... L2msp,

where m; > ... > m,, and b; is K or a unimodular matrix of the form U 5 with
some 0 < j < r. Put n; = degb;. We remark that under the above condition we
have m; > m,,, if b; and b,;; are both diagonal matrices. On the other hand, put
J(B) = (cij)1<i,j<n) and Jj = (Co8)j<ap<n for any j = 1,...,n. Then J; satisfies
exactly one of the following 5 conditions: ,

(1) J; = 2™b L 2™+ bi41L..L2™ b, with some 1 <[ < s such that degb; = 1.

(2) J; = 2mby L2y 1 .. 1 2™ b, with some 1 <l < s such that 4 is a
diagonal unimodular matrix of degree 2.

(3) J; = 2miby L2™i+1byyq L .. 12™b, with some 1 <!l < s such that b; = K.

(4) J; satisfies none of the conditions (1),(2),(3), but J,_; is of type (2)

(5) J; satisfies none of the conditions (1),(2),(3),(4) but J;_; is of type (3)

For each 1 = 1,...,n we define d;;(B) by |

ordy(22(=+1/2 et J,) if J; is of type (1), (2), or (3)
ordy (22— +D/2(9m | T, 1)) if J; is of type (4) or (5)
: and J;_; = 2mipy L 2™y g L 1 2™ h,
with some 1 </ < s such that degb; = 2

d2;(B) =

and put 63; = 2[d3;(B)/2] or dy;(B) according as n — i + 1 is even or odd. For
a while write d;(B) = dp;(B). We then define further invariants &,,(B) (i =
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1,..,[n/2]) and n,;(B) (i = 1,....,[(n — 1)/2]) of B as follows. First let n be
even. Then put

&2,i(

and

m,i(B) = <

( W(Jzé)

Next let n be -odd; Then put

£,:(B) = {

and

Uz,i(B) =<

!

([ 1(J2i-1)

{ f(Jzi—;)
By ={1
0

if Joi_y is of type (1),(2), or (3)
if Jyi—1 is of type (5) and dy;_;(B) is even

otherwise,

if Ja is of type (1), (2), (3)
or if Jy; is of type (4) and
d2i+1(B) is even

(—1)((n_2i+1)2_1)/8h(J2,‘+1)€(‘J22‘+1)mlzi‘l lf Jz,‘ IS Of type (5)

and &(Joi41) # 0

otherwise.

if Jy is of type (1),(2), or (3)
if Jy; is of type (5) and dy;(B) is even
otherwise,

if Jp;_q is of type (1),(2),(3)
or if Jy;_; is of type (4)
and dy;(B) is even

(= 1) =08 p(( Lo (Jp) ™2i=2 if Jpg is of type (5)

(1

and (J:) #0

otherwise.

Finally let n be any positive integer. We then define 0,;(B) and 7,;(B) by

Uz’i(B) = {

((26;41(B) = 6:(B) — bi42(B) +2)/2  if n— i+ 11is even, J; is of type (2)

and d;(B) is odd
orif n —¢+ 1is even, J; is of type (3)
and &£(Jiy2) =0

—(26;(B) — 6;—1(B) — 6:41(B) +2)/2 if n— i+ 2 is even, J; is of type (4)

and d;_;(B) is odd

orif n — ¢+ 2 is even, J; is of type (5)
and £(Jps1) = 0

if n—14+ 1is odd, J; is of type (3) and
d:+1(B) is even

if n— ¢+ 2is odd, J; is of type (5)
and d;(B) is even

otherwise,
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and

( —(26(B) — 6;_1(B) — 6;42(B) +2) if n—i+2iseven, J;is of type (4)
' and d,_1(B) is odd
or if n — 1+ 2 is even, J; is of type (5)
and {(Ji41) =0
m:(B)=1¢ 2 if n — 4+ 1is odd, J; is of type (3) and
' “d;+1(B) is even
-2 if n —14+21is odd, J; is of type (5)
‘ and d;(B) is even

L 0 o , otherwise.

Now for a non-degenerate half-integral matrix B of degree n over Z, define a
polynomial +,(B; X) in X by

oo 1=X) 21 - | P X?)(1 - pM2,(B)X)™! if niseven
%(B X) = { (1-X)I%0P 0 - p# x2) if n is odd

where &,(B) = x,((—1)"/? det B). Then it is shown by [Ki4] that there exists a
polynomial F(B;X) in X such that

F(B;p™*) = ——-——-yi’(’f;il).

