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1. Introduction.

There are numerous variations and extensions of primal-dual interior-point algorithms for linear
programs, convex quadratic programs, linear complementarity problems, convex programs and
nonlinear complementarity problems ([8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 24, 26, 29], etc.). A
common basic idea behind the algorithms in this class is “moving in a Newton direction for
approximating a point on the central trajectory at each iteration.” Among others, primal-dual
infeasible-interior-point algorithms are known to solve large scale practical linear programs very
efficiently ([14, 15, 16],etc.). In their recent paper [12], Kojima, Shindoh and Hara extended
primal-dual interior-point algorithms to SDPs (semidefinite programs) and monotone SDLCPs
(semidefinite linear complementarity problems) in real symmetric matricés. See also [2]. This
paper is motivated by ' ' '

(a) further extensions of interior-point algorithms to more general SDPs and SDLCPs in real
symmetric matrices, complex Hermitian matrices and quaternion Hermitian matrices, and
(b) a unified treatment of those possible extensions. :

There is another important class of interior-point algorithms which are founded on the theory
of self-concordance [21]. From the papers [6, 22], we know that algorithms in this class cover
SDPs not only in real symmetric matrices but also in complex Hermitian matrices and quaternion
Hermitian matrices. Hence the two issues (a) and (b) above have been settled there. The class of
primal-dual interior-point algorithms which we are concerned with is closely related to the class
of interior-point algorithms founded on the theory.of self-concordance. For example, the central
trajectory which has been playing an essential role in the former class can be characterized as the
set of minimizers of the primal-dual logarithmic barrier function = a special case of self-concordant
barrier functions (see [9, 17]), and primal-dual potential reduction algorithms ([8, 11, 18], etc.)
utilize the logarithmic potential function = a special case of self-concordant potential functions.
Such close relationships support the issue (a) in the class of primal-dual interior-point algorithms.
A substantial difference, however, lies in their search directions. Roughly speaking, we employ as
a search direction in the former class of interior-point algorithms.“a Newton direction toward the
central trajectory represented in terms of a system of equations,” while we apply Newton’s method
to the minimization of “the objective function of the problem to be solved (or the duality gap) +
a self-concordant barrier function” over the interior of the feasible region to get a search direction
in the latter class of interior-point algorithms. When we deal with SDPs, this difference in search



directions is critical; the minimization problem used in the latter class always yields a consistent
search direction, but we need an essential modification in a usual Newton direction toward the
central trajectory in the former class because it does not necessarily exist (see [2, 12]). Therefore
it seems difficult to rely on the theory of self-concordance to settle the issues (a) and (b) in the
class of primal-dual interior point algorithms. :

Let M,,(IK) denote the set of n x n matrices with elements in IK, where IK represents the field
IR of real numbers, the field € of complex numbers or the (noncommutative) field H of quaternion
numbers.

Let ng, n'g, ... mg be positive integers such that n =n; +ny+ --- + ng. Consider the set T
of n x n block diagonal real matrices

A, O - O
. A O Ay»p --- O
A = diag (A11,A9,...,Ay) = ] .22 . ] € M,(R),
O O cee AM

where A;; € My, (R) (1 = 1,2,...,£). We may identify the set T of n x n block diagonal real
matrices with the direct sum of M, (IR) (: =1,2,...,%);

My (IR) ® Mp,(IR) ® - - - & M, (IR).

Speciﬁcally, if{ =nandn;, =1 (¢ = 1,2,...,n) then 7 turns out to be the n-dimensional
Euclidean space IR".

Apparently the set 7" of block diagonal real matrices satisfies the conditions below if we take
K =R.

(i) T forms a subring of M, (IK) with the usual addition A + B and multiplication AB of
matrices A, B € M, (IK); specifically the zero matrix O and the identity matrix I belong
to 7.

(ii) 7 is an JR-module, i.e., a vector space over the field IR; aA + 3B € T for every o, 3 € IR
and A, BeT, _

(iii) A* €T if A €T, where A* denotes the conjugate transpose of A € M, (K).

It is a subset 7 of M, (IK) satisfying these conditions that we will focus our attention in this
paper. We call T a subalgebra of M, (IK) over the field IR if it satisfies the conditions (i) and
(i), and simply a subalgebra if it is a subalgebra of M, (IK) for IK = IR, € or IH and for some
n. We call T a *-subalgebra if it satisfies the conditions (i), (ii) and (iii). For example, the set of
n x n lower triangular real matrices forms a subalgebra of M, (IR) but it is not a *-subalgebra.
Obviously M, (IK) is a *-subalgebra. It should be noted that we always employ a real number
a € IR with which we perform the scalar multiple ®A of A € M, (IK) in the condition (ii) even
when JK = € or IK = JH. To make this feature clear, we write M, (K, IR) instead of M, (IK),
and we call it @ *-algebra (over the field IR). Thus the dimension of M, (€, R) and M, (H, IR)
are 2n and 4n?, respectively. '

For every *-subalgebra 7 of Mn(K R), we use the notation 7" to denote the set of all
Hermitian matrices in T; i.e., 7" = {A € T : A* = A}. Obviously T* forms a sub IR-module of
M, (IK, IR) but-it is not a subalgebra in general. Assume that A € M, (K, IR)". The notation
A > O (resp., A > O) means that A is positive semi-definite, i.e., x* Az > 0 for every z € K"
(resp., positive definite, i.e., * Az > 0 for every nonzero x € K™). :



Let 7 be a *-subalgebra of M,(IK,IR), and let A; € T and b; € R (: = 0,1,2,...,m). We
are concerned with an SDP (semidefinite program) in 7" and its dual

(P) minimize ApeX
subject to A; e X =b; (1=1,2,...,m)
X0, XeT :
(D) maximize Y%y biz;
subject to Y it Aizi +Y = Ay,
Y>O0,Y eT

Here A e B stands for the inner product of matrices A and B in the IR-module M,,(IK, IR) whose
definition will be given in the next section. Specifically, the inner product of matrices A and B in

M, (IR) = M, (IR, IR) turns out to be the standard one, i.e., the trace of ATB. The formulation
of the primal-dual pair of SDPs above covers an equality standard form LP (linear program) and
1ts dual in the Euclidean space IR™ when

T = Myi(R) ® M1(R) ® --- ® M;1(IR),

and a usual SDP and its dual in the entire matrix-algebra M, (IR) of n x n real matrices when -
T = M, (IR) ([1, 2, 4, 22, 21, 27 etc.).

