0oooo0O0oooo
1004 0 1997 0 168-189 168

A Polyhedral Approach for Nonconvex ‘Quadratiér Progré,mming
Problems with Box Constraints
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1 Introduction

We consider the following nonconvex quadratic programming problem with box con-
straints: ‘

‘Minimize f(z) =27Qz + "z
1Y) (P)| .. ) -
Subject to 0<z;<1,:=1,2,...,n,

where 2T = (z,,z,,...,2,) is a variable vector of size n, @ is a symmetric n x n
matrix, and c is a vector of size n. If f is a convex function, problem (P) is an easy
convex minimization problem and a lot of standard convex nonlinear algorithms can
be applied for solving (P). Also, if f is a concave function, i.e., matrix Q is negative
semidefinite, it is well known that problem (P) has a globally optimal solution at an
extreme point of box constraints. Problem (P) is, therefore, equivalent to the following
quadratic zero-one programming:

Minimize z7Qz + Tz

(12) () | gubject to o € {0,1}, i =1,2,....n.

Many methods have been proposed for solving (IQ). Among them are branch and
bound algorithms [12, 15|, linear relaxation methods and/or cutting plane methods
for solving equivalent linear zero-one integer programs or max-cut problems [2, 14, 4],
eigenvalue methods [7, 16], and semidefinite relaxation methods [11]. In this article,
we consider the problem (P) when Q is indefinite. It seems that the problem is one of
the simplest but the toughest global optimization problems.

Ounly a few methods have been proposed. Coleman and Hulbert [6] propose an
efficient algorithm for obtaining a local optimal solution of the problems. Hansen et
al.[9] propose necessary conditions for optimality for (P). They also propose some kind
of active set strategy and solve the problem optimally by branch and bound methods.

We will propose a polyhedral approach which is closely related to the linearization
technique proposed by Padberg [14] for solving (IQ). He linearizes the quadratic terms
z;z; by introducing new variables

(1.3) gy =y, forall 1<i<i<m.

It is easy to verify that problem (IQ) is equivalently reduced into the following linear
zero-one integer programming problem:
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Minimize Z Qijyi; + Tz
i<j
(1.4) Subject to y;; < @i, yi; < zj, @i+ 25— 1<y,
- z; €{0,1}, i=1,2,...,n,
vi; € {0,1}, forall 1<i< j<m,

where Q;; is a (4, j)-element of matrix Q. We note that z? = z; if z; € {0,1}. Therefore,
without loss of generalities, we can replace the quadratic terms z? to z; for all : =
1,2,...,n, and assume @) be a zero diagonal matrix.

He considers the convex hull of zero-one vectors satisfying the constraints of (1.4).
He calls it Boolean quadric polytope (BQP) and proposes three families of facets,
named, the clique-inequality, the cut-inequality and the generalized cut inequality.
Also, Simone [22] shows that the BQP is the image of the cut polytope (CP) defined
by [3], and that the polyhedral structure of CP can be easily reduced to those of BQP.
See also [4, 5] for further details. v

In this article, we will apply the same linearizing technique to the case when z;’s

are continuous between 0 and 1. To linearize the problem, we will also introduce new
variables

(1.5)  yi; = m;‘:vj, forall 1<:<j<n,

and consider set QP and its convex hull QP€ defined below:

(1.6) QP ={(z,y) € R" x i |0<z;<1, yj =ax; forall 1<i<j<n},
(1.7) © QP® = conv{ QP }.

Here, the difference between QP and BQP must be noted. Firstly, QP has addi-
tional variables y;; (i = 1,2,...,n) which correspond to z?. Since z; takes an arbitrary
value between 0 and 1, zZ can not be replaced by z;. Secondly, QP€ is not a polyhedral
set any longer. Vertices of QP consists of not only 0-1 vertices but also non integer
vertices. However, ignoring these additional variables y;;, any 0-1 vertices of QPC are
identical to those of BQP. QPC can be viewed as a continuous generalization of BQP.

