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Large Deviations for Random Matrices

ZINK TR A LA (Pumio Hia)

Introduction

In [Vo2], Voiculescu introduced the free entropy of a probability distribution as
the minus sign of logarithmic energy from potential theory, and it extension to non-
commutative multi-random variables was developed in [Vo3] in purely noncommuta-
tive setting. The free entropy theory is one of the highlights in recent breakthrough
of Voiculescu’s free probability theory. In [BG], Ben Arous and Guionnet obtained
large deviation theorem for the empirical distribution of selfadjoint Gaussian random
matrices and justified the notion of free entropy from the viewpoint of large devia-
tion principle (LDP). But it should be mentioned that the idea from LDP already
appeared in [Vo2, 3] in rather essential manner. So-called Voiculescu’s heuristics in
[Vo2] is a kind of LDP though of course it is not rigorous. The definition of multiple
free entropy in [Vo3] was given in the framework of LDP, and the equality (up to an
additive constant) of two definitions in [Vo2, 3] for single variable case is considered
as a result of LDP.

In this lecture, we want to make clear the intrinsic relationship among the fol-
lowing three themes (see the picture at the end of Sec. 2).

(i) Maximization problems for free entropy functionals.
(ii) Wigner type limit theorem for the mean spectral density of random matrices.
(iii) LDP for the empirical eigenvalue distribution of random matrices.

In Sec. 1, we present many examples of free entropy maximization problems.
Important distributions in free probability theory as well as in classical theory appear
as maximizers. In Sec. 2, we describe the basic framework of our LDP for random
matrices. In Sec. 3, we show the LDP for the empirical eigenvalue distribution of
selfadjoint Gaussian random matrices (which model a semicircular element in free
probability theory). Although it was proved in [BG], our proof is more transparent
in a bit more general setting. In Sec. 4, we show the similar LDP for non-selfadjoint
Gaussian random matrices (which model a circular element). Finally in Sec. 5, we
give a rather general LDP for unitary random matrices.

Acknowledgements. The author is grateful to D. Petz for a stimulating joint work.
This lecture is mostly based on the joint work with him. He thanks M. Izumi- for
useful comments from several aspects.
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1. Maximizing free entropy

For a probability measure u on IR (or C), the free entropy X(u) of p is defined
as the double integral

S(u) = / log | — y| du(z) du(y)

whenever the integral is meaningful. When u is compactly supported, this integral
always exists although it can be —oo (for example if y has an atom). On the other
hand, the so-called logam'thmz'c energy of a signed measure v is

I(v) = / log

which plays an important role in potential theory [La]. Note [La] that if v is com-
pactly supported and v(1) = 0, then I(v) > 0 and I(v) = 0 if and only of v = 0. The
free entropy functional X'(u) = —I(u) is weakly upper semicontinuous and strictly
concave on the set of probability measures supported on any given compact subset
of IR (or C).

dl/(m) dv(y),

It seems remarkable that many probability distributions familiar in free probabil-
ity theory [VDN] (also [HP2]) are realized as a maximizer of a free entropy functional.
To deal with maximization problems for free entropy (under constraints), the follow-

-ing theorem from the theory of weighted potentials is quite useful. It was proved in
[MS1, 2] by the adpatation of the classical Frostman method.

Let S be a closed subset in IR (or C). Let M(S) denote the set of all probability
measures whose support supp(u) is included in S. Moreover, let w : S — [0,00) be a
weight function, which is assumed for simplicity to satisfy the following conditions:

(i) w is continuous on S.

(if) So = {z € S : w(z) > 0} has positive (inner logarithmic) capacity, i.e. I(u) <
+o0o for some probability measure p such that supp(u) C Sp.

(iii) |z|w(z) —» 0 as z € S, |z| — oo, when S is unbounded.

Let Q(z) = —logw(z) and define the weighted energy functional

Io() = 1) +2 [ Q@) du(z) on M(S).

Note that Ig(p) > —oo is well defined thanks to the above assumptions.

Theorem 1.1. With the above assumptions, there exists a unique po € M(S) such
that '

Ig(po) = inf{lg(u) : p € M(S)}.
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Then Ig(po) is finite, po has finite logarithmic energy, and supp(uo) is compact.
Furthermore, the minimizer o is characterized as po € M(S) with compact support
such that for some real number B the following hold:

/ log |z — y| duo(y) = Q(z) — B if & € supp(ko),

[ 1081 - vl ds) < Q@) ~ B if 2 € 5 \ supp(so).
In this case, B = Io(uo) — [ Qduo. |

In the following we list several examples of maximization problems, which can be
solved by applying the above theorem. The details on (1)—(3) were given in [HP1].

(1) When S is a compact set (having positive capacity), a unique minimizer
ps for I(p) (or maximizer of X'(u)) on M(S) is sometimes called the equilibrium
measure on S. For instance, the arcsine law '

1

h(z) = ———==x(-1.1)(T
( ) me( 1,1)( )
is the equilibrium measure on [—1, 1], because
L o
/ h(y)log |z — y|dy = —log 2 (-1<z<1).
-1
Also this yields Z(h) = —log 2.

(2) For p,r > 0 the Ullman distribution has the probability density

T tp—l )
p/ dt f —r<z<r,

P (z) = { TP Jiz VI2 — 22 .

0 otherwise.

Note that

r +1
|z[Pv®P) (z) dx = aprP  where ap = _ TG .
r " P 2yml(B+1)

According to [To, pp. 12-13],

" |z|P r o1
[ 2@ sl - sldy = g +log g~ (el < 1),

T P 1 .
®) (4} 1 —yl dy < |l r_Z )
/_rvr (W)loglz —yldy < 5 - +log 5 — (lz > 7)

Hence vﬁ? )isa unique maximizer of the functional
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2(p) -

— [P du(e) on M),

papr?

This is equivalently formulated in the way that v is a maximizer of X(u) on {u €
M) : [|z|Pdu(z) < aprP}. Also E(U(p )) = log 2 — 2. In particular, v is the
semicircle law w, = mmX[—r ] dz with mean 0 and variance 12 /4, so that
wr maximizes X'(p) among {u € M(R) : [z du(z) < r?/4} and Z(w,) =log § —

In [BIPZ], in connection to the planar approximation to field theory, Brézin et
al. considered the distribution

u(z) = ( +4ga® + 2gz ) V4a? — 22x(_24,24)(T),

where a? + 12ga* = 1. This is a convex combination a?wsy, + 12ga4v§a) and is a
maximizer of the functional

X(u) — /(%xz + g:1;4) du(z) on M(R).