We show a simple example of an SDP in a *-subalgebra. Let

N(z)= Ny + szNj for every z = (21, 29, . --,Zm)T € R™,

=1
where N; (§ =0,1,...,m) are given k x £ complex matrices. Consider the problem
minimize ||IN(2)]|
subject to ||z|| < 1.
Here || - || denotes the 2-norm of vectors and matrices;
» 1/2
lull] = Z u;jU; for every u = (uy,us,. ..,up)T € C?,
IN|| = max {|Nu|:|u||=1, u€ €} for every k x £ matrix N.

If we define
. I N I
H(Z,Zm+1) = dla‘g (( 7\7(—’;)* szj} ) ’ ( ZT ;J )) for every (Z,zm+1)T € Rm+17

we can reformulate the problem above as

maximize  —2Zmyl
subject to Y = H(Z, Zm+1)7
Y>0,Y eTh

Here
T = Mi14(C, R) & Mpi1(R).

Thus we obtain a dual form SDP in a *-subalgebra 7. See [1, 2, 4, 23], etc. for various applications
of SDPs.



‘We are also concerned with a monotone SDLCP (semidefinite linear complementarity problem)
in a *-subalgebra T of M, (I, IR). Let ¢ denote the dimension of the JR-module Th of M, (K, IR).
The monotone SDLCP in 7 is defined as the problem of finding an (X,Y) € T" x T" such that

(X,Y)eF=Fo+ (X0,Y0), X=0,Y >0 and XeY =0, 1)

where (X, Yo) € Th x T*, and Fo CTh x T" is a ¢-dimensional sub IR-module of M, (IK, IR) x
M, (K, R) satisfying the monotonicity

dX edY >0 if (dX,dY) € Fy. @)

The monotone SDLCP in a *-subalgebra 7 of M, (IK, IR) simultaneously covers monotone LCPs
in R (see, for example, [5, 8]), and monotone SDLCPs in M, (IR), M,(C, IR) and M,(H, IR).
The monotone SDLCP in M, (IR) was first introduced by Kojima, Shindoh and Hara [12].

In Section 2, we present a common fundamental algebraic structure of M,(IR), M,(C,IR)
and M, (H, R).

In Section 3, we state (without proof) the weak and the strong duality on the SDPs (P) and
(D) in a *-subalgebra T of M, (IK,IR) (Theorem 3.1), and derive a monotone SDLCP in 7 from
them.

Section 4 is devoted to brief discussions on adaptation of interior-point methods given for the
monotone SDLCP in M, (IR) by Kojima, Shindoh and Hara [12] to the monotone SDLCP in a *-
subalgebra 7 of M, (IK, IR). The theoretical results, interior-point methods and their complexity
analysis presented in the paper Kojima-Shindoh-Hara [12] remain valid if we replace M, (IR) by
7 and make appropriate minor modifications. Specifically, we state the existence of the central
trajectory in the SDLCP in T (without proof), the existence of the Newton direction towards the
central trajectory (with proof) and the Generic IP Method for the monotone SDLCP in 7. Their
interior-point methods are based on the primal-dual interior point method [9, 17, 19, 26] for linear
programs in the Euclidean space IR". Strictly speaking, however, their methods are not extensions
of the primal-dual interior point method simply because the monotone SDLCP in M, (IR) covers
neither the standard monotone LCP in IR™ nor linear programs in IR". Now, using *-subalgebras
of M, (IK,IR), we can handle the monotone SDLCP and interior-point methods for solving it in
R, M,(IR), M,(€, R) and M,,(H, R) simultaneously.

Section 5 studies theoretical characterization of *-subalgebras of M, (K, IR).

In Section 5.1, we introduce “a faithful *-representation (p, IR™)” of M, (IK, IR) whered = 1, 2
and 4 if IK = IR, € and IH, respectively. The mapping p is a homomorphism from M, (IK, IR)
into My, (IR) that transforms each *-subalgebra 7 of M, (IK, IR) into a *-subalgebra 7' = p(7)
of Mg, (IR) having the same algebraic structure as 7, so that we may restrict ourselves to *-
subalgebras of M., (IR) when we classify all *-subalgebras in Section 5.2. Furthermore the faithful
*_representation (p, R™") of M, (IK, IR) makes it possible to convert any SDP and any monotone
SDLCP in a *-subalgebra of M,(€,R) (or M,(IH, R)) into some SDP and some monotone
SDLCP in a *-subalgebra T of My, (IR) (or My, (IR)), respectively. The homomorphism p from
M, (IK, R) into Mg, (IR) was utilized in the paper [3] where duality of general linear programs
with real, complex and quaternion matrix variables was discussed.

In Section 5.2, we présent a classification of *-subalgebras of M, (IR). The main results are

‘roughly summarized as follows:
e There are exactly three types of “irreducible” * -subalgebras of M, (IR)

PMn(IR)) = Ma(IR), p(My/5(€, R)) and p(My4(H, R)),

where (p, IR") is a faithful *-representation of M, 4(IK, IR) given in Section 5.1 and d =
1, 2, 4 when IK = IR, €, H, respectively.



e Any *-subalgebra of M, (IR) is isomorphic to a direct sum of some 7; (¢ =1,2,...,£) such
that each 7; belongs to one of the three types of irreducible *-subalgebras of M,,(IR) for
some m. '

2. Fundamental Algebraic Structures of M, (K, R).

Let IK represent the field IR of real numbers, the field € of complex numbers or the (noncommu-
tative) field JH of quaternion numbers. We will regard JK an IR-module, i.e., a linear space over
the field IR. To clarify this aspect, we write IK(IR). Apparently

1 if K =R,
dmK(R)={ 2 ifK=¢, 3)
' 4 fK=H.

We endow the IR-module K (IR) with an inner product

1 2 2122 + (2122)

22 = R
VA 4 2§

of 2! and 2% in K (IR). Here Z denotes the conjugate of z € JK (IR). More specifically,

zZ = z ifz€ R,

zZ = v—ww ifz=v+wwe C,

Z = v—ww-—jr—ky fz=v+iw+jr+kye H,
222 = Z22eR if 22 €eR,
2122 = v+ ww? e R if2l =ol +iw!, 2=+’ e €,
1.2

222 = vt ww?+ta? +ylyl e R
if 2! = o +aw + jzt +kyl, 22 =0 +iw? + 52+ ky? € H.

Here 4, 7 and k satisfy
u=j3j=kk=-1,i=3k=—kj, j=ki=—ik, k=15 = —7i.
The definitions above naturally lead to the R-module IK(IR)" with the inner product
zl-z2=2z%-zgeﬂ% 4)
=1

for every z! = (21,...,21)7, 22 = (22,...,22)T € IK(R)". Tt follows from (3) that

n

n fK=IR,
dmK(R)" =4 2n ifIK=C,
4n if K = H.