Thus it suffices to deal with F (B;p~*) for our purpose.

Theorem 1. Let B be a non-degenerate half-integral symmetric matriz of
degree n over Zp, and 6,;(B) (i = 1,..,n),0,i(B), 7,:i(B) (1=1,...,n),&(B) (1 =
1,..,[n/2]),n(B) (i = 1,..,[(n — 1)/2])) as above. Write 6; = 6,:(B) and the
others, and further put §ni2)/2] = E{(n+2)/2] = Nn+1)/2] = 1 and dp41 = 0. Then
we have

'"'/2 gpn/2+2—1.+11+ AJ2i—2—J2i-1—5
ey TS —
F(B;p~™)= . H P2+ A 2g2ia 28
(Jl 111111 .'ln) =1

x {(;1)Ei+1§£ni (pn/2+1—i+jx +--~+j2i—2—6)5zi—1 —5zi+6?+czi-1p(525-1+Tzi;1 )/2}1—jzi—1]

n/2 {( 1 l+1€l+177( n/2—i+j1+...+jzi—1—s)62i—62;+1+2—£?_H+a;;p(262,~—52,-+1+2+72,-)/2}1_j2,-

H . 241—145+...+J25-1—
-1 I—EH_lpn/ +1-ttyi+. . +j2ic1—s

or

7 B (n—-1)/2 1— &p(n+3)/2—i+j1 +oti2i-1—J2i—s
F(B§P )= Z [ H 1_pn+2—2i+2jl+...+2j2,'_1—Qs

(J1,-dn) =1

x {(_ 1)£i+1€£ni+1 (p(n+1)/2—i+j1 +...+j2i—1_5)62i-52£+1 +£§+¢rzip(6zi+'ru)/2}1—jz.']_

(n+1)/2 {(_ 1)££€£ni(p(n+1)/2-i+jl +-4~+j25-2~5)52i—1 —82i+2—€2+02i1 p(2¢52i—1 —&3i+2+472i1 )/2}1—j25—1

X 1— é'z.p(n+3)/2-i+j; +...4j2i-2—s

=1
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according as n is even or odd, where (i, ..., jn) runs over all elements of {0, 1}~.
Here we make the convention that ji+ ...+ jyip = 253+ ...+ 2jpicn = 0 if 1 = 1,
and that T2 VP (x) =1 ifn = 1.

Theorem 2. Let B be a half-integral matriz of degree n a and of rank r.
Assume that B 1is equivalent over Z to O,_, L By with By a non-degenerate half-
integral matriz of degree r. Let {py,...,p:} be the set of distinct prime factors of
2%/l det By. Then b(B,s) can be expressed explicitly in terms of the invariants
Uisiddpii(Bo) (4 = 1,.,7),&.i(Bo) (7 = 1, [1/2]), pii(Bo) (G = 1., [(r =
1)/2])} of Bo. | | |

3 Outline of the proof

In this section we explain the outline of the proof of Theorem 1. For the details,
see Katusrada [Kat 8]. Let a be an element of a commutative ring R. Then for
an element X of M,,,(R) we often use the same symbol X to denote the class of
X mod aMy,,(R). Now let m, n be non-negative integers such that m > n > 1.
For A € S,.(Z,), B € S,(Z,) define the local density a,(B, A) by

0(B, A) = lim pmm 4 DDe 4 (B 4),

€—00

where

Ae(B7 A) = {X = (mii) € Mm,n(zp)/pe m,n(Zp)'; A[X] —Be€ peHn(Zp)}'
k
Put Hy = HL1l...L H. Then it is well known that we have
| bnp(B; k) = a,(B, Hy)

for k > n + 1. Thus to investigate the b,(B;s), first we give several induction
formulae for local densities. For a non-degenerate half-integral matrix B let i(B)
denote the least integer [ such that p' B~! is half-integral. Then the following
theorem can be derived from a generalization of [Kat3], Proposition 2.2’ and a
modification of [Ki2], Theorem 1.

Theorem 3. (1) Let p be any prime number. Let by € Z,\{0} and B, €
Sn-1(Z) N GL,1(Q,). Assume that ord,(b1) > i(B;) — 1 + 264, '

o (b1 LBy, Hy) = p~ "oy (b1 LBy, Hy) + (1= p™*)(1 + p"*)ay( By, Hr-1).