(3) For p,r > 0 define the probability density u® by ulP (z) = e )(\/— )/ VT
on IR, that is,

p [T !
— —————dt f0<z<2r,
ulP)(g) = { wr? /1/2 V2tz — z2 -

0 otherwise.

Then u(p ) | is a maximizer of the functional

/x” dp(z) on M(IRY),

X(p) - pa?

or equivalently, uP

where

maximizes X(p) among {x € M(IRY) : [zPdu(z) < &,rP},

. _ 27 T(p+ 1)

T AT+ 1)
Although this can be shown by using Theorem 1.1, a more efficient way is to trans-
form the above (2) via the bijective correspondence T : Mg(R) - M(R") by
Tp=poo~ where M;(IR) denotes the set of symmetric probability measures on
R and o(z) = z?, because [ |z|*? du(z) = [ 2P d(Tw)(z) and 25 (u) = Z(Tw). We
have Z(uP) = loglz"- — %. In particular, the distribution

uP(e) = L E

appears as the limit distribution of the free Poisson limit theorem [VDN, p. 34].

X[0,4] (x)
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(4) For a > 0 the Marchenko-Pastur distribution is given as

(7 —1—a)?
Via (2z7r:z:1 a) x(z) dz ' ifa>1,

o =

—(z—1—-a)2
(1—a)6o+\/4a (;ml 2) x(z)dz ifa<]l.

where x is the characteristic function of the interval [(1—+/a)?, (1++/a)?]. By using
the Cauchy tranform and the Hilbert transform of u, it is not difficult to see that

1 .
/ log |z — ¥|dita(y) = (@ — (a—1)loga) + Cif & € supp(sa),

1
/ log |z — 9l dpa(y) < 5(z ~ (@~ 1)loga) + C i © € R* \ supp(sa),

where constant C' is given by

(1+va)* Vida—(z—1-a)?
(1—+/@)? 2rx
1
- —2-(1 +a—(a—1)log(l+a)).

C =

log|z — 1 —aldz

We compute
/(““/5)2 Vida—(z—1-a)?
(1-va)? 2rz
=log2v/a + —/ log |z| dz

loglx — 1 —aldz

1/ 2

(11:)24 — log z dzx

l+af{mb-1 2b—1
= log2 — -
og2v/a + - (2 7 log o o lo 2)

thanks to an integral formula obtained in [Lar|, where

(1+0? , [Q+a) (1+a _(1+ap+]1-a

b= = _
4a (4a)? 4a 4a

Therefore, C' can be exactly calculated as

-(-l-loga—1+a ifa>1,
C = 2 2

1 1

—loga— (1 —a)log ta_lta ifa<1.

2 2 2
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When a > 1, the weight function w(z) = z(®~1)/2¢=%/2 on IR* satisfies conditions
(i)—(iii) stated above Theorem 1.1. Hence we can apply Theorem 1.1, so that p, is a
maximizer of the functional

2w+ (@—1) / log 7 dp(z) — / zdu(z) on M(RY).

Also,
E(Na)=§_ a;-l/log:cdua(wHC
=a+1lo a- log2—%
(a—l)/lﬁ ( +12—;_£)da:,

though we do not know the exact value of X'(y,). In particular when a = 1, y; is ugl)
in the above (3) (the case of free Poisson). When 0 < a < 1, y, has an atom at 0 and

. of course X'(pg) = —o00. Since w(z) has a singularity at z = 0, one cannot directly
apply Theorem 1.1. Indeed, the above functional has indefinite value (—o0) — (—o0).
Nevertheless, a certain justification can be made for u, to be a maximizer, while we
omit the details.

(5) The quarter-circular distribution o, = ﬁ;\/rz — x2X0,r d is also interest-
ing. From the Hilbert transform of w, it may be possible to find a function @(z) on
IR* such that @, is a maximizer of the functional X (1) — [ Q(z) du(z) on M(IRY).
In fact, we have the principal value integral for 0 <z < 1

/ "1— Y dy = :c+1+\/1—:1:210g(1_ 1_3:)

But it is not so simple for further calculation. It seems more convenient (and probably
more natural) to consider another type of entropy functional. For u € M,(IR) let
fi be the restriction of 2i1 on IRY. Let Q be a symmetric continuous function on IR
such that z exp(—Q(z)) — 0 as £ — +o00. Then for every p € M (IR),

3 [ 1081s* - 21 @) aiy) )- [ Q@) dtz) = 2w - [ @@ duta)

Hence 1o is a maximizer of ¥ (u) — [ Q(z)du(z) on M(R) if and only if fip is a
maximizer of

3/ f log 2" — 7] du(e) ) - [ @@ duta) on Mer)
So the above (2) implies that 'v(p ) = 2P (z)X[0,r] dz is a maximizer of

-;—// log|x2v— y2| dp(z) du.(y) - z?dp(z) on M(R™).
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In particular, we have the quarter-circular distribution @, as a maximizer of
3 [[log|z? — y?| dp(z) du(y) — % [ 22 du(z) on M(IR). By the way, it seems that
the exact value of X'(w,) is not known.

(6) For R > 0 and p > 0 define the distribution /\(p ) supported on the disk
{¢eC: lCl<R}by

)\g) db - P x(o,g)(r) dr (¢ =ret?).

2RP

In particular when p = 2, )\( ) is the uniform distribution on {CeC:|¢|<R}Itis
not difficult to compute

1ol = niax@m = EC + 1o ; (1< ),

IC!

[1ogic—nlaxPm =oelcl < L2 +10sR- 2 (1cl> B

Hence )\g’) is a maximizer of the funCtional
B() - = [ 1KPdutc) on M(©)
ll’ pRp I“L ! )

and it maxnmzes Y(p) among {p € M(C) : [[¢[Pdu(¢) < RP/2}. Also Z‘()\(”)) =
log R —

(7). Consider probability measures on the unit disk D = {¢ e C:|{| <1}. For
a € C, |a| < 1, we have the Poisson kernel measure

1-|af?