‘Note that IR(IR)" coincides with the n-dimensional Euclidean space IR" with the standard inner
product z! - 22 = (21)T22 of 2!, 22 € R"™.

Each element a € K induces a linear transformation in I (IR) such that

z € K(R) — az € IK(R).



Thus we may regard the set of such linear transformations in K (/R) as an IR-module, which we
will denote by M1 (IK, IR). We define the inner product of a! and a? in the JR-module M; (IK, IR)

by
L, (dim K(IR)) (a%a? + (aTa2))
a ea” = 5 . (%)

or o ‘ ‘ ‘

atea® = ala? E Rif o}, o® € R,

alea? = 20wl +w w2)eIR if ol =o' +w!, a? = o2 +zw €,

alea? = 4(v'w? +ww + zlz? +yy)€R

if a! = vt 45w + jzb + ky', o = v? + iw® + jz? + ky? € H.

It should be noted that elements in IK have two distinct inner products “” (see (4)) and “e” (see

(5)); the former i 1s used when we regard 2!, 22 € K as elements of JK(IR) while the latter is used
when we regard a!, a® € IK as elements of Ml(E{ IR). But the difference in values of the former
and the latter inner products of two elements e!, €2 in IK is a constant multiple;

e! o e? = dim IK(IR)e" - €2

The use of these two distinct inner products will be necessary in Section 5.1 where we present a
faithful *-representation (p, IR%") of M, (IK,IR) which preserves the values of inner products in
both IR-modules K™ and M, (K, IR). See the conditions (f) and (g) in Section 5.1.

Now we define M, (IK,IR) as the set of all matrices with elements in My(IK,IR). Then
M, (KK, IR) forms a *-algebra, and each A € M, (IK, IR) induces a linear transformation

z€ K(R)" — Az € K(IR)"
in the JR-module K (IR)". The inner product of two matrices A' and A2 in M, (IK, IR) is given

by
teA?= Z Z Ogp @ afp’

=1p=1
and the norm || A|| of a matrix A in M, (XK, IR) by

Al = (A A)/2.

Here ay, denotes the (£, p)th element of a matrix A € M,,(K, IR).
If A = [agy] is a matrix in M, (IK, IR), its conjugate A* is defined as

. .G11 @21 vt Gp
—\T a a v @
Qln G2n  ** Opn

For each subset 7 of M, (K, ﬂ{) we use the notation 7" for the set of Hermitian matrices in
M (K, IR); - : ) o
Th={AecT:A*=A}.

Let A € M,,(IK,R)*. Then we can easily verify that

z-Az = 2"Az for every z € K(R)".



Therefore a Hermitian matrix A € M, (IK, IR)" is positive semi-definite or positive definite if and
only if
z-Az >0 forevery z € K(R)"

or
z- Az >0 for every nonzero z € K (IR)",

respectively.

3. Duality in SDPs.

This section presents a duality theorem on the SDPs (P) and (D) in a *-subalgebra T of M, (IK, IR).
We call an X € M, (K, R) (resp., (Y,z) € M,(IK,IR) x R™ ) a feasible solution if it satisfies
the constraints of (P) (resp., the constraints of (D)), and an interior feasible solution if in addition
X > O (resp., Y  >— 0). We have the following duality theoreni between the primal-dual pair of
SDPs (P) and (D). ' ‘

Theorem 3.1. Let T be a *-subalgebra of M, (K, IR).
(a) (Weak Duality) Let X and (Y, z) be feasible solutions of (P) and (D), respectively. Then

m . i
Ape X —) bizi=XeY >0.
1=1 :

If X oY =0 then X and (Y, z) are optimal solutions of (P) and (D), respectively.

(b) (Strong Duality) Suppose that there exist interior feasible solutions of (P) and (D) Then
there exist optimal solutions X of (P) and (Y,z) of (D) such that

m ,
Age X - bizi=XeY =0.
=1 , _

The assertion (a) (Weak Duality) can be verified easily. The assertion (b) (Strong Duality)
follows from a more general result (Theorem 4.1), given in the next section, on the monotone
SDLCP in a *-subalgebra of M,,(IK, IR). These results (a) and (b) are well-known when 7 is the
real full matrix-algebra, i.e., T = M, (IR). See, for example, [1, 4, 27].

Let ¢ = dim7". h Suppose that there exist 1nter10r feasible solutions X of (P) and (Yo, zo) of
(D) as assumed in (b) of Theorem 3.1. Define

| Chooh. AjedX =0(i=1,2,...,m),

= h h . 4 — 4 ’ ’
fO = {(dX.,dY)ET XT : dY:—E:llAzzl forsomezemm }7
F = Fo+(Xo,Y0). | | |

Note that F can be rewritten as

j:‘ — {(X Y)EThXTh; Az.X-_—bz (z=1,2,,m), }

Y =A,-3", Aiz; for some z € R™

It is easily verified that F forms a q dlmensmnal sub IR-module of the 2q—d1mensxona,1 IR-module
T" x T* such that ,
dX edY =0 for every (dX,dY)E]-'o. ‘ (6)



This implies that Fo is monotone (see (2)). Obviously X and (Y, 2) are feasible solutions of (P)
and (D) if and only if

(X,Y) € F=Fo+(X0,Yo), X=0 and Y > O.

Hence we see by Theorem 3.1 that X and (Y, z) are optimal solutions of SDPs (P) and (D) if and
only if (X,Y) is a solution of the monotone SDLCP (1) in 7. Thus we have derived a monotone
SDLCP in T", which we will discuss in the next section, from the primal-dual pair of SDPs (P)
and (D).

4. Monotone SDLCPs and Interior—Point Methods.

Let 7 be a *-subalgebra of M, (IK,IR), and let p and ¢ denote the dimensions of 7 and 7 h
respectively. ‘Recall that the monotone SDLCP in 7 has been defined as the problem of finding
an (X,Y) € Th x T" satisfying (1) and that Fo is a g-dimensional sub JR-module of the 2¢-
dimensional JR-module 7" x T" satisfying the monotonicity (2).

Let
" Fy = {(X,)Y)eF:X>0,Y =0},
Fir = {X,)Y)eF:X>0,Y > O}.
We call (X,Y) € F, a feasible solution of the monotone SDLCP (1), and (X,Y) € F44 an
interior feasible solution of the monotone SDLCP (1).

The theorem below states the existence of the central trajectory under the assumption that
F44 # 0. The theorem was established by Kojima, Shindoh and Hara for the case T = M, (R) in
their paper [12]. The generalized theorem can be proved in a similar way as the original theorem,
Theorem 3.1 of [12], and the proof is omitted here.