In a series of articles [18, 19, 21], Sherali et al. developed the same linearization
method for solving general nonconvex quadratic programming problem. Their idea
can be viewed as a technique for approximating QQP. They take all possible pairwise
product of the original inequalities

z; 20, 1=1,2,...,n

1.
(18) ;> -1, i=1,2,...,n,

and generate the following linear inequalities

(1.9) zi+z;-1 <y,
(1.10) 0 < w,
(1.11) ¥ij < %

< zj

(112) y,-,-
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by replacing quadratic term z;z; with y;; for all 1 < i < j < n. Let us define

QP° = {(z,y)| (:z:,y) satisfies (1.8)- ~ (1.12) },

and consider the following linear prograng problem:

(1. 13) Minimize {2 ZQ.,y,_, + Z Quy,, +cfz | (z,y9) € QP“}
1<] =1

where Q;; is a (i,7) element of matrix Q. Smce QP° 2 QP linear programnung

problem (1:13) gives a lower bound for (P).

Recently, some authors[8, 17] propose semidefinite relaxations for general nonconvex
quadratic problems. Let us denote the positive semidefiniteness of a matrix A by
A > 0. They approximate (1.5) by the positive senudeﬁmte cond1t10n Y — 22T > 0, or
equivalently,

(1.14) [i “’;]to,

where Y is a symmetric matrix with element y;;. Therefore, a lower bound for (P) is
obtained by solving the semidefinite programming problem:

(1.15) Minimize {2 Z Quy,, + ZQ"yu + Tz |(z,y) € QPSDP}

i<j i=1

where
(1.16) ‘QPSDP = QP° n {(z,y)] (z,y) satisfies (1.14) }.

Many algorithms [1, 10, 13, etc.] have been proposed for solving (1.15).

In this article, we will propose several classes of valid linear inequalities of QP. It
will be shown that a polytope defined by our inequalities is tighter than that defined by
(1.9) ~ (1.12). We also propose cutting plane algorithms employing these inequalities
as cutting planes. The article is organized as follows.” In Section 2, we introduce
notation and some basic results. Sections 3 is devoted to propose several classes of
valid inequalities of QP. We also show that these inequalities are closely related to the
facets of BQP. In Section 4, we describe cutting plane algorithms for solving (P). We
also describe heuristic procedures for generating cutting planes.  Results of preliminary
computational experiments show that our inequalities generate a polytope which is a
fairly nice approximation of QP.

2 Basic Results and Notation

Let us consider the following indefinite quadratic programming problem:
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L T T T
(217) (P) Mm{mlze f(z) == Qa: +cz |
‘ Subject to 0<z;<1,i=1,2,...,n,

and its associated convex programming problem with linear objective function:

Minimize fr(z,9) =2) Quyij + Y Quyii + e
(18 (P (®:9) =22, Qv + 2.
Subject to (z,y) € QP°.

Theorem 2.1 Problem (Py) has an optimal solution (z*,y*) such that z* is an optimal
solution of (P). A

Proof It is obvious that any vertex of QP satisfies (1.5), and that problem (Pp)
has an optimal solution among the vertices of QPC. Then, finding an optimal vertex
of (P) amounts to solve the problem (P). A O

In order to propose valid inequalities for QPC, we will use the following notation.
Let N be a set of indices N = {1,2,...,n}. For any S C N we define polynomials

Vs(z) = Z z;,

ies

VS(wZ) = Z w?’

icS

and

Es(y)= Y ¥

ijes, i<j
Moreover, for any S,T C N such that SNT = @ let us denote
(5,T)={(,5) |i<j andeitheri€ S, j€T, orieT,je€ S}.
We define

Esz(y)= Y. w
(4,7)€(S,T)

We note that if (z,y) € QP then Esr(y) = Vs(z)Vr(z).
The following lemma plays an important role in this article.