(2) Let by, by € Z2\{0} and Bs € Sn—2(Z2)NGL,—5(Q,). Assume that ord,(b;) =
ord,(b2) > i(B;3) + 1. Then we have

a2(2°by Lbs L By, Hy) = 2724y (by 1 by L B, Hy)

+(1 - 2"’“)(1 + 21_k)2—1 Z Olz(bgU_LBg, Hk—l)-

u=1,5
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(3) Let K = H orY, and By € S,_2(Z;) N GL,_5(Q,). Assume that m >
i(B3) + 1. Then we have . :

(2™ K LBy, Hy) = —22(-2tnt 1y, (ompe | B )

+27 20, (™Y LB, Hy) + 27y (27V LBy, Hy)
(1 = 27%)(1 = 227%)(1 + 227%) 0y (B3, Hyma),

where U H or 1/213/2 according as K = H orY, and V =11 —1 or 113
according-as K = H orY.

(4) Let uj,u; € Z,\{0} and B; € Sn_g( Z,;) N GL,_»(Q,). Assume that m >
i(B3) + 3, and —ujuy; = 1 mod 4. Then we have

03(2™u L2™uy L By, Hy) = 2724741, (2™ K 1 By, Hy,)
+(1=27%)(1+ 2% Y 0p(2™ulBs, Hio1),
©=1,35,7

where K is H orY according as —uju =1 mod 8 or not.

Remark. The theorem can also be proved by using [KH], Theorem 2.6.
For further information on local densities, see [Kat1], [Kat2], [Kat4],[Kat5], and
[Kat6). :

Next we give a functional equation of F(B; X). To do this, let f(B;X) be a
polynomial in X such that f(B;p™*) = b,(B;s). Then the following proposition
-is derived from a functlonal equation of (global) Siegel series by Mlzumoto [Mi].

Prop031t10n 4 Let C and C be non- degenemte symmetric matrices of degree
n with entries in Z,. Assume that there exists a matriz V of degree n with entries
in Z, such that C = C[V] and f(C, X) is not identically zero. Put

£(6;X)
X ordp(det V)f(év, X)

G(C,C; X) =

Then we have B R
' G(C, C;p™ ' XY = G(C, C; X).

Remark. To prove the above proposition, we used a global functional equa-
tion. But as T. Watanabe pointed to the author, the above functional equation
can also be proved by rewriting the functional equation in [Kar], 4.8.

Now by the above proposition and a classification theorem of quadratic forms
over local fields, we give the following functional equation of F(B; X), whicn is
one of key ingredients to prove Theorem 1.

Theorem 5. For a non-degenerate half-integral matriz B of degree n over
Z, put D(B) = 2%"/? det B and d(B) = ord,(D(B)). Further put

2[(d(B) +1—465)/2] if niseven
MB)Z{dE(Bg ! 72 if nis odd
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with 65, Kronecker’s delta, and

§(B) — 2+ 2¢(B)? if n is even
(5= { 5(B) if 7 is odd

Then we have
F(B;p_n_lX_l) — C(B)(p(n+1)/2X)—e(B)F(B; X),
where ((B) = n(B) or 1 according as n is odd or even.

Now to prove Theorem 1, we give two types of induction formulae for F(B; X ).
First let p be any prime number. For non-degenerate half-integral matrices
B and B, of degree n and n — 1, respectively over Z,, put § = 6§(B) and
§ = 6(B,). Further put & = &(B), f’ = ¢'(B), and 7} = n(B;) if n is even, and
£ =¢€(B,), & = ¢(B,), and n = n(B) if n is odd. Here we make the convention
that B, is the empty matrix and that we have § = ¢ = 1 and § = 0 if n = 1.
We note that § = 6;(B) and § = 6,(B). Define rational functions C(B, B,; X)®
and C(B, By; X)® in X by

1 —prl2¢X o
T 5 1II n 1S even
C(B, By X)W ={ 1=p' X .

- if n is odd,
1— pnt1)/2fx

and

( (_1)£+1€Iﬁ(1 _ pn/2+1X§)
1—pr+iXx2
x(pnlzX)6 e 12 if n is even
(=1)¢&
1—plntd2XE ]
{ X(p(n-—-l)/2X)6—6+2—£2p(26—6+2)/2 if nis odd.