[¢ = af?

supported on the unit cn‘cle T. Since

Pa = i (¢ =€ d¢=db/2r)

/ log|¢ — 1) dpa(m) = log|¢a—1] (¢ € D),

we see that p, is a maximizer of the functinal
S(u) - [loglca—17duc) on M(D)

Moreover, p, maximizes X'(u) among {u € M(ﬁ) : [log|¢a — 1|du(¢) = log(1 —
|a|?)} and (pa) = log(1 — |f?). In particular, as is well known, the Lebesgue (or
Haar) probability measure on T is the equilibrium measure on ID (or T).

(8) In [GW], Gross and Witten showed that the following distribution on T arises
as the limit eigenvalue distribution in some lattice gauge theory:
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2w A

P '
3 .
%cosgvi—sm -g—d& (160] < 2sin™!'4/A/2) fO<A<2.

This means that the phase transition exists (for the limit) at A = 2. The result in
[GW] can be reformulated as follows: p) is a unique maximizer of the functional

1 (1+20030)d0 (18] < =) ’ ifZSXéoo,

5w+ [Re¢du(¢) on M(T).

- Furthermore, when 2 < A < oo, py maximizes ¥(u) among {u € M(T) :
JRe¢du(¢) (or [¢du(C)) = 1/A} and Z(py) = —1/X2. When 0 < X < 2, py
maximizes E(,u) among {n € M(T) : [ReCdu({) (or [¢du(¢)) = 1 —2/4} and
Y(p\) =1 log & — 7- Since the argument in [GW] does not seem easy to check, we
include a more accesmble proof below.

When A > 2 the computation is straightforward. For ¢ = e'?,
log |¢ —nldpa(n) = 5= 1+ < cos(0 +t) | log|1 —€'?| db
2T 0 A

1 2n
=5 /0 cos(f + t)log 2(1 — cos 0) d

27
= %S; cos flog(1 — cos 6) d@
_ cost / \/1* log(1 —t)dt

1
COSt/ \/1+ dt = ——cost

This implies the first assertion by Theorem 1.1. Moreover,

1 [ 2 1
Z'(p,\)z—gﬂ—)\- A cost 1+—Xcost dt:—}‘"z'"

If 4 € M(T) satisfies [ Re( du(¢) = 1/, then
0 < (- pr) = ~Z(u) - Z(PA) +2 [ [1oglc — a1 dpatm) du(C)
= —2(u)+ — - —/ReCdu(C) =2 (p) - /\2 ,

so that X'(u) < —1/A? and equality occurs if and only if u = p.

When A < 2 the computation is much involved. We use the technique of the
“Hilbert transform” on the circle. Put a = 1/A/2 and 3 = 2sin~!a. Define for

C=6it
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F(t)= / log [¢ — n| dpa(n)
B /———'— .
/ COS—\/— — sin? log2

When |t| < a, the differential of F(t) in the sense of distributions in (—a, ) is given
as

1 (% 6 [x o .6
, T e— — — — 1 2——
F'(t —m\/_ﬂcosz 5 —sin” 5 cot

(This and the integrals below mean the principal value integral.) We proceed to
compute

Vi—z2
F’(t)=i/ \/_—-:13 1-z cosz+:csm2d
A zcost — /1 —x?sini

sint + 4z/1 — x2
\/ -y 71 dx
7r)\ —sin® 3
smt \/ - a:2

o T2 — sin®

sm

| oo

Since-the above principal va.lue integral is equal to —m (see [Me, p. 74]), we have
F'(t) = — sint and hence

1
F(t) = SY cost + const (It < @).

Since

6 [
F 242 = Z
0) = cos 5\ 3 sin? log 2

= = Va2 — 2
7")\/0 a? — z?log2zrdx

SlIl

1
= %/0 V1 —122log2azrdz = —;-log% —%,
we have
1 1 A1 1 :
F(t) = —< “log 24— — = .
(t) Acost+2log2+)‘ 5 (It < @)
On the other hand, when |t| > a, F(t) is differentiable in usual sense and
int Vat—z? :1:2
Fl(f) = sin /
®) 2ma?
smt * \JaZ = :1:2

= ——sint.
21ra2 :vz - a2 A
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Hence
F(t) < -—% cost+const  ([t| > a).

Since F(t) is continuous at ¢t = +a, we obtain

A

/loglC nldpr(n) = ——ReC + —log if ¢ € supp(py),

+ 1
T3
L1
3

DN DN

1. A .
/log I¢ —nldpa(n) < ——ReC +5log if ¢ € T \ supp(pa)-

This implies the first assertion. Moreover,

2 (? t [ A1 1
Z(pr) = /\2/ costcosi §—sm 5dt+—log2+x_.2.
A1 1
= /(1—2x2)\/a2—mzdx+—log +X_§
_ll Al
—2 %Y

If 1 € M(T) satisfies [ ReCdu(¢) = 1 — A/4, then
0< I(— pa) = —5() — S(pa) +2 / / log ¢ — 7] dpx (1) du(C)

1 A1 1 A 1 A1 1
—E(M)—§10g§+z+2(~x(l—z)+§10g§+'x—‘2'>

1 A1
——E(M)+§1085—Z,

so that X (pu) < -;-log-’zl — i and equality occurs if and only if u = pj.

2. Introductory survey of large deviation principle

This section is a very brief introduction to the large deviation principle (LDP) for
the convenience of the reader. The interested reader may consult [DZ] or [DS]. Let
X be a topological space and B the Borel o-field on X. Let {P:}¢>¢ be a family of
probability measures on (X, B). The LDP of { P} characterizes the limiting behavior
of P, as € — 0 in terms of a rate function. Roughly speaking, the LDP may be
considered as a refinement of limit theorems such as law of large numbers and central
limit theorem.

The precise defintion of the LDP is given as follows.
Definition 2.1. (1) A lower semicontinuous function I : X — [0, 00] is called a rate

Junction. A rate function I is said to be good if {z : I(z) < a} is compact for any
a € [0,00).
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(2) {P:} is said to satisfy the LDP with a rate function I if
—inf{I(z):z € I'°} < limi(r)lfelog P.(I)
£—
< limsupelog P.(I') < —inf{I(x) : z € T}
e—0 ‘

for all I € B, where I'° and T denote the interior and closure of I'. This is equivalent
to the following two conditions:

(i) For every open set G C X,
liirgglfslogPE(G) > —inf{I(z): z € G}.

