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Introduction

In this paper, we would like to note that observations in [8] and [9] are appli-
cable to the hyperelliptic case, using a result of Gerritzen-van der Put [6] on the
Schottky-Mumford uniformization of hyperelliptic curves. More precisely, we will
construct universal power series for differential 1-forms and period integrals of
certain hyperelliptic curves over (archimedean and nonarchimedean) local fields,
and will give their applications as follows:

1. to characterize Siegel modular forms (over fields of characteristic # 2) van-
ishing on the hyperelliptic Jacobian locus in terms of certain relations be-
tween their Fourier coefficients.

2. to construct a universal solution (deforming the soliton solution) of the KdV
hierarchy, and p-adic solutions of KdV as specializations of this universal
solution.

As for the application 1, we note that there were results of Mumford [19] and
Poor [21] on the hyperelliptic Schottky problem, however their approach, which
characterizes periods of hyperelliptic curves in terms of the vdnishing of certain
theta constants, is different from ours. The solutions of KdV given in the appli-
cation 2 are constructed as universal and p-adic versions of the Riemann theta
function solutions given by Novikov [20] and McKean-van Moerbeke [15].
Schottky uniformization theory with describing 1-forms and periods for al-
gebraic curves over C was established by Schottky [22] (cf. [7] and [13]). The
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nonarchimedean version was constructed by Mumford [18] and Manin-Drinfeld
[14], and further, Gerritzen-van der Put [6] uniformized degenerate hyperelliptic
curves by certain Schottky groups called “Whittaker groups”. In §1 using these
results, we gwe a uniformization for hyperelliptic curves over local fields close to a
degenerate curve Y2 = X [[{_,(X — ak) This uniformization, which is obtained
from Whittaker groups with generators

O —Of 1 0 ap —Oag i
, - modulo center,
1 1 0 B3 1 1

is useful in deforming the soliton solution because it is known to be expressed by
the theta function of the above degenerate curve (cf. [19], Chapter IIIb, §5). We
note that this uniformization was used by Belokolos and others in [1], 5.8, for con-
* structing the Riemann theta function solutions of KdV concretely. Our universal
1-forms and periods obtained in §2 are power series with polynomial coefficients
over Z[1/2] which become, by specializing variables, the 1-forms and periods of
hyperelliptic curves uniformized in this way (universal periods of hyperelliptic
curves having reduction of another type were studied by Teitelbaum [23] in the
genus 2 case). Therefore, as is described in §3-4, one can obtain the hyperellip-
tic version (the applications 1 and 2 above) of- the results in [8] and [9] on the
Schottky problem and constructing solutions of the KP hierarchy respectively.
Lastly, we would like to mention Schottky uniformization theory on analytic
curves of infinite genus over local fields (cf. [10]). This, combining the results in
this paper, would yield a theory on hyperelliptic curves of infinite genus. It would

be interesting to compare this approach with the well-known work of McKean
and Trubowitz on “Hill’s surfaces” (cf. [16] and [17]).

1 Uniformization of hyperelliptic curves

- In this section, we recall Schottky uniformization theory on algebraic curves
over local fields (cf. [22] and [18]), and construst a family of Schottky uniformized
hyperelliptic curves using a result in [6]. Let K be C or a nonarchimedean
complete valuation field with multiplicative valuation | |. Let PGLy(K) act on
P!(K) by the Mébius transformation:

A subgroup I of PGLy(K) is a Schottky group of rank g over K if there exist (free)
generators 71, ...,7, of I' and 2¢g open domains bounded by Jordan curvesif K = C
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(resp. 2g open disks if K is a nonarchimedean valuation field) Dy, ...,D1y C
P!(K) such that '

D;nD; =0 (i#3), P (K)—D-x) = Dx (k=1,..,9),

where D; denotes the closure of D;. Put

v g , v
= P(K) - J(D.UDm), He = ().
k=1 ~€el’

Then it is easy to see that I' acts freely and discontinuously on Hr, and P}(K) —
Hr becomes the limit set of I'. Let Cr denote the quotient K-analytic space Hp/T'
which is obtained from P'(K) — Uj_, D+ identifying the boundaries 8D and
OD_i via v¢ (k= 1,...,¢). Then Cr is called Schottky uniformized by I'. When
K = C, Cr is a compact Riemann surface of genus g which becomes a (proper
and smooth) algebraic curve over C. Then for each : = 1,...,g, let a; be the
closed path 0D; counterclockwise oriented, and let b; be an oriented path in Fr
from a point z; of dD_; to vi(z;) such that b; N b; =0 (¢ # 7). One can see that
{ai,b:}1<icy becomes a canonical basis of Hy(Cr,Z), so that

(@by) = 85, (@) = (boby) = 0 (5 € {1,.:9)).