- Theorem 4.1. Let T be a *-subalgebra of My, (‘I( R) and ¢ = dimT". Assume that the g-
dimensional sub IR- module Fo 1s monotone and that .7-"++ #0.

@A) For every u > 0, there exists a unique (X (), Y (u)) € Fyy such that X (p)Y(u)

(if) The set I'= {(X(u),Y () : p > 0} forms a smooth trajectory. (We call T the central
trajectory.)

(i) (X (p),Y (1)) converges to a solution (X*,Y™) of the SDLCP (1) as 1 > 0 tends to zero.

Theorem 4.1 ensures that the monotone SDLCP (1) has a solution whenever .7-' ++ # 0, and we
can derive (b) (Strong Duality) of Theorem 3.1 from Theorem 4.1.

Let T°%® denote the class of skew symmetric matrices contained in T;
Tk — (WeT:W'=-W}={X-X":XeT}

Obviously 7% and T°%* are sub IR-modules of 7 such that either of them is the orthogonal
complement of the other in 7. That is,
e VeW =0 if V€T" and W € T,

e every X € T can be represented as the sum V + W of a unique pair of V € T h and
W € Tskew, :



Let Fo be a (p — gq)—dimensional sub IR-module of the 2(p — ¢)—dimensional JR-module T skew o
Tskev  We impose Fo on the condition below:

Condition 4.2. Fg is monotone, i.e.,

dXOcZYZO for every (dX,dY") € Fo.

For example, we can take
Fo={(GW,(1 —t)W) : W ¢ Tskew},
where ¢ € [0,1] is an arbitrary constant. Let
Th+={XeTh-X'>~0}
We now consider the Newton equation at (X,Y) € T" Ty X Th ++ for approximating a point

(X', Y') = (X +dX,Y +.dY) on the central trajectory I':

(X +dX,Y +dY) € F, (dX,dY) € o and }

X (dY +dY) + (dX + dX)Y =Bul — XY. (7),

Here y=X oY /nand g € [0,1] denotes a search direction parameter. We will see later that the
Newton equation (7) has a unique solution (dX, dY, dX,dy ) for every (X,Y) € T X Th %4 and
every (3 € [0, 1].

Generic IP Method. .
Step 0: Choose (X% Y?) € Th  x T" . Let r =0.
Step 1: Let (X,Y)=(X",Y)and u=XeY /n.
Step 2: Choose a direction parameter (3 € [0,1].
Step 3: Compute a solution (dX,dY,dX, di’ ) of the system (7) of equations.
Step 4: Choose a step size parameter o > 0 such that

(XY™ = (X,Y) + a(dX,dY) € Th x Th,
Step 5: Replace r+ 1 by r, and go to Step 1.

The Newton equation (7) and the Generic IP Method above are essentially the same as the
original ones proposed by Kojima, Shindoh and Hara in their paper [12] except that we have
replaced the real full matrix-algebra M, (IR) by a *-subalgebra T of M, (K, R) (or M,(R)" by
Th). As special cases of the Generic IP Method, Kojima, Shindoh and Hara [12] presented a
central trajectory following method, a potential reduction method and an infeasible-interior-point
potential-reduction method. These three methods are based on the interior-point methods given
in the papers [10], [11] and [18] for the monotone LCP in IR", respectively. Once we establish
the existence of the Newton direction towards the central trajectory, all the methods and their
convergence analysis remain valid for the monotone SDLCP in a *-subalgebra 7 of M, (/K.IR)
without any substantial change. The details are omitted here.

In the remainder of the section, we give a proof of the existence of the Newton direction to-
wards the central trajectory, i.e., a solution (dX,dY,dX,dY’) of the system (7) of equations. We
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are concerned with a little more general system of equations than (7):

(X +dX,Y +dY) € F, (dX,dY) € Fo and ‘(7),
X(dY+dY)+(dX+dX)Y Q, ,

where @ is an arbitrary constant matrix in 7. If we take Q@ = I — XY € T, (7)’ coincides with
(7). The theorem below is an extension of Theorem 4.2 of [12].

Theorem 4.3. Forevery (X,Y) € Th xTh T+, the system (7)’ of equations has a unique solutzon
(dX,dY,dX,dY).

Proof: Let §=p—q. Let {(M!,N*) € T"xT" (i=1,2,...,q)} bea basis of the g-dimensional
IR-module Fy, {(M] N?) € Tokew 5 T9kew (j = 1,2,...,§)} a basis of the §-dimensional IR-
module Fy, and (X% Y?) € F. Then the first relation of the Newton equation (7)’ can be
written as ‘

(X +dX, Y +dY) = (X°, Y%+ ZQ(M", Ni),

i=1
hence ‘ q
X = X°-X+) oM,
i=1 .
- g ,
@Y = Y'-Y+) N,
=1 '
where ¢; ( = 1,2,...,q) are real variables. With new variables ¢; (j = 1,2,...,§), we also

rewrite the second relation of (7)’ as
o i . .
(X, dY) = Y (M, N).
=1
- Now the last equation in (7)’ is reduced to
q ) . g P )
SN G(XN+MY)+ ) (XN + MY)=Q-X(Y'-Y) - (X" X)Y.

i=1 o j=1

Thus we have only to show that the system of linear equations above in p = g 4 ¢ variables
¢ 1 =1,2,...,¢9) and & (j = 1,2,...,7) has a unique solution. We note that all the p
coefficient matrices ‘

(XNi+ M'Y) (i=1,2,...,q) and (XN’ +B80Y) (j=1,2,...,9) )

appearing on the left hand side of the system of equé,ﬁions above are in the p—dirriensional sub
IR-module T of M, (K, IR), and that the constant matrix

Q-X(Y'-Y)- (XO X)Y

on the right hand side also belongs to 7. Therefore it suffices to show that the set of p matrices
given in (8) forms a basis of the p-dimensional sub IR-module T of M, (K, R). Assuming that
q ) ) i | ,
Y GXN + MY)+ Y & XN’ + M’Y) S 9)
i=1 ' j=1 ,
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we will show that all the ¢; (1 =1,2,...,q) and &, 5 (1=1,2,...,9) vanish. Let

q
=Y dM, dy' = Zc;Ni, X' =

i=1 ; i=1 j=1

M»Qr
<,

~ y ~ 6 ~
&M and &Y' =) &N
j=1

Then (dX’,dY”’) € Fo C T" x T" and (dX’,dY') € Fo C T**ew x Tokew  We also see from 9)
that
0 =X(dY'+dV')+ (X' +dX)Y. | (0