C(B, By;; X)© = {

We note that by definition we have

1
OB, By X = g and C(B, By X) =
ifn=1

Then by Theorem 3 (1) and Theorem 5 we have.

' —(pX)*+
1—pX

Theorem 6. Let B = (b1) and B, be non-degenerate half-integral matrices
of degree 1 and n — 1, respectively over Z,, and put B = B; L B,. Assume that
ord,(b1) > i(B;) — 1+ 265,. Then we have

F(B; X) = C(B, By; X)VF(By; pX) + C(B, By; X) O F(By; X).
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Next we must consider a more complicate case for p = 2; let B, be a non-
degenerate half-integral matrix of degree n — 2 over Z,. Let

B, =2"K with K = H or Y,

or
B1 = 2m'U.1.L2m’U,2 with 'Z.L]_,'U;Z € Z;

Put B = B;1B,. Put 6 = 5(B),§ = §(2™LB,), and § = 6(B,). We note that
§ = 61(B), 6 = 62(B), and 6 = 63(B). Further put

(26 —6 —6+2)/2 if nis even, By = 2™u; 12™u,, and d(B) is odd
or if nis even, By = 2™K, and &(B;) =0

2 if n is odd, B; = 2™K, and dy(B) is even

0 otherwise.

‘Further we define other quantities as follows; let n be even. Then put & =

EB), & =1+¢—,6=¢(By), & =1+(— £, and

n(szZ_LBz) if Bl = 2mU1J_2mU2,
. and d(B,) is even
T=1 (=1)@=1-Disp(B,) (2™, (=1)m=D/2det By), if By = 2K, and £(B;) # 0

1 otherwise.

Let n be odd. Then put n = n(B),5 = n(B,;),& =1 and £ = 1 or 0 according
as B; = 2™K and dy(B) is even or not. Now for 1 = 1,2 and j = 0,1 define a
rational function C(B, B,; X)) in X by

1—2n%X o
1_ on+lx2 s
C(B,By; X)W ={ 1- on+1 X2 if n is even
= 25 1 | |
z if nis odd,
1— 2n+D)/2¢ X
. (‘1)5"'16’77(1 _ 2n/2+1X&.)
1 — 2ntl X2
x (272X 3-8+ +o 08/ .
C(B,By; X)W ={ ~ )
(B, By; X) 1
1-— 2(”+1)/2X€
x (20X )6_3+2_52+02(26_3+2+0)/2 if n is odd,

1

1— 726X
C(Ba BZ; X)(zl) = 1— 2(n—§)/2€~X

1—-2nX2

if nis even

if n is odd,
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[ (1)t

1—2n/2X¢ o ) o
(2(11,—2)/2X)6—6+2—£2—-0'2(26—6+2—20')/2

( 1)E+1 (1 _ 2(n+l)/2X€)

1—2rX2
(2(71,—1)/2X)6 5+52—62(5-a)/z

C(B, By; X)) =

65

if n is even

if n is odd.

Here we make the convention that B, is the empty matrix and that we have

{f 5’—16—mand5—01fn-2 Thus we have

1— 226X
1-23x2

—1)eg/(1 - 22¢X)
1—23X2

C(B, By; X)) =

C(B, By; X)) =

C(B, By; X)) = (

1 v
1-2X’
and

@x)™

C(B, Bz;X)(QO) = 19X

(2X)6—m+62 26/2’

if B = 2™K or 2™u; 1 2™u;. Then by Theorem 3, (2),(3),(4) and Theorem 5 we

have

Theorem 7. Let By = 2™u; L2™u, with uy, uy € Z5 or By = 2™K with K =
H orY. Let By € Hn_2(Z) and put B = By 1 B,. Assume that m > i(B;) + 1.

Then we have
F(B; X) =

C(B, B; X)*C (B, By; 2X)®VF(B,; 4X)

X)W C(B, By; 2X) ) 4 C(B, By; X)9C(B, By; X )*V}F(B,; 2X)
+C(B, By; X)19C(B, By; X)) F(By; X).

Proof of Theorem 1. The theorem can be proved by using Theorems 6

and 7 repeatedly.

4 Examples

In this section we give some examples.