When K is a nonarchimedean valuation field, it is shown in [18] (cf. [6], Chapter
IIT) that Cr can be algebraizable as a (proper and smooth) algebraic curve of
genus g over K which we call a Mumford curve. Let

(a —¢)(b— d)
@—d)b—0

[a,b;¢,d] =

denote the cross ratio of four points a, b, c and d.

Theorem 1.
(a) Let K = C, and take ax, B € K* (k= 1,...,9) such that a; # Fa; (1 # J)
and that v
AR

(8773 ’ a,-:i:aj

(1,5 # k)

are sufficiently small. Then the subgroup T' C PGLy(K) -genemted by '71; sV

’ -1
_ o —Oog 1 0 ar —Qg "
= (0T ) (o ) (T ) e

becomes a Schottky group of rank g, and Cr is a hyperelliptic curve of genus g
over K = C.
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(b) Let K be a nonarchimedean complete valuation field of characteristic # 2,
and take oy, Br € K* (k= 1,...,9) such that o; # ta; (i # j) and that

18| < min{|[ak, —ak; i, 2o5]| ; 4,5 # k} (k=1,..,9).

Then the vk € PGLy(K) (k= 1,...,9) defined as above generate a Schottky group
T’ of rank g, and Cr is a hyperelliptic curve of genus g over K.
(c) In the cases (a) and-(b), the affine equation of Cr is given by

¥: = X J[(X - 00)(X — O(us)),

k=1
where - .
6(z) = 2 [[ (_z._— 7(0).)
ety \F ()
and ’ ‘
" \ =a'1—,5k uk=a1+ﬂk
k L 3,’ . B

Further, under B, ..., 8, — 0, Cr tends to the degenerate curve obtained from Pl

by identifying or and —ay (k = 1,...,9) in pairs, of which affine equation is given

by ‘
: g

Y2 = XJ[(X —o})

k=1

Proof. It is shown in [22] and [5], §2 that in the cases (a) and (b) respectively,
I" is a Schottky group of rank g over K. Put

—_ 1 0 X
Sg = (0 _1) mod(K™),

and for each £k =1, ..., g, put

! : -1
o M op 1 0 Ak Lk “y
Sk_(l 1)(0 —1)(1 1) mod(K).

Then s, s1,...,5, are of order 2, and for any k=1,...,9,

spsg = ()‘k"‘ll’k AT ) _ (dk(l'i'ﬂz) ai(l—ﬂ%)) —
° 2 Ak + Bk 1-6;  ox(1+57) '

Hence T is a Whittaker group in the terminology of [6], Chapter IX, 2.1. Let I"
be the subgroup of PGL,(K) generated by sg, s1, ..., 4, in which T' is contained
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with index 2. It is shown in [13], §7 and [6], p. 46-47 that in the cases (a) and
(b) respectively, for z € Hr — U, er y(00),

o) = 2 [ 2220

~er-{13 % — 7(o0)

is convergent absolutely and uniformly in the wider sense, and hence (z) becomes
a meromorphic function on Hr. For any 6 € T, n(6(z)) = x(&) - n(z), where

© = () J 222 (o (07) mto)

~yer-{1,6}

is independent of z and hence is multiplicative on 6. Since I'sqg = s¢I", we have

I z+7(0)
1@ == e

which implies that n(s¢(z)) = —n(z). Hence there is a character x : IY — K* such
that 7(6(2)) = x(6) - n(z) (6 € I'), and Im(x) C {£1} because I is generated by
the elements so, 81, ..., 84 of order 2. Thus 6(z) = 5(2)? is I'-invariant, and hence
defines a meromorphic function on the quotient space Hr /I with only one simple
pole. Therefore, we have 6 : Hp/T"PL.. Then as is shown in [6], p. 279, the
fixed points of sy, s1, ...,8, belong to Hr and are ramification points of the natural
covering Hp/T' — Hp /T’ of degree 2. Hence Cr = Hp/T becomes a hyperelliptic
curve over K, and its affine equation is given as above. The description of its
degenerate form is derived from [9], Proposition 2.2 and that for any v € I'— {1},

2=90) _ ; _2(0) =(e0)

z — 7(00) z —(o0)

» 1 under f,...,8, — 0.