Since X € T C M,(KK,R)and Y € T C M,, (IK, IR) are positive definite, there exist nonsin-
gular VX € M, (K, R) and\/—EM(KIR)suchthatX \/_\/—andY VYVY. It

follows from (10) that |
= VX' +d WY + VX (@ + X WY
From the above equality, we obtain that
0 = (VX@'+d WY +VX (@ +dX)WY)
| -(\/_(dY'+dif’)\/“‘1+F‘1(d}c'+aﬁc')f)
= VXY +dY )WY ||2 + n\/_ H(dX! + X ) VT2
+\/_(dY’+dY)\/_ o VX X + &X)T
+ VX (@X + X)W o V(@Y + dV )WY
= IVX@ + )WY 4 VX (X + XV
4+ (dY' +dY') e (dx’+d5(’) + (dX'+d§(’) @Y + dY")
VX @' +dy' WY 2 + VX~ (GlX'+dJ'f)\/_II2
+ 2dY’ o dX’ + 2dX" o dY’
_(31ncedY’0dX,=dY edX'=0) |
> IVX@' +dV )WY P + VX (@ + dX )T
(sincedY'OdX'zoanddX,Odi/'ZO)

Il

Hence we see that ‘ . -
IVX @' +d" )WY =0 and [VX (&X' +dX)WT| =0.
This implies that | a
VX@Y' +d' )WY ' =0 and vX (&X' +dX )\/_—
By the nonsingularity of vX and VY, we obtain
dy’ + &' =0 and dX' + X' =o.

Since dX’ € Th, dX' € T**** gy’ € T and d¥"’ € T***¥ we see that dX’-dX dY’odY =0.
Hence the equalities above 1mply that
) q
(0,0) = (&X',dY") =) ci(M*',N") and (0,0) =

=1

zq: (v ).



12

Recall that {(M‘ N') € Th x T" (i = 1,2,...,¢)} and {(M’,N’) € Tkev x % (j =
1,2,...,4)} are bases of the g-dimensional sub IR-module F¢ of T x T" and the §-dimensional
sub JR-module F of Tf"‘kew x T*Fe¥ respectively. Hence ¢, =0 (i=1,2,...,¢) and & =0 (j =
1,2,...,4). This means that the set of p matrices given in (8) is linearly independent, and
forms a basis of the p-dimensional sub IR-module T of M, (IK, IR). This completes the proof of
Theorem 4.3. . ' : .

5. Characterization of *-Subalgebras of M, (K, R).

5.1. A *-Representation of M, (K, R).

In the latter part of this section, we construct “a one-to-one *-homomorphism” p that transforms
the algebraic structure of M, (I, IR) into Mg, (IR). The *-homomorphism p then makes it possible
for us to convert any SDP and any monotone SDLCP in M, (JK, IR) into an SDP and a monotone
SDLCP in Mg, (IK, IR), respectively. Here d = dim JK(IR). We need several definitions. Suppose
that 7 and 77 are subalgebras. A mapping p: 7 — T’ is a homomorphism_ if it satisfies:

() p(A+B)=p(A)+p(B) and p(AB) = p(A)p(B) for every A, BET.
(b) p is linear on T; p(aA +BB) = ap(A) + Bp(B) for every o, f € Rand A, BeT.

If in addition p: 7T — 7T is one-to-one and onto, p is an isomorphism from T onto 7’. When T
and 7"’ are *-subalgebras, p : T — T’ is a *-homomorphism (or a *-isomorphism ) if it satisfies

(c) p(A*)=p(A)* forevery A€ T
For example, if § € M,(IR) is a nonsingular matrix and P € M,(IR) an orthogonal matrix then

pl: A€ My(R)— SAS™! € M,(IR) (11)
is an isomorphism from M, (IR) onto M, (IR), and

PTAP O

p: A€ Mu(R)— ( o A ) € Mo, (R) (12)

is a *-homomorphism from M, (IR) into Mgn(R) If there exists an isomorphism
(or *-isomorphism) p from 7 onto 7', 7 and 7" are isomorphic (or *-isomorphic ).

Let 7 be a subalgebra (or a *-subalgebra) of M, (IK,IR). If a homomorphism (or a *-
homomorphism) p from 7 into M, (IR) satisfies

(d) p(I) =1I€ M,(R),

(p, IR™) is a representation '(or a *-representation ) of T. In this case p(7) forms a subalgebra (or
a *-subalgebra) of M, (IR). A representation (or a *-representation) (p, IR") of T is faithful if

(e) p is one-to-one on 7.

(p', IR") in the example (11) is a faithful representation of M,,(IR) but it is not a *-representation
in general. (p?, IR?") in the example (12) is a faithful *-representation of My (IR).

We will construct below a faithful *-representation (p, R%) of T = M, (I, IR) that satisfies
the following additional conditions.
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(f) There is an isomorphism (i-e., a one-to-one linear mappmg) ¢ from the dn-dimensional
IR-module K™ onto the dn-dimensional Euclidean space IR such that

P(Az) p(A)¢(z) for every A e T and z € K",
o(zY) - p(z?) = 2'-2? forevery 2, 22 € K".

(g) p(A)ep(B)=AeB forevery A, BeT.

Here d = dim IK(IR). Such a faithful *-representation (p, R™) of M, (IK, IR) preserves the alge-
braic structure which is necessary to study SDPs and monotone SDLCPs. It is easily seen that if
P € M,(IR) is an n xn orthogonal matrix and

p: A€M (R)— PTAP € M, (R)

then (p, IR"™) is a faithful *-representation of Mn(R) that satisfies the conditions (f) and (g) with
d(z) = PTz (z € R™).

Theorem 5.1. Let T be a *—subalgebm of Mm(IK, R) and (p, R") be a faithful *—representatzon
of T satisfying the conditions (f) and (g). Then the following (h), (i) and (j) hold.
(h) p(T) is a *-subalgebra of Mg, (IR) with dimp(7T) =dim 7.
(Specifically p(M (KK, IR)) is a *-subalgebra of My,(IR).)

() p(T") = p(T)".