(ii) For every closed set FcCX,
hmsupelogP (F)< —inf{I(z):z € F}.

e—0

(3) {P:} is said to satisfy the weak LDP with a rate function I if the above (i)
holds and the upper bound in (ii) holds for every compact set F C X. '

(4) {P.} is said to be ezponentzally tight if for every 6 > 0 there exists a compact
set Ks C X such that

hmsupelogP (K§) < -1/6.

e—0

This condition is trivial if X itself is comapct.

Note that if I is a good rate function and the above (ii) holds, then there exists
at least one point € X such that I(z) = 0.

The following properties are useful to show the LDP.

Proposition 2.2. Assume that {P:} is exﬁonentz’ally tight. Then:
(1) If the above (i) holds, then the rate function I is good.
(2) If {P.} satisfies the weak LDP with a rate function I, then it satisfies the LDP,
(3) {P:} satisfies the weak LDP with a rate function I if
irGlf{lir? 15Up € log P(G)} < —I(z) < igf{ligﬂ(r)xf elog P.(G)}
for every x € X, where G runs over a neighborhood base of z.
In many cases, we treat a sequence {P,} of probability meas.ures on (X, B). For

0 < an — 0, we say that {P,} satisfies the LDP in the scale a,, with a rate function
Iif
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lim inf a,, log P,(G) > —inf{I(z) : 2 € G}
n—oo X .

for every open G C X and
lim sup a, log P, (F) < —inf{I(x) :zx € F}

n—oo

for every closed F' C X. Usually a, =n"! or a, = n~2 is used.

In the rest of this section let us explain the general scheme of the LDP for random
matrices which we will discuss in subsequent sections. A random matriz is a matrix
whose elements are random variables on a probability space. Given a probability
space (£2,P), set L = MNi<p<oo LP(£2,P), the algebra of complex-valued random
variables on {2 with finite moments. The expectation E(f) = [ 7 dP is a state on L.
The set of all n X n random matrices X = [zi;]} ;=1 such that z;; € £ for all 4,5 is
denoted by M, (L) = L ® M,(C), which is a *-algebra with a tracial state ‘

(X)) = i— > Eai).

Then (M, (L), ) is a noncommutative probability space suitable in random matrix
theory.

For each n € IN let a random matrix X(n) be given. If X(n) is Hermitian or
real symmetric, then we have the induced probability measure v,, on M,, (€)%, the
n X n Hermitian matrices, or M, (IR)*?, the n x n real symmetric matrices. Assume
that vy, is invariant under transformations by U(n) or O(n). Then v, induces the
measure U, on IR™ (the space of eigenvalues). Define a mapping A, from M, (C)*®
or M,(IR)** into M(IR) by '

. Lo
An(A) = - Z Ox;(4) »
=1

where A;(A),...,An(A) are the eigenvalues of A and 6, is the Dirac measure at ).
Now we have the probability meausres P, on M(IR) such that

P,(I") = Vn(Aglf) =, ({A: %i&)‘i(,q) € F})

I,
:Dn({tEIRn:—T;;(?tiEF})

for every Borel set I' of M(IR). Here M(IR) is endowed with the weak topology
o(M(IR), Cy(IR)), Cy(IR) being the space of bounded continuous functions on IR.
Note that M(IR) becomes a Polish space by the Lévy metric for example. We call
Py, the empirical eigenvalue distribution of X (n).

In Sec. 1 we may consider many distributions as a maximizer of a free entropy
functional. It is known via Wigner type limit theorem that some of them arise as the
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limit distribution pg of a certain random matrix model X(n). Then we may discuss
the LDP for {P,} defined as above from X(n). This is the so-called level-2 large
deviation theorem [El]. Here it should be natural to expect that a rate function I is
the minus sign of the free entropy functional (up to an additive constant) and so po
is a unique minimizer of I with I(ug) = 0. In this case, the LDP for {P,} implies
that the eigenvalue distribution of X (n) converges exponentially fast to the limit
distribution uo. Namely, for any neighborhood G of py,

1 1«
limsup;zlaloan(Gc) = limsolipﬁlogun({A P Z‘S’\i(") € Gc}) <0.
n= =1

n—oo

In particular, {P,} converges weakly to the point mass at yo.

Our general strategy in the LDP problem associated with random matrices is
described as follows.

free entropy functional

maximizer
minus sign
limit distribution
I(p) = -2 + [ Q@) du(@) + B | ———— | ko X (n)
' minimzer random matrix
model
LDP limit

rate function empirical eigenvalue

distribution

{Pa}

3. LDP for selfadjoint Gaussian random matrices

In their paper [BG], Ben Arous and Guionnet proved a large deviation theorem
for the empirical eigenvalue distribution of selfadjoint Gaussian random matrices.
But their proof in [BG] is rather complicated, so that we will give a more tranparent
proof (in a bit more general setting) though essentially similar.

For n € IN let X(n) = [z;]}';—; be an n X n random matrix such that
(i) X(n) is selfadjoint, i.e. z;; =T;; for 1 <i < j < m,

(i) {Rezij:1<i<j<n}U{Imz;;:1<i<j<n} is an independent family of
Gaussian random variables, ,
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(iii) E(zi;) =0for1<i<j<n,E(x%)=1/nfor1<i<n,and E((Rez;j)?) =
E((Imz;;)?)=1/2nfor1<i<j<mn.

Then X(n) is called a standard selfadjoint Gaussian n X n random matrix. The
probability measure v, on M,(C)*® induced by X(n) is invariant under U(n)-
transformations so that it induces the measure 7, on IR™. Moreover, the so-called.
Wigner theorem says that the mean spectral density of X (n) tends to the semmlrcle
law wy as n — oo in distribution. More precisely,

1 k
: ——— if k i
(X (n)%) — / 2 dwy(z) = { k/2+1 (k/2) R even
0 - ifkisodd
as n — oo for all £k € IN. (In fact, the Wigner theorem holds true in a much milder
assumption, [VDN], [HP2].) In this way, X(n) becomes a standard random matrix

model for wp. A more refined limit theorem was given by Voiculescu in [Vol], which
includes the assertion about asymptotic freeness.