2 Universal 1-forms and periods

Differential 1-forms and period integrals of Schottky uniformized curves were
described by Schottky [22] and Manin-Drinfeld [14] (cf. [7] and [13]), and these
universal expressions as power series were obtained in [8] and [9]. In this section,
we give a hyperelliptic version of this result by using Theorem 1. Let zy, Yk
(k=1,. " g) p, and z be variables. Let A be the ring of formal power series over

Z[1/2,zE, ..., 231 Tiz; 1/ (2i £ z;)] with variables yy, ..., y,, i.e.

1 1 |
A= Z xitl, ’xj:lv ':*:(L'j [[yl,'"ayg”a

i#j T
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and put

A,,:A[ﬁ 1 ]

i1 (T — p) (=2 — p)
For each k = 1, ..., g, let ¢, be the element of PGL,(2) (R : the quotient field of
A) given by | ' '

-1
T —T 1 0\ T —Tg )
_ d(Q>
& (1 1)(0y2)(1 1) mod(it),

and let ® be the subgroup of PGLy(f)) with free generators ¢y, ...,0,. Let ®;

(resp.  ®;;) is a complete set of representatives of the cosets ®/(p;) (resp.
{p:)\®/(p;)), and define the map ¢;; : ®;; — Q* by
| Yii(p) = y? | (ifi=jand ¢ € (pi))
thd (21, —2i;9(2;), ¢(—2;)] (otherwise),
where [a, b; ¢, d] denotes {(a—c)(b—d)}/{(a—d)(b—c)} as above. Then we define

formally

0 - o) —o-2) 4 i
% E(%,.(<z—¢<xj)>(z—so(-xj>))d G=1m9),

_ A GNP
Wor = 2Tt —pp "2

P, = H '(/),'_7’(30) (Z,] € {1,...,g}).
€D,

Theorem 2.

(a) Q; ( = 1,...,9) and Wy, (n > 1) are 1-forms having power series ez-
pansions for z — p with coefficients in A,, and P;; (i, € {1,...,9}) belong to
A. Moreover, we have the following congruences modulo the ideal generated by
Y3, s Y2

2:l:j

1 (2 —z;\”
Q] = ———Edz, Wn,p = -(—z_—p);dz, P,'j = (-73 35]) )

2 . .
z2¢ —z} x; +

(b) Assume that K = C, let ok, Bk, I',Cr be as in Theorem 1 (a), and take
p € Fr—{oo}. Then the coefficients of Q;, W, , and P;; are absolutely convergent
for zx = ok, yx = B (kK =1,...,9). Moreover,
W = Qj|¢k=ak1yk=ﬂk (.7 = 17"'79)

form a basis of differential 1-forms of the first kind on Cr satisfying that

/wj = 2mv-16;; (1=1,...,9),
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Wpp = ,P|wk—ak,yk—ﬂk (n 2 1)

become dzﬂerentzal 1-forms ezther of the second kind (zf n > 1) or of the third
kind (if n = 1) on Cr satisfying that

p .
/a' wntp = . 0’ ‘/; wl,p ) = —/OO Wy (Z = 1) "'v7g)

pi; = Pijlo=arm=6 (4,7 €1{1,...,9})

become the multiplicative periods of (Cr;ai, b;), i.e.

pij = exp(/;‘wj).

(c) Assume that K is a nonarchimedean complete valuation field of character-
istic # 2, let o, B, I', Cr be as in Theorem 1 (b), and take p € Fr — {oo}. Then
the coefficients of Q;, W, , and P;; are absolutely convergent for xr = ay,yr = Py
(k=1,...,9). Moreover, - ‘

and

w; = lel‘k=ak,yk=ﬁk (-7 = 1:---’9)
form a basis of differential 1-forms of the first kind on Cr,
Wnp = Wnyplwk:akyyk':ﬁk (n>1)
become differential 1-forms either of the second kind (if n > 1) or of the third
kind (if n = 1) on Cr and
pi; = .ijl-’vk=0tk,yk=ﬁk (Z’] € {1""’9})

become the multiplicative periods of Cr, i.e. the Jacobian variety of Cr is isomor-
phic to the quotient K -analytic space of (K*)? by its subgroup with generators
(ptj)1<'l.<g (.7 - 1 ag)

Proof. Assertions (a) and (c) follow from Proposition 3.2 and Theorem 4.3 of
[9] respectively by putting z_; = —z; and a_p = —aoy (k= 1,...,9). Assertion
(b) follows from classical Schottky uniformization theory in [22], §2 (cf. [7], §6
and [13], §7-8).