(G) p(A) € p(T)" is positive semi-definite (or positive definite) if and only if A € T" is positive
semi-definite (or positive definite).
Proof: By the assumption, all the conditions (a) through (g) are satisfied. We can easily

derive the assertion (h) and (i) from these conditions, so that we will only prove the assertion
(j). Let A € T". By the condition (f),

¢ (2) - p(A)p(2) = ¢(2) - Pp(Az) = z - Az

holds for every z € IK(IR)". Since ¢ is an isomorphism from IK (IR)" onto IR, we know that
S(K(IR)") = IR™ and ¢(z) = 0 if and only if z = 0. Hence u - p(A)u is nonnegative for every
u € IR™ (or positive for every nonzero w € IR*™) if and only if z - Az is nonnegative for every
z € IK(IR)" (or positive for every nonzero z € IK(IR)™). This implies the assertion (j). 1

Using the properties (a) through (j) presented so far, we can convert the primal-dual pair of
SDPs (P) and (D) in a *-subalgebra 7" of M, (KK, IR), which we have stated in Section 1, into a
primal-dual pair of SDPs in a *-subalgebra 7’ = p(T ) of Mg, (IR):

(P)’ minimize p(Ag) e X'
subject to p(A;))e X' =b; (:=1,2,...,m)
X'>0, X' € p(T)h.
(D) maximize Y %; bz
subject to mip(A)z + Y = p(A),
Y' >0, Y € p(T)

It is easily verified that X € 7 and (Y, z) € 7 x IR™ are optimal solutions of (P) and (D) if and
only if X' = p(X) € p(T) and (Y, 2) = (p(Y), 2) € p(T) x R™ are optimal solutions of (P)’ and
(D). : |
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We now consider the monotone SDLCP (1) in a *-subalgebra 7. Recall that Fo C T? x
T" appearing in the SDLCP (1) is a g-dimensional sub JR-module of M, (K, R) x M,(K,R)
satisfying the monotonicity (2). Define

Fo = {(pX ),p(Y)) : (X,Y) € Fo} C p(T") x p(Th) = p(T)h x p(T)h.

Then Fj, forms a ¢g-dimensional sub IR-module of the 2q-d1mensmnal IR-module p(T )P x p(T)h.
We also know that :

p(X)ep(Y)=XeY forevery (X,Y)eT"x Th.

This ensures that Fj inherits the monotonicity from Fy. Thus we have the monotone SDLCP in
p(T) C My (K, R): Find an (X', Y”) such that

(XY') € F' = Fy+ (p(X0),p(Y0)), X' =0, Y' =0 and X' oY’ =0; (13)

The monotone SDLCP (13) is equivalent to the monotone SDLCP (1) in the sense that (X,Y) €
T" x T" is a solution of the SDLCP (1) if and only if (X’, Y') = (p(X), p(Y)) € p(T)" x p(T)"
is a solution of the SDLCP (13). : :

Now we construct a faithful *-representation (p, R%) = (p, Rd”) of M, (IK, IR) satisfying the
conditions (f) and (g) Define

( h if h € M1(R),
( v “’) if b = v +iw € M1(C, R),
ph) = 9 |
' v —w - -y ,
w v -y z ey . '
c oy v —w if h=v+1iw+ jz+ky € M1(H,R),

 \y -z w v

((Flo) Bar) - plan)
5(4) = p(tfm) Plazz) o @) e ML (R) i A € Mo (K, R). (14)
\ (an1) P(ans) - H(ann)

Theorem 5.2. (p, R™) = (p, R™) is a faithful *-representation of M, (IK, R) satisfying the
conditions (f) and (g). '
Proof: It is easily seen that p satisfies the conditions (a), (b) (c), (d), (e) and (g) We can
also verify that the condition (f) holds with the 1somorphlsm ¢ = ¢ from K (IR)" onto IR

given below:
z

( ifze R,

ERd R? if z=v+iw € C(R),

ge

$(z) = 1

=R ifz=v+iw+jo+ky € H(IR),

< 8 8
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| ¢(21)
o(z) = ¢(.z2) € R™ if z = (21,20,...,20)" € K(R)",.
| B(zn) |
i |
Remark. The observation below relates the faithful *-representation (p, R™) of M, (KK, R) to

the recent paper [6] by Giiler. Let M, (K, R)"? denote the convex cone consisting of positive
semi-definite Hermitian matrices in M, (IK, IR). Then we know by Theorems 5.1 and 5.2 that

P(Mn (K, R") = Man(R)E N p(M.(K, R)).

The convex cone p(M,(IK,IR)") enjoys some nice properties, the irreducibility, the regularity,

the homogeneity and the self-duality in the IR-module p(M,(IK, IR)). By Theorems 4.1 and 4.3

of [6], we can represent the self-concordant universal barrier function (Nesterov-Nemirovskii [21])

for the cone p(M,(IK,R)%) in terms of the logarlthm of a characteristic function of the cone
pP(M, (K, R)?). See [6] for more details.

The next theorem shows that a *-subalgebra of M, (IR) is closed under the inversion.

Theorem 5.3.  Let (p, R™) be o faithful *-representation of M (KK, IR) satisfying the condi-
tions (f) and (g). Then the following (k) and (£) hold. v
(k) A € M,(K,IR) is nonsingular if and only if p(A) is, and p(A™') = p(A)" 1 if A €
M, (K, R) is nonsingular.

() LetT be a *-subalgebra of M,(IK,IR). If A € Mn(K, R) is nonsingular then A=l € T.
Proof: Recall that A € M, (K, IR) is nonsingular and B € M, (K, IR) is its inverse if

BA=AB=1.

From the conditions (a) with 7 = M, (IK, IR), (d) and (e), we see that the equalities above hold
if and only if
B(B)B(A) = p(A)p(B) = p(I) =

Thus the assertion (k) follows. To prove the assertion (£), we only need to deal with the case
where 7 is a *-subalgebra of M,,(IR) in view of Theorem 5.1 and the assertion (k). Suppose that
A € T is nonsingular. Then we know that AT € 7. Take a sufficiently small positive number
¢ such that all the eigenvalues of the positive definite matrix eAT A are less than 1. Then the
inverse (¢AT A)~! of the matrix eAT A can be written as

(EATA)—l = (I— (I — (:'ATA))_
= I+ (I-eATA)+(I-cATA)?+

By the conditions (i), (ii)- and (iii) imposed on the *-subalgebra 7, each term on the right hand
side belongs to 7. Since 7 is topologically closed, the infinite sum of matrices on right hand side
belongs to 7; hence so does the matrix (eA7 A)~! on the left hand side. Therefore we obtain
by the conditions (i) and (ii) that

A7l = eATA) AT eT.
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5.2. Classification of *-Subalgebras of M,(R).

In Section 5.1, we have utilized some notions such as “homomorphism ” and “isomorphism ” from
the representation theory of algebras to describe a faithful *-representation (p, R™) of M, (K, R).
We need to rely more upon the theory in order to derive a complete set of characterizations of
*_subalgebras of M, (IR) in Theorem 5.4. Our discussions here are based on the literature [7]
written in Japanese. We also refer to Chapter III of the book [28] written in English although
the readers may have some difficulty relating the results presented there to ours. We have been
searching for more appropriate sources, but all other literatures we have found so far do not fit
well in our discussions: We should also mention that Chapter IV of the book [25] studies algebras
with an involution and *-algebras which includes our *-subalgebra as a special case but the main
subject of the book is not relevant to our discussions.