Since the Hilbert-Schmidt norm of A = [a;;] € M,(C)*® is

1/2
l|A|lgs = {Zau +2Z(Reau)2 +2Z(Imau) } ,

i<j i<j

the map &(A4) = ((au)1<,<n,(\/_Rea,J)KJ,(\/_ImaU)KJ) is an 1sometry from
M, (C)*® with ||-||gs onto R™ with the Euclidean norm. So we have the “Lebesgue”

measure A, on M, (C)** transformed from the Lebesgue measure on IR™ via &. This
An is of course invariant under unitary transformations. It is known that the induced
measure A, on IR™ has the following joint density with respect to the Lebesuge mea-
sure dty - - - dtp:

— [t —¢;)? with Z! = (2r)C-D/2]T ;1.
/ n

1,<J

The above probability v, on M,(C)** from the standard Gaussian random matrix
X (n) is written as

1
o = gy XD (-5 4) dra(4),

so that the joint probability density of 7, with brespect to dty---dt, is

——exp( Zt2> [ —t)?

i<j

where Z, = Z] Z)] is a normalization constant.
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A real symmetric standard Gaussian n-x n random matrix is defined in a similar
way. In this case, when v, is the induced measure on M, (IR)**, 7, has the joint
density

——exp(———th) glt- — &

See [Me] for more about joint probability density of Gaussian random matrix eigen-
values.

From now on we will treat a more general probability on M (C)*e. Let Q(z) be
a real continuous function on IR such that for any € > 0

Illim |z| exp(—eQ(z)) = 0. : (3.1)
z|—o00 ) :
This is satisfied if for instance Q(z) = 1|z|P where p > 0. For each n € N let u,

be a U(n)-invariant probability measure on M, (C)** and assume that the induced
measure 7, on IR" has the joint probability density

Ziexp(——nZQ(t )) H|t — %,

1<J

where § > 0 is fixed (independent of n) and C, is a normalization constant, i.e.

i<j
The finiteness of this integral is guaranteed by assumption (3.1). Let P, be the

empirical eigenvalue distribution on M(IR) corresponding to v, defined in Sec. 2, so
that

Pn(F) = Dn({t eR": %Z(St'. € F})
i=1
for every Borel set I" of M(IR)

Then the LDP proved by Ben Arous and Guionnet can be extended as follows:

Theorem 3.1.  The finite limit B = limy, 0o n~2log Z, exzists and {P,} satisfies the
LDP in the scale n=2 with good rate function

1) = =82) + [ Q@) du(z) + B. - (2

Furthermore, there exists a unique pg € M(IR) such that I(up) = 0.
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For instance, when p > 0 and Q(z) = 1|z|P, it follows from (2) in Sec. 1 that the
limit distribution pg is the Ullman distribution v® with r = (283/ payp)l/P. Since

B=poe®) - / 2P0 (z) do

1 p
:,8(logZ — —) _ T

2 2 2
2
=glog—’8—ﬂl 2—3—ﬁ-
P pop 2p’

the following asymptotic limit is a by-product of the theorem:

lim izlogZ —élogﬂ—ﬂl 2—%
n—oom P T pap 2p

In particular when p = 2, rate function (3.2) is

1) = =65() + 5 [ a* dua) + 10 g~ 2

and pg = w, VB This is the case shown in [BG], and in this case, Selberg’é integral
formula (see [Me]) gives

+

and the asymptotic limit

lim -—logZ = élogﬂ———ﬁ

n—oo N

is directly obtained by the Stirling formula.

To prove the theorem, set
1
¢(@,y) = —Floglz -y + 5(Q() + QW)

$a(z,y) = min{¢(z,y),a} for a>0.

Since

¢(z,y) > —pB{log(|z| exp(—Q(z)/20)) + log(|y| exp(—Q(y)/26))}

whenever |z], |y| > 2, it follows that ¢, (z,y) is bounded and continuous, so that

e M(R) - / / ba(,y) du(z) du(y)

is continuous in weak topology. Hence
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- 65() + [ Q@) du(a)
= [[ ¢(@.v) dutz) duty) = sup [ da(a,y) du@) duts)
is lower semicontinuous in weak topology on M(IR). For simplicity write
1 | .
ut—;;&;‘. for t—(tl,...,tn)em.

The method in proving Lemmas 3.2 and 3.3 is essentially the same as Ben Arous
and Guionnet’s.

Lemma 3.2.
1 v
i J— < — inf . .
hrer}-»sooup n2 log Zn < uGMmf(.]R) ﬁ ¢($, ) du(a) dﬂ(y) (33)

Proof. 'We get

Zn=/---/exp(—iz:;62(ti)\)

X exp{— > (@) + Q(tj))} [Tt —ti1*P dty---dtn

i<j 1<j

_ / .. / exp (_ gQ(ti)) exp{—zgfﬁ(ti,tj)} dt; -+ - dtn
< [ fen(-S0)
x exp{ n [ o) duele) ) | -
< exp{_n2 i [ /{ _ $@)dua) du(y)}
X/.../exp(_gQ(ti)) iy
- ([ o) ow{ -n?iat [[ smv)dumrauts) |,

implying (3.3). ‘ - . o

Lemma 3.3. For every u € M(RR),
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ircl:f{lim sup iz log P,,(G)}
noee TE . (3.4)
- [[ #(e.9) du@) duty) ~ tmint 3 108 7,

where G runs over a neighborhood base of p.

Proof. For any neighborhodd G of p € M(IR) put |
G={teR": u €G}.

As in the proof of Lemma 3.2 we get
Po(G) = an(G)

--/C_;exp - Q: )) exp{ -2 $(tist;) }dtl

i<j

=5 ([ de) el . [[ bateiy @ ) + na}.

Therefore
. 1
hrrlri sup — log P.(G)
1
_ I} / T inf
< ,}’éfc / / be(2,y) dp'(z) dp' (y) — lim inf — log Z, .

Thanks to weak continuity of u’ — [[ ¢o(z,y) du'(z) dp' (y) we get

igf{lim sup % log P, (G)} <- / dal(z,y) du(z) du(y) — lim inf % log Z,, .
n—oo n-—00

Letting o0 — +o00 yields inequality (3.4). | O

Lemma 3.4. For every u € M(IR),

limint = log Zn > — [ [ 6(z,9) due) duty) (3.5)

n—o0 'n,2

and

mf{hmmf log Py (G)}

n—oo0

i (3.6)
—/ ¢(z,y) du(z) du(y) — limsup — — log Z,, ,

n—oo
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where G runs over a neighborhood base of L.

Proof. 1t is clear that
p € M(IR) — inf{lig_}igf ;11—2 log P,,(G) : G a neighborhood of u}

is upper semicontinuous. Smce ¢(z,y) is bounded below, if I ¢(z,y) du(z) du(y) <
+oo and i = p([~k, k]) " X(-k k)4, then

[ #(@9) dute) dus) = Jim, [ #(0.9) disn(o) due o).

So we may assume that u has a compact support. For € > 0 let . be a nonnega-
tive C*°-function supported in [—¢, €] such that [ ¢.(z)dz = 1, and ¢, * p be the
convolution of u with ¢.. Thanks to concavity and upper semicontinuity of X'(u)
restricted on probability measures with uniformly bounded supports it is easy to
see that

Z(pe * p) 2 Z(p) -
Also

Jim [ Q@) doe <)o) = [ Q&) dua).

Hence we may assume that u has a continuous density with compact support. More-
over, let A be the uniform distribution on an interval [a, b] including supp(p). Then
it suffices to show the required inequalities for each (1 — 8)u +6A (0 < 6 < 1). After
all, we may assume that p has a continuous density f > 0 on supp(u) = [a, b] so that
§ < f(z) <671 (a <z < b) for some § > 0.

The following proof is a modification of that of [Vo3, Proposition 4.5]. For each

n €N let a = b((,n) < dg") < b§”) < agn) < af™ < b = b be such that
aj" : . 1 : ~b§n) i
7 t@a=12, [7 @=L as<isw)
Then it immediately follows that
§ oy _ L ,
<b; < — <j3<nmn).
mSb e S5y (sisn)
Define
= {(t1,-.-,ta) ER™: 0l < t; <H™, 1< 5 <m}.

For any neighborhood G of u, it is clear that
A, CG={teR": y € G}
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for all n large enough. Therefore for large n we have

Pn(G) = ﬁn(é) > ﬁn(An)

—/ / exp(—-nZQ(t )gn,—t 128 dt, - -
ZL (—”Zé(")> T - b(n))Zﬁ/.../ dt, - dt
2 Zi(é%)nexp (—ngﬁ(")> H(a(n) b™)28

1<j
i<j

v

where E(") = max{Q(x) a( << b(n)} Now let A : [0,1] — [a, b] be the inverse
function of t — [ f(z) dz. Since a(n) h((7 — 3)/n) and b(n) h(j/n), we get

n 1 b o
Jm 306 = [ om®)d= [ Q@)@ i = [ Q@) dutz)

and
log(b™ — a{™) = log(h(t) — h(s)) dsd
i o 3 ost” — o) =2 [ tog(h) ~ e et
1 1
- / / log |A(s) — h(t)| ds d
0 0
= / f(@)f(y)log|z — y|dr dy = Z(u).
Therefdre

. 1 ' P |
0> ]17I11’LSOI;1)p 2 log P.(G) > —/ ¢(z,y) du(z) du(y) - hglolgf = log Z,,
and

1
hmmf 5 log Po(G) > / é(z,y) du(z) du(y) — limsup — 2 log Zn

n-—o0

as desired. ' a
Lemma 3.5. The finite limit B = lim,,_,, log Z,, exists.

Pf‘oof. By (3.3) and (3.5) we have

hmsup — log Zn < —inf // #(z,y) du(z) du(y) < lim inf."—zlg log Z,, .
u n—oo

n—00
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This gives the result because Theorem 1.1 says that u +— [[ ¢(z,y) du(z) du(y)
attains the minimum.

Lemma 3.6. {P,} is ezponentially tight.

Proof. For any a > 0 set

Ka={uEM(IR):/Q(x)du(x)Sa}. |

Since Q(z) — +00 as [z| — 400 by assumption (3.1), it is easy to see that

sup({:n |z| >r}) -0 asr— 400
LEK,

and hence K, is compact in weak topology (for example, consider the Lévy metric
on M(IR)). We get

oo
-n 28
‘/ ALE" Q(t:)>a} exp( ZQ(t )) Hlt t;j|* dty - -

i<j
im(] Tl

When Q(z) is replaced by Q(z)/2, the finite limit

By = —log/ /exp(——ZQ(t, ) Hlt —t;|?P dty - -

i<j

exists as well as (3.6). Hence the above estimate gives

1
hmsup——logP (K°)< —B+ By — 2.
n—oo 2
Since a > 0 is a.rbltrary, we have the conclusion. a

End of proof of Theorem 3.1. By (3.6) and Lemma 3.5,

() = / $(@,v) du(a) du(y) + B 2 0

for all © € M(IR). Hence I satisfies all conditions as a rate function . Now (3.4),
(3.6), and Lemma 3.6 show thanks to Proposition 2.2 that {P,} satisfies the LDP
with good rate function I. So there exists pg € M(IR) such that I (uo) = 0. But
Theorem 1.1 says that o is a unique minimizer of I on M(IR). : 0
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4. LDP for non-selfadjoint Gaussian random matrices
For n € IN let X(n) = [z;]};_; be an n X n random matrix such that

(i) {Rezij : 1 <4, < npU{Ilmz;; : 1 < 4,5 < n}is an independent family of
Gaussian random variables,

(ii) F(zij) =0 and E((Rezi;)?) = E((Imz;5)?) =1/2n for 1 < 4,5 < n.

Then X(n) is called a standard non-selfadjoint Gaussian n X n random matrix. It
is known [Vol, Theorem 3.3] that X (n) converges in distribution as n — oo to a
~circular element. More precisely, let (M, 7) be a noncommutative probability space
consisting of a von Neumann algebara M and a faithful normal tracial state 7. An -
element X € M is called a circular element if {(X + X*)/v2,(X — X*)/V2i} isa
free pair of selfadjoint elements with the semicircle distribution w; (see [VDN] for
freeness). Then the above statement means that

nl—i—»I%oT"(P(X(n),X(n)*) = T(P(X, X*))

for every polynomial P of two non-commuting indeterminates. In this way, X (n)
- becomes a standard model of a circular element in free probability theory. Moreover,
the limit distribution of X (n)*X(n) is the Marchenko-Pastur distribution y; in (4)
of Sec. 1, and that of | X(n)| = (X (n)*X(n))'/? is the quarter-circular distribution

\/ 4 — m2X[0 4] (z) dz.
The Hilbert-Schmidt norm of A = [a;;] € M,(C) is
n n 1/2
|Allas = { D (Reay)® + ) (ImAij)z} ,
i,j=1 4,j=1
and M, (C) is isometric to R>". So the “Lebesgue” measure \,, on M, (C) is given
by
n .
dAn(4) = [] d(Rea;;)d(Imay;),
i,5=1

and the probability measure v, on M,,(C) induced by X (n) is written as

1 .
7 exp(—nTrA A)di.(A).

Un =

Then v, induces the probability measure #, on €™ (the space of eigenvalues). Ac-
cording to [Me, 15.1, A32, A35], the joint probability density of 7, is

'Zl— exp (—'n Z |€i|2) H ¢ — ¢
n i=1

i<j
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with respect to d(;---d¢, (d¢; is the Lebesgue measure on the plane), while this
derivation is a bit more difficult than the selfadjoint case in Sec. 3. Here

T n
Zy = ﬂ.nn—n(n—l)/2+n HJ'
. il

and

1
hm 0 — log Zy,

"Although the Gaussian random matrix X (n) given above is far from normal and
cannot be diagonalized, one can consider its empirical eigenvalue distribution. A bit
more generally, for each n € IN let v, be a probability measure on M, (C) invariant
under unitary transformations, and assume that the induced measure 7, on (D” has
the joint probability density

— exp (—nZ |<z-|"’> IT16 -,
n i=1 i<j ,

where 3 > 0 is fixed. Define A, : M,(C) — M(C) by
An(4) _ lis ",
n - n — A.;(A) )

where )\,(A) are the eigenvalues of A. The empirical éigenvalue distribution P, on
M(C) corresponding to v, is given by

P,(I') = Vn(Arle) = 1711,({(4-1,...,(”) eC": %i&(i € F})

for every Borel set I" of M(C).

Then we have the large deviation theorem for {P, } as follows.

Theorem 4.1. With the above assumptions,

B 30

lim ——logZ = lgﬂ——

n—'w
and {P,} satisfies the LDP in the scale n=2 with good rate function

1) = =56 + [ 16Pdu(©) + 108~ 2 on m(©),

Furthermore, the uniform distribution on the disk {( € C: |¢| < VB} is a unique
minimizer of I.



51

#(C,m) = ~Blog|¢ — 1l + 3¢ + o) for (e

Then ¢(¢,n) is bounded below and

-5 + [ 1P du(¢) = / [scmancdutn) for wem.

The following lemma can be proved in the same way as Lemmas 3.2 nad 3.3.

Lemma 4.2.

lim sup izlog Zp < — inf // #(¢,m) du(C) dp(n)

n—oo N HEM(T)

and for every p € M(C),
o] 1
lgf{hﬂso%p o log Pn(G)}
N |
<~ [ 8¢ i) ) ~ timint L1052,

where G runs over a neighborhood base of p.

Lemma 4.3. For every p € M(C),

lim inf — log Z,, > — / f ¢(¢,n) du(C) du(n)

n—oo n2

and

iIGlf{liminf 2 log Pn(G')}

n—oo ’n,2

>~ [[ 8¢, du(¢) dustn) ~ imsup S 10g Z,,

n—oo

where G runs over a neighborhood base of y.

Proof. First, a suitable smoothing process can be performed as in the proof of
Lemma 3.4. So we may assume that supp(¢) = [a, b] x [c,d] and p has a continuous
density f on [a,b] x [c,d] satisfying § < f < 6~ for some & > 0. For each n € IN let
m=[yn]. Leta =19 <1 <--- < z,, = b be such that

plon sl xod)=—  (1<i<m)

Noting m? < n < m(m + 2) we can choose ¢ = Yio < Y1 < -+ < Yy, = d for
I<i<msuchthat m<l; <m+2, 5" I;=n, and
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1

M([zi—ha?i] X [yi,j—h'yi,j]) = .1-n_l—,

(1<i<m,1<j<lb).
Arrange n pieces of rectangles [z;_1, Z:] X [yi,j—1.9i,5] as
R® = a6 x [, d]  (1<i<n).
Also let
S = (208 + 80 /3, (@ + 26() /3] x (26" +d{™)/3, (e +24{)/3].

Then we get

lim ma.xdla.mR() -0, (4.1
{ =)} | )

n—oo | 1<in

1 ) 5 5 .
/Sgn)dcz§/R£”)d<2—/R$n)f(C)d(2 Smm 1 3) = 2Tn (1<i<n).

Define
An={(Gtr-rGn) €C*: G ESM, 1< i <}

For any neighborhood G of p, it is easy to check that

A,_,cé:{(gl,...,cn)eC"- 25(‘ eG}

i=1

for all n large enough. For such n we have

Pn(G) 2 7a(4An)

1 n
ZZ/.../Anexp(—n;KiP)H|<i_gj|2ﬁd<1...dc

1<j
2
1
> 2o -3 o ) )
XH(Gs(n)neS(ﬂ)IC nl) / / dé -

i<j

2 28
1 (60 ' :
> —| — —_
= Zn (27n) & p( nZ(magsJ ) )'};I,(CGS(“) 7,€S<n)lc 77|) ’

So, to obtain the required inequalities, it suffices to show that

Jim = Z( max |G ) = [KPrO & (4.2)

CGS( n)

_and
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lim inf —azlog(ces(n) nesm I¢ - nl) > / f(Q)f(n)log|¢ —nld(dn. (4.3)
But (4.2) is clear from (4.1). We get
/ f(€)f(n)log|¢ —nld¢dn
<2y [ i3 Jy TOTOV I C —l

i<j

s2zlog< max IC—nI) /Rm f(C)dC/R(n) f(n)dn.

i<j CGR&R),HER;:")
Since

max |¢ —n| < const - min  |¢ — 7|
¢eR{™ neR{™ ¢esi™ nest™

and for any € > 0

.2 o e .

lim — #4(,7):i<j, max [(—g<(1+e) min [(—nl=
n—oo 1 ¢eR{™ neR{™ ¢est™ nesi™
we have

limsup{/ F(€)f(m)log|¢ —n|d¢ dn — Elog( min |C—77|)}

(
n—oo i<j gesi"),nesj(.")

max, o) - p | — 7]
R R
<hmsup—Zl ( CeRi e ) -0,

n—oo n2 i<y mlnCES(n) nes(ﬂ) I( ’7|

implying (4.3). O
End of proof of Theorem 4.1. Lemmas 4.2 and 4.3 imply as in Sec. 3 that the finite

limit B = limy_,o n~2log Z,, exists and {P,} is exponentially tight, so that {P,}
satisfies the LDP with good rate function

I(4) = —BE(u) + / IC2 du(¢) + B.

So there exists o € M(C) such that I(ug) = 0. But (6) in Sec. 1 says that po must
be equal to the uniform dlstrlbutlon on {C €C: |C | < VB} (ie. /\(\/)- in notation of

(6) in Sec. 1) and
B = B (o) - [ 1612 ano(©)
= p(loevB- 1) -2 = B g2,
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completing the proof of the theroem. ' a

When 3 = 1, the projection of the above pg to the real or imaginary axis is
the semicircle law w;. On the other hand, the limit distribution of standard non-
slefadjoint Gaussian random matrices X (n) is the distribution of a circular element
X with radius 2, and the distributions of (X + X*)/2 and (X — X*)/2i are w s. So
~ the limit distribution through the eigenvalue distribution is the 1/ v/2-compression
of the “real” limit. This is not strange because X (n) is non-normal and the sectral
radius is smaller than the operator norm. '

Let M be a von Neumann algebra with a faithful normal tracial state 7. For
any (non-normal) element X € M one can associate a kind of “spectral measure”
px called the Brown measure for X. A noteworthy result in [Lar] is that the Brown
measure of a circular element is the uniform distribution on the unit disk. This seems
natural in view of Theorem 4.1.

5. LDP for unitary random matrices

An n x n untiary random matrix is a #(n)-valued random variable on a prbability
measure space. From the probability-theoretic viewpoint, this is equivalent to giving
~ a probability measure v, on U(n) itself. When v, is invariant under unitary trans-
formations, it induces the probability measure 7, on T™ (the space of eigenvalues).
Then we have the empirical elgenvalue distribution P, such that

Pn(F)=Vn<{UEU('n 25,\ (U)EF})

1,--1

1 n
=z7n<{CeT" : H?::éc" eF})

for every Borel set I" of U(n).

Now let Q(¢) be a real continuous function on T and for each n € IN set a
probability measure v, on U(n) as

Un =

77 (=nTr Q) dAn(D),

where ), is the Haar probability measure on the compact group U (n). It is known
[Me, 9.4, 10.1] that the induced measure A, on T™ has the following joint density
with respect to d(; - - - d(, where d(; = df;/2m ((; = €'%):

'ch'z lez !H|ei0,~_ei05‘2.

) i<j

Hence the probability density of 7, with respect to d( - - - d{y is given by
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21; exp (—-nz Q(Cz)) H |G — lez ’

i<j
where Z,, = n!Z], is a normalization constant.

Then we have the LDP for {P,} as follows.

Theorem 5.1. The finite limit B = lim,,_,o, n~2log Z,, = lim,_,oo n~2 log Z! exists
and {P,} satisfies the LDP in the scale n~2 with good rate function

I(y) = ~S() + A Q) du(C) + B on M(T).

Furthermore, there ezists a unique po € M(T) such that I(ug) = 0.

This can be proved more or less similarly to Theorems 3.1 and 4.1, Whlle we W1ll
present the details elsewhere. Below we just remark a few points.

1° Since T is compact, the weak topology on M(T) is the weak* topology and
hence the tightness of {P,} is automatic.

2° For every k€ Z and € > 0 'choose a weak* neighborhood G of ug by

G = {p e M(T) : |u(¢*) — po(¢¥)l < €}
Then the LDP of {P,} says in particular that

Pa(G°) = v ({U cU(n):

=S N - uo(H
i=1 )

25}) — 0 asn — o0,

Tn(U)k =/%2Ai(U)den(U) — uo((;k) as n — oo.
i=1

so that

This means that the mean spectral density of the n x n unitary random matrix
distributed according to v, converges to g as n — oo. In this way we obtain a
rather general Wigner type theorem for unitary random matrices.

3° A by-product of Theorem 5.1 together with Theorem 1.1 is that if Q is a
continuous real function on T, then

dm e [ [ exp(‘”ZQ(@)chz-—cﬂ'*’dcx---dcn
i<j

exists and it is equal to
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max {2@) - / Q) du(C)}-

HEM(T)

Finally we give two examples of the LDP for unitary random matrices corre-
sponding to (7) and (8) in Sec. 1.

Example 5.2. For each a € C, |a] < 1, let Q(¢) = log|¢ — |2 (¢ € T). Then the
probability measure v, on U(n) is given as

L_ Ll dwO)
" Zi det|U — o™

Hence

5 1 Ilic; 16 — Gl?
" Z, H?=1 |G — af?®

If P, is the empirical eigenvalue distribution of the associated unitary random fnatrix,‘
then Theorem 5.1 and (7) in Sec. 1 say that { P,} satisfies the LDP with rate function

dCy---din -

1) = ~Z(w) + [ logl¢ - af du(¢) ~log(1 = |af?) on M(T),
and the Poisson kernel measure p,, is a unique minimizer of I. Also we have

1 D (U) \
- —log(1 —
nll»ngo n? [,{(n) det IU aI[zn Og(l |a| )

It does not seem easy to directly compute the above asymptotic limit of integrals.
In particular when a = 0, the eigenvalue distribution of a unitary random matrix
distributed according to the Haar measure on U (n) (called a standard unitary random
matrix) converges to the Haar measure on T.

Example 5.3. For A > 0 let Q(¢) = —2Re( (¢ € T). Then v, on U(n) is

Up = %exp( Tr(U+ U*)> d\,(U),

and 7, on T™ is

Dn=—exp( chosﬁ?)l_‘[le“9 l‘9"|2d01---d0n.

i<j

By Theorem 5.1 and (8) in Sec. 1, the associated sequence of empirical eigenvalue
distributions satisfies the LDP with rate function

I(w) = ~2(u) - = / ReCdu(¢)+B on M(T),
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where
1 .
Xi lfAZZ,
B =
11 é+12-—§ if A< 2
2% 7Tx"1 ! ’

and p, is a unique minimizer of I. Incidentally, we have
lim — log / exp (P-Tr U+ U*)) A\ (U) = B
U(n) A

which was calculated in [GW].
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