Lemma 2.2 Let S be a subset of N and t be a real number between 0 and |S|. Then
(219) —(a+ %) < min{-Vs(z?)|Vs(z) =t, 0<2; <1, i€ S},

where o and 3 are arbitrary nonnegative integer and real number, respectively, such
that

a+f=t. |
Moreover, equality in (2.19) is established when o = [t].
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Proof We note that (2.19) is a concave minimization problem and has an optimal
solution among the vertices, whose objective values are equal to —(I + r?), where

I=|t], and r=t—-1I.
Also, it is obvious to see
—(I+7r))> ~(a+p?)

for any nonnegative integer a and real [ such that o +,6 =1t. » O

3 Cutting Planes

Now, we are ready to propose several classes of valid inequalities for QP.
Theorem 3.3 (Clique Type Inequality) For any S C N and any integer a, 0 <
a < |S|, the following inequality 4

ala+1)

(3:20) aVs(e) - Bsly) < 2%

is valid for QP.

Proof For any (z,y) € QP, let t = Vg(z). Then we have

{Vs(x)}* = ¢,
Vs(e®) +2Es(y) = 1,
2Es(y) = t2 - Vs((llz).
By Lemma 2.2,for any nonnegative integer o and real 8 such that o + 8 =, 2Es(y)
is bounded below by : ‘
(321) 2Es(y) = tz — V5($2) Z t2 - (Ol +,32),
or equivalently, for any integer a such that 0 < a < |S|, we oBtain

2Es(y) > (a+pB) —(a+5%),
= 20(a+f8)-ala+1l),
= 2aVs(z) — a(a+1),

which completes the proof. ) , a
In [14], Padberg shows that for any S C N with |S| < 3 and any integer o, 1 <

o < |§| — 2, inequalities (3.20) define facets of BQP. The idea of this proof can be
applied for BQP in the following way. Let
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(3.22) QP ={(z,7) € R*x R"» V2|0 < 2; <1, y;j = zsz; forall 1<i<j<n}

We note that vector ¥ does not have elements such that y;, (i = 1,...,n) and that
BQP is contained in QP. It is straight forward to see that the proof of Theorem 3.3
holds true for QP as well as for QP. It should be emphasized that inequalities (3.20)
are not only valid for the convex hull of QP but also facets for BQP.

More generally, we have the following theorem:

Theorem 3.4 (Cut Type Inequality) For any S,T C N and integer , the follow-
ing inequality : :

+ a(a+1)

(3.23) Es(y)+ Br(y) — Bsr(y) — aVs(e) + (o + 1)Vi(2) >0

15 valid for QP.

We note that inequality (3.23) includes (3.20) as a special case when T = ().

Proof For any (z,y) € QP, let
Is = |Vs(z)], rs =Vs(z) —Is
and
| Iy =7|_VT(:1:)_!, rp = Vp(z) — Ir.
From (3.21), we have 4 |
2B5(y) = {Vs(2)}’ - VA(2) > (Is +s)" = (Is +13),
and ' |
2Er(y) = {Vr(2)}* - Vi(e) 2 (Ir +77)* = (Ir + 7).
Then, we have the following inequality.

ala+1)
2

= Bs(y) + Br(y) - Vs(2)Va(e) — aVs(e) + (a+ )Va(z) +

Es(y) + Ex(y) — Esr(y) — aVs(z) + (@ + 1)Vr(z) +

ala+1)
2

2‘ %{(Ig —IT—-a)(Is—IT—-a—1+2r5—27'T)+27'T(1—1'5)}.
Let I =Ig — Ir — o and 6 = —1 + 2rg — 2ry, we define
F(I) =I(I+9)+2’I’T(1 —7‘5).

Since 0 < rp,75 < 1, we have —3 < § < 1 and r¢(1 — 75) > 0. Then, it is easy to see
that for any integer I such that I <0,or 7 >3
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F(I)>0.
When I =1 we have
F(1) = 2rs(1~rr) 2 0
and also when I =2 |
F(2)=2(1 ~rr)(1+7rs)+2rs > 0.