Remark. One can show that

1 -y I4+ye) '
0 , 0 A (k=1,..,9),
(’T"1+yk> (mkl —yk) €A 9)
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and that

2 _ 4 1—y 1+ yx
Y = XI]_;];(X 0 (xkl n yk))(X -6 (xkl-—: yk))
gives the affine equation of a hyperelliptic curve over A[1/y1,...,1/y,] which is
universal, i.e. becomes Cr under substituting zx = ax, y&x = Bk (k = 1,...,9)
(see [11] for general case). Then the above w;, W, , and P;; can be regarded
as differential 1-forms and multiplicative periods of this universal hyperelliptic
curve respectively.

3 Hyperelliptic J acobians

In this section, as is done in Theorem 3.2 and Corollary 3.3 of [8] for the
(proper) Schottky problem, we give a solution to the hyperelliptic Schottky prob- ‘
lem by using the universal periods P;; in Theorem 2. For integers g > 2 and &,
Siegel modular forms of degree g and weight h over a Z-algebra R are defined
as global sections of A®* ®z R (X := A9m.(Q4/x,)) on the moduli stack &, of
principally polarized abelian schemes of relative dimension g, where T:A— A,
is the universal abelian scheme. Then we recall the result of Chai and Faltings
in [2], [3] and [4] which says that to each Siegel modular form f of degree g and
weight h over R, one can attach its (arithmetic) Fourier expansion

T=(ti)  #g=1

Fi) = % o) [T e € B[ G#9)] Dol

where ¢;; (¢,7 € {1,...,9}) are variables with symmetry ¢;; = ¢;i, and T runs
through half-integral and positive semi-definite symmetric matrices of degree g.
The Fourier expansion is functorial on R and becomes, when k = C, the classical
Fourier expansion with respect to ¢;; = exp(2my/=1- 2;;) ((2ij)1<i,j<g € the Siegel
upper.ha,lf space of degree g). In the following, we give a characterization of
the Fourier expansions of Siegel modular forms vanishing on the hyperelliptic
Jacobian locus in X, which consists of the Jacobian varieties of hyperelliptic
curves with canonical polarization.

Theorem 3. Let k be a field of characteristic # 2, and let f be a Siegel
~modular form of degree g and weight h over k. Then |

f = 0 on the hyperelliptic Jacobian locus
— F(f)l'Jij:P.'j =0:n A@zk
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- Proof. Take a nonarchimedean complete valuation field K containing k. Then
by the construction of F(f) (cf. [4], Chapter V), for the periods p;; given in
Theorem 2 (c), F(f)|g;;=p;, are (up to a canonical trivialization of A®*) equal
to the evaluations of f at the hyperelliptic curves Cr given in Theorem 1 (b).
Therefore, the implication (=) holds.” On the other hand, as is shown in [6], p
282-284, any hyperelliptic Mumford curve of genus g over K can be uniformized
by a Whittaker group which is by definition a Schottky group with free generators
tito, ...yt to, where to,tl, oty € PGLg(K) are of order 2. Since

1 0

t -1 = =
Plop So (0 1

) mod:(K *)

for some p € PGLy(K), Cr given in Theorem 1(b) form a Zariski dense sub-
set in the moduli space of hyperelliptic curves of genus g. From this and the
irreducibility of the moduli space, the implication (<) follows.

Remark. It would be possible and interesting to make an effective version
of Theorem 3, i.e. to give an integer n(g,h) explicitly described by g,k such
that a Siegel modular form f of degree g and weight h over k vanishes on the
hyperelliptic Jacobian locus if F(f)|q,;=p, € A®k belongs to the n(g, h)-th power
of the ideal generated by y1, ..., y,.

By Theorem 3 and the congruence for P;; given in Theorem 2 (a), we have

Corollary. Let f be a Siegel modular form of degree g over a field k of
characteristic # 2, and denote its Fourier ezpansion by >r ‘(tm) ao(T) I, ; ¢i% . If
f = 0 on the hyperelliptic Jacobian locus, then for any set {s1,...,8,} of nonneg-
ative integers such that

> s; = min{tr(T) | a(T) # 0},

we have

> T)H(”“J‘rm]')% o

tii=s; 1<J

4 Solutions of KdV

- In this section, as is done in Theorems 3.4 and 4.6 of [9] for the KP hierarchy,
by using algebro-geometric theory on soliton equations (cf. [20] and [15]) and
the universal 1-forms and periods given in Theorem 2, we construct formal and



100

p-adic solutions of the KdV (Korteweg-de Vries) hierarchy given as the Lax form:

oL?
at2-n.+1

(8 = 8/8ty, (L**1), : the nonnegative part of L?**! for 3) which includes the
KdV equation: -