Let 7 be a *-subalgebra of M,,(IK, R). An ideal of T is a sub IR-module 7 of T satisfying
ABeT ifA€T and BeT.

Obviously, {O} and 7 are ideals of T. If T contains no ideal other than {0} and T, T is simple.
A sub IR-module V of IK(IR)" is T -invariant if

AV CV forevery A€ T .

Note that the 0-dimensional sub JR-module {0} and the entire IR-module IK (IR)" are always 7 -
invariant. A *-subalgebra T of M, (IK, IR) is reducible if there is a T-invariant sub JR-module of
IK(IR)" other than {0} and IK(IR)", and irreducible otherwise. For example, consider

T, = {diag (4, PTAP): A€ M,(R)},

Ty = My(R) @71,

where P € Mn(R) isannxn orthogonal matrix. Then T 1 is simple but not 1rredu(:1ble and 7o
is neither simple nor irreducible.

Theorem 5.4.
(A) LetT be a *-subalgebra of My (IR). Then there is an orthogonal matrizx P € M,(IR) and
simple *-subalgebras T; of Mn;(R) (= 1,2,...,£) such that
PTrTp = T1®To® --- &7,
= {d’l‘agi(Al,Ag, .. .,Ag) : Aj € Tj (] =1,2,... ,[)} .

(B) If a *-subalgebra T of M, (IR) is simple, there is an orthogonal matriz P € My(IR) and an
irreducible *-subalgebra T' of M., (IR) such that

PTTP = {diag (B,B,...,B):BET’}.

(C) If a *-subalgebra T of M,(IR) ts irreducible then there emsts an orthogonal matriz P €
M, (IR) such that
PT TP = p(.M).

Here
M= Mn(m)v Mn/Z(Gv B) or Mn/4(H7R)a

and (p, IR") denotes the faithful *-representation of M given in Section 3.
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To prove the theorem, we need a series.of lemmas.

Lemma 5.5. If a subalgebra T has a faithful representation (p, IR™) such that p(T) is irreducible,
then T is simple.

Proof: See Theorem 1.16 of 7.

Lemma 5.6. Let T be a subalgebm, and let (p, R™) be a faithful representation of T such that
p(T) is irreducible. Let (o', IR") be a representations of T such that p'(T) is irreducible. Then
n=n' and there erists a nonsingular matriz S such that p'(A) = S™1p(A)S for every A€ T.

Proof: See Corollary of Theorem 1.15 of [7], and Theorem (3.3.E) of [28]. §

Lemma 5.7. If a subalgebra T of M, (R) is irreducible ‘then there is a faithful representation
(p', R") of _
M = Mn(lR)’ Mn/2(@v R) or Mn/4(H7R)

such that p'(M) =

Proof: The lemma follows: dlrectly from Wedderburns’s Theorem. See Theorem 1.17 of [7], and
Chapter III, Section 4 of [28].

Lemma 5.8. LetT be a *—subalgebm and let (p, R") be a faithful *-representation of T such that
p(T) is irreducible. Let (p/, IR™) be a *-representation of T such that p'(T) is irreducible. Then
n=n' and there exists an orthogonal matriz P such that p'(A) = PTp(A)P for every A€ T.

Proof: By Lemma 5.6, n = n’ and there is a nonsingular matrix § € M,(IR) such that
p'(A)=S"1p(A)S for every A€ T.
By the assumption (p, IR") and ‘(p’ ,IR™) are *-representations of T , so that the relation
S7'p(A)S = (P(A))

= (p'(A")
= (s~ p(A*)s)

= S*p(A)(s")7
holds for every A € T; hence |

(SS*)B(SS*)~! = B for every B € o(T).

In the relation above, p(7) is an irreducible subalgebra of My(IR) by assumption, and all the
eigenvalues of the matrix SS* are in IR since $S™* is symmetric. By applying Schur’s lemma (see
Theorem 1.8 of [7], and Lemma (3.1.C) of [28] and their proofs), we know that all the eigenvalues
are the same a (# 0) and SST = al. Hence, letting P = §/+/a, we obtain that

PTP = I, | | :
p(A) = S'p(A)S=PTp(A)P forevery AcT.
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i

Lemma 5.9. Let T be a *_subalgebra of Mp(IR). Then there is an orthogonal matriz P
(Q1,Qs,---,Q,,) € Mu(R), where Q; is an nxn; matriz (i = 1,2,...,m) and ni+na+- - -+nm
n, such that : .
PTTP = {dz‘ag (QTA4Q1,Q7A4Q,,--,Q4AQ,,) : A€ T},
T, = {Q;frAQ,- A€ T} 15 an trreducible *-subalgebra of M, (IR)

(1=1,2,...,m).

Proof: (i) If 7 is irreducible, the lemma obviously holds with m=1and P=Q; =1. If T
is reducible, there is ki-dimensional 7 -invariant sub IR-module V' of IR" with 1 < k; < n. Let
ko = n — k1. We will show that there is an orthogonal matrix P = (Q;,Q3) € Mn(IR), where
Q; is an n x k; matrix (1 =1, 2), such that

PTTP = {diag (Q14Q,,Q7 AQ,): A € T}, (15)

={QTAQ,: A€ T} isa *subalgebra of My, (IR) (z =1 2) (16)

- Let py,p9,- - -,Pr, be an orthonormal basis of the k1-dimensional 7 -invariant sub R—module |4
of R", and Let Pky+1>Pk; 421 - - - » Py, D€ an orthonormal basis of the orthogonal complement V+

of V. Define

Q= (Pl,Pz_w--,Pkl), Q= (Pk1+1;Pkl+2, sy Pp), P = (Qqu) € My(RR).

Since 7 is a *-subalgebra of M, (IR), we see that AT € T for every A € T. It follows from the
T -invariance of the sub IR-module V' of IR" that

Ap;, € V (j=1,2,...,k) forevery A€ T,

Aij € .V (j=1,2,...,k) forevery A€ T.
Hence

(pi)TApj = 00G=12,...,k1,i=ki+1,ka+1,...,n) forevery A€ T,
@) ATp; = 0(=1,2:..,k,i=k+1,ka+1,...,n) forevery A€ T.