F(I) is, therefore, nonnegative for any integer I. We have

ala+1)
2

Es(y) + ET(Q) - VS(m)VT'(f”) — aVs(z) + (¢ +1)Vr(z) + > 0,

and the proof is complete. o O

In [14], Padberg shows that for any S,T C N such that SNT = 0, [S] > 1,
and |T| > 2,inequalities (3.23) define facets of BQP when o = |T| — |S|. Also in
[4, 20], inequalities (3.23) have been introduced by comsidering the product of two
linear functions below: :

(3.24) () = (Vs(z) - Vi(z) — @)(Vs(z) - Vir(z) —a - 1),

where « is an arbitrary integer. The nonnegativity of I(z) is obvious if z is integer.
Expanding (3.24) and replacing «;z; to y;; and «? to x;, we can obtain (3.23), which are
considered as valid inequalities for BQP. In our proof, however, the same inequalities

can be obtained without using 0-1 properties. -
Finally, we will introduce some classes of inequalities whmh are obtained easily.

Theorem 3.5 For any i € N and real r, the following inequality
(3.25) i —2rzi+72>0 | |

is valid for QP. Moreover, for any i,j € N such that i < _7, ‘and any 1,72 € R, the
following inequality ,

(326) leii + Tz‘yjj - 21'11'2’3/,']' > 0
1s valid for QP.
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Proof For any z; and real r € R, the following inequality
(33,' - 1')2 Z 0

holds. Expanding the left-hand-side and replacing «? to y;;, we obtain (3.25), ‘which
holds true for any (z,y) € QP. It is easy to show inequality (3.26) in the same way.
]

Inequalities (3.25) and (3.26) are closely related to positive semidefinite cone (1.14).

Let
1 2T
= 7]

and let us consider the determinant of 2 x 2 principal minors which consist of the first
and the ith row of X. We have the following convex sets

(3:27) {(z,y)|ya—22>0}, i=1,2,...,n,
which include QP5PF. We see that for any r € R,
Yi — 2rz;+ 12 =0

defines a supporting hyperplane of (3.27) at =; = 7, y;; = r?, and that this hyper-
plane generates inequality (3.25). Also, the determinant of 2 x 2 principal minors not
containing the first row of X define the following convex sets

(328) : {(23, y) |yiiyjj - yz‘zj 2 0}, forall i <j.
For any r,7; € R,
T3y + 13y55 — 2r17adi; = 0

defines a supporting hyperplane of (3.28) at y; = r3, y;; = 72, y;; = 7172, and gener-
ates inequality (3.26).

Moreover, let (Z,7) be a given vector which does not satisfy the positive semi-
definite condition (1.14), and let X be an n + 1 dimensional square matrix defined
below: -

(3.29) 7:[; EYT]

where Y is a symmetric matrix with element %;;. The following lemma has been shown.

Lemma 3.6 If (Z,7) ¢ QPSPF, then the following inequality separates (Z,7) from
QPSPP.

1 2T

(3.30) vT[z v ]vzo,

where v is an eigenvector associated with a negative eigenvalue of X.
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Proof See [17]. o : - ]

4 Algorithms

In this section, we describe our algorithms and the results of our numerical experiments.
Firstly, we show the details of the cutting plane algorithm. Section 4.1 is devoted to
describe procedures for generating the violated inequalities. We will also describe
strategies for selecting, adding and dropping these violated inequalities.

4.1 Generating Cutting Planes

For simplicity, in the rest of this section, let us denote the clique and the cut type
inequality by

ala+1) <0

15(z,y; @) = aVs(z) = Es(y) — 5 <

and
lgT(‘v? Y; a)

= —Es(y) - Er(y) + Esr(y) + aVs(z) — (a+1)Vp(z) - ala+1) <0,

2 <

respectively. Associated with these cuts, let us define the following quadratic functions:
1

(4.31) g5(2,y) = 5{Vs(2)H{Vs(z) - 1} - Es(y)

and |

(4.32) g5r(2,y) = ¢§(2,9) + a7 (2, 9) + Bsr(y) — Vs(z)Vr(2),

which can be considered as the lower bounds for I$(z,y; o) and I, (z,y; a), respec-
tively, in the following sense.

Lemma 4