= (@™, 1] [P = 8 +2u(ty,ts, )

Oou 10Pu _ du
— === —Ju— = 0.
at3 4 atl atl
First we treat the formal case. Let the notation be as in §2. For each : =
1,...,9, define a square root P,-t-ﬂ € A of P; by

P* = yii ( 1r/z2) ( I1 ¢'ii(‘P)—1)
‘ n=0 v€®ii—{1}

({1} denotes the element of ®;; containing 1), and for any ¢ = (v;)1<i<y € 27,
put

LR = TR IR,

_ 1,7=1 1<j
Then for a sequence w = (w;)1<i<y and a vector 2 = (2;)1<i<qg Of 1ndeterm1nates
the universal hyperelliptic theta function is defined by

Ow-exp() = 3 { I oy Tt 55 2 (S om) }

geZ9 i,5=1 n=0 i=1

which becomes a formal power series of 21y ...,2g OVEr t-he ring

B_A[w17 2] g]@ZQ

In what follows, put p = 0. Let Rjm,Qnm € A (j = 1,...,9; m,n € N) such that

Q; = D Rjnz""ldz,

m=1

Wn+1,0 = (zn+1 + Z Qnm P 1) dZ

and put Rn = (Bjm)igi<-

Theorem 4. The formal power series

0?
u(ti,ts,...) = 50 log @(W exp (Z t2n+lR2n+1)) + Qu

n=0

of t1,13, ... over B satlisfies the KdV hierarchy.
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Proof. Take ay, B € C* as in Theorem 1 (a), and let ,32 € {%0x} such as

() -G

n=0

Then by Theorem 2 (b),

O(W - €xp(2))|zy=arr =5,

is the Riemann theta function of Cr. Further, B, = 0 if m is even because

1 1 B 1 ~ 1
Ze=(e)  —a—e(-z) | - dP)E)  z- d@)-ay)

for any ¢ € ®, where ¢ is the involutive automorphism of ® sending ¢y to i ’.
Thus by results of Novikov [20] and McKean-van Moerbeke [15] (cf. [12] and -
[19]), for any ¢, ...,¢, € C*,

u(tla t3, ) |$k=ak:yk=ﬁ;¢awk=ck
satisfies KdV. Therefore, u(ty,ts,...) itself satisfies KdV.

Remark. By Theorem 2 (a), replacing w = (w;); by (w,-P,-,_-l/ %); as is done in
[19], Chapter I1Ib, §5 for the Riemann theta functions, one can see that u(t,13,...)
gives a deformation, as a solution of KdV, of the g-soliton solution

o t2n+1
log |1+ > { 1T ( ) [ wiexp ( E &
ot} [ 0£IC (g} \ivel i<i \Ti T Zi) i P

(see [9], 3.5 for the KP case).

Second we treat the p-adic case. Let K be a nonarchimedean complete val-
uation field, and let Cr be a hyperelliptic curve over K as in Theorem 1 (b),
of which 1-forms w;, wy, and periods p;; are given in Theorem 2 (c). In what
follows, we assume that K is of characteristic 0 and that |

1Be|? < min{|4[ak, —an; £y, ;]| ; 4,5 # k} (k=1,...,9)

(the latter condition is aﬁtomatically satisfied if the residual characteristic of K
is not 2). Then as is shown in [9], Theorem 4.3 (c), for any ¢ = 1,..., g,

li()

< 1,
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and hence

8 () )Y - S8 () D (5

is convergent and becomes a square root of p;; which we denote by p,/ Then
by the negative definiteness shown in [14], §4 of the form log |[T{ ;-; (pi;)¥*| for
U = (v;)1<i<g € Z?, one can see that for ¢ = (¢;)1<icy € (K*)7,

belongs to K[z, ...,2,]]. Let p = 0 which defines a Weierstrass point of Cr by
Theorem 1 (c). Let 7jm,gum € K (j = 1,...,9; m,n € N) such that

. o0 ’
-1
wj = Y rimz™ Nz,
‘m=1
1 o~ Gnm
_ m—1
wn+1,0 = ( 1 + Z A dZ
z m=1 n

and put 7, = (7jm)1<j<g-
Theorem 5. For any c € (K*)9,

o? | | |
U(tl, t3, ) log @(C exp Z t2n+1r2n+1 ) + 11 € K[[tl, t3, ]]
a .

n=0

satisfies the Kd,V hierarchy.

Proof. This follows from Theorems 2 (c) and 4.
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