(1). Let n = 1. Then for any B € H1(Z,) N GL;(Q,) such that ord,(B) =

have
- () _

F(B; X) = fl———Z(PX

m we
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This is well known. ) |
(2). Let n =2 and B = (b;;)1<ij<2- Let § = 2[(d1(B)+1—02,)/2] and 6 = dy(B).
Further put £ = £(B), &' = €'(B). Then by Theorems 4.1 and 4.2 we have

( — pEX)(1 = (P2X)P)
(1-pX?)(1-p*X)

(—1)8+1¢/(pX )*=5+ ppl2(1 — p2eX)(1 — (pX)**)
(1= X)(1 - pX) |

F(B; X) =

+

Rewriting this, we have

- s .
F(B; X) = €(pX)™ 15 3 (pX )

1=0

52462 —i—1 ‘
+(1- pX) Z(pm Y WX
3=0
This coincides with [Kau]. See also [Ma2] and [Ki2].
(3). Let n = 3. Let B = (bij)1<ij<s- Put n = (=1)%#h(B),6 = di(B),6 =
2[(ds(B) + 1 — 65,)/2], and 6 = ds(B). To give an explicit form of F(B;X) we
define another invariant € as follows; let p # 2. Let ‘
(3.1) B puy LpTuylpTug
be the Jordan decomposition of B as in Section 4, where r; > r, > r3 > 0 and
uy, U, u3 € Z;. Then put
’ £ = x(=p"uspus).
Next let p = 2. Then B is equivalent to one of the following canonical forms:
(3.2) B = 2"y  1272uy 1 2™ ug with 7y > 1y > 13 > 0,uy, Uz, us € Z;
(3.3) B2 K12%u3 with ry > r3+12>0,u3 € Z]
(3.4) B & 21y L9 K with ry > ry > 0,u; € ZJ.
Then define € by

x(—2"7uy2u;) if Bis of type (3.2) and r; > 7y,

1 if B is of type (3.3) and dy(B) is even
£=30 if B is of type (3.3) and dx(B) is odd
' or if B is of type (3.2) and r; = ry,
x(— det K) if B is of type (3.4)

Now let p be any prime number. Then we define ¢ = 2, or 0 according as B
is of type (3.3) and dy(B) is even, or not, and put §' = § — ¢. Further put
£ =1+ € — €2 Then we have

F(B; X)

B 1 1—(p3X)5+1'
_1—p5X2 1—-p3X

r N 1—(pX b+1
3X2)(6 5+2)/2p(6+6)/2 ( )

e (= PXI(1=pX)



o (—1)€+1§:’(p2X)3':§+€'2p3'/2(1 _ P3X§~) ,
(1 -p?XE)(1 - p°X?)
_ (E1)End (px )PE - E B2 (1 — px ) L= (X )
(1-pXE)(1 - p°X?) S 1-pX

Rewriting this, we have

P 6 [2—i—-1

F(B; X) =) (P’ X) Z (p"’X2

=0

.

i 5 [24£2—im1

+n(p* X3P EOLEX) Y P X)) (XY

1=0 3=0
' 6—26'+6-1 .
+E(p° X?)P 2 (pPX ) E(sz )Y (PPEX)

7=0

This coincides with [Kat2], Theorem 1.1, though it is slightly different from the

latter in formulation. See also [Ki3].

5 Comments

(1) Our method of the proof of Theorem 1 seems applicable to. other types of
FEisensten series.

(2) As is well known F, x(Z,0) has the followmg Fourier expansmn

n,k(Z70 =ch,k(‘B 6
B e
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where B runs over all semi-positive definite half-integral matrices of degree n

over Z. Then we define Koecher-Maass Dirichlet series M, x(s) associated with
En,k(Z, 0) by
Cn k(B)
M, =\ ___mk\P)
#() EB: ¢(B)(det B)*

where B runs over a complete set of representatives of GL,(Z)-equivalence classes
of positive definite half-integral matrices of degree n over Z, and ¢(B) = #{X ¢
M.(Z);’XBX = B}. Ibukiyama and the author has given an explicit form of

M, x(s) without using Theorem 1 (cf. [IK]). It is interesting problem to get the -

same result directly from Theorem 1.

(3) We have proved Theorems 6 and 7 assuming the functional equation for the
global Siegel series. But conversely by these theorems we can prove Theorem
5, and therfore get the functional equation for the global Siegel series. Thus it
seems very interesting problem to prove Theorems 6 and 7 directly from the local
theory of quadratic forms.
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