This implies ‘ :

QTAQ; =0 (i # j) forevery A€ T. (17)
Thus we obtain (15). The relation (16) follows directly from (15) and the deﬁmtlon of a *-
subalgebra

(ii) As long as the resultant subalgebra 7% or T4 is.reducible, we can repeatedly apply the
argument (1) above to either or both of them to obtain the desired result. y

Lemma 5.10. Let (p,IR") and (p';R") be faithful representations of a simple subalgebra M
such that both p(M) and p'(M) are irreducible *-subalgebras. Then n = n' and there exists an
orthogonal matriz P € My (IR) such that p'(M) = PTp(M)P.

Proof: (i) Let T = p/(M). By Lemma 5. 6, we can take a nonsingular matrix S € M, (IR)

such that .
T =8"1pM)S. (18)
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Since ST'S is a positive definite matrix, we can take an orthogonal matrix P; € M,(IR) anda

diagonal matrix D with positive diagonal entries D;; (¢ = 1,2,...,n) such that PTSTSP; = D2,

Here each diagonal entry D? of D? corresponds to a positive eigenvalue of STS. It follows that

I=D'PTSTSp, D! = (SP,D)TSP,D ..

Letting Py = SP1 D! € My (IR), we obtain S = P,DPYT, and PPy = I (i.e., Py € M, (IR)
is an orthogonal matrix). Hence it follows from the equality (18) that

T = PyD'PLp(M)P,DPT. (19)

Since both 7 and p(M) are *-subalgebras of M, (IR), we then have

P, D'P]p(M)P,DPT =T =TT = P,DP] p(M)P,D' PT.
Thus we obtain that' ' : v
P7p(M)P; = D’P] p(M)PyD? (20)

(ii) Let dY be a sub IR-module of IR™ and E be an m x m nonsingular symmetric matrix.
Assume that V is E?-invariant, i.e., E*V = V. We will show that V is E-invariant, i.e., EV =
V. Let k = dimV. Under the assumption we can take a set of k eigenvectors wi, wo, ..., wy
of the symmetric matrix E? which forms a basis of V. Since wi, ws, ..., Wy are eigenvectors
of the matrix E too and the eigenvalues A1, Ao, ..., A of E associated with them are real and
nonzero, we obtain that

- C(k )
"EV=F Zajwj:ajGR = Zaj)\jwj:ajeﬂ =V
=t j=1
(iii) Consider the linear transformation ¢ in M, (IR) such that
¢(A) = DAD™!

or component-wisely . . B
¢(A)1] = DiiDj_leij ("7.7 = 17 2’ o ,n)

for every A € My(IR). Then the equality (20) can be rewritten as
PS p(M) P = ¢(¢(P] p(M)Py)). (21)

If we identify M,,(IR) with the n2-dimensional Euclidean space R”2, then the linear transfor-
mation ¢ in M, (IR) corresponds to a linear transformation associated with the n? x n2 diagonal
matrix E with positive entries D,',-Dj_j1 (¢,7.= 1,2,...,n), and the identity (21) implies that

the sub JR-module of IR™ corresponding to the sub IR-module ng(M)Pg of Mn(RR) is E%-
invariant. Hence we see by the result shown in (ii) above that ’

PJp(M)P; = ¢(P] p(M)Py)

or
P} p(M)Py = DPJp(M)P,D7".

Finally, subsﬁituting the equality above into (19) and letting P = PoP7T, we obtain that

T = P1D7' P} p(M)P,DP] = P1PLp(M)P,P] = PTp(M)P.
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‘Now we are ready to prove Theorem 5.4. Let 7 be a *-subalgebra of M, (IR) Take an
orthogonal matrix P € M,(IR) as in Lemma 5.9. Let

T) = {dieg (Q74Q,,QTAQ,,....Q]AQ): A€ T},
T, = A{Q;FAQ]-:AET} (G=1,2,...,m),
7, = {QT4Q,:Q]AQ,;=0, AeT} (j=12,...,m).

Then each T ; is irreducible, so that it is simple by Lemma 5.5. Also we can easily verify that each
T); forms an ideal of 77. Hence :

T;={0} orT1 (j =1,2,...,m).
We may assume without loss of generality that ‘
I; = {0} (G=12,...,p), - .
7, = Ty (G=pp+1,...,m). ‘ (22)
For every 7 =1,2...,p, thg mapping ;
p;: diag (QTAQ1,QTAQ;,...,Q AQ,) € T1 — QAQ; €T}

forms a homomorphism frem 7°; onto T such that p;(I) = I. This implies that (pj, R™) is a

representation of 7; such that ’1’J =p; (T 1) is irreducible. In particular, p; : 71 — 77 is faithful.

Hence 7 is simple by Lemma 5.5. Applying Lemma 5.8, we then see that n; =n; (= 1,2,...,p)
and
QTAQ; = R]QTAQ,R; forevery A€T.

for some nj X n; orthogonal matrix R; ( =1,2,...,p). Therefore we obtain that
71 = {diag (QTAQ,,Q5A4Q,,--,Q]AQ,): A€ T}
= {diag (QTAQ,, RIQTAQ R, -, RIQTAQ,R,): A€ :r}
= {diag (B,R]BR,,---,R]BR,) : B€ T; '}

If p = m then 7 = 71; hence the assertions (A) and (B) follow. Suppose that p < m. By (22),
there is a matrix A; € 7 such that

QTA;Q, =I €T, C My (IR) and QTA;Q; = 0 € T, C My, (RR)
(j=p+1,p+2,...,m). Define |
A = ] Aj€eTCMu(R) andA=I- A €T C My(RR).
j=p+1
Then

PTAP = diag ({,...,1,0,...,0) € PTTP,
PTAP = diag (O,...,0,1,...,I) € PTTP.



21

Hence
- pTATP = {diag (Q{AQl,...,Q;—’,’AQP,O,...,O) Ae T} c PTTP,
PTATP = {diag (0,...,0,QL1AQ,,1,...,QLAQ,): A€ T} C PTTP.
It is easily seen that PT AT P is an ideal of PTT P; hence T can not be simple.'If we define
T = {diag (Q]114Q,11,---,QLAQ,,) : A€ T},
then '
PTTP> PTATP + PTATP =T 0T.

By the construction, we obviously see that

PITPCT0T.
Therefore we have shown that

Pl'TP=T,07T.

Applying the same argument as above repeatedly to the *-subalgebra 7, we obtain the assertion
(A). | ‘ ' |

Now prove the assertion (C). Suppose that 7 is an irreducible *-subalgebra of M,(IR). By
Lemma 5.7, there is a faithful representation (p’, IR") of M such that p'(M) = 7. Let (p, R") be

the faithful *-representation of M given in Section 3. Since both 7 and p(M) are *-subalgebras,
we obtain the desired result by Lemma 5.10. This completes the proof of Theorem 5.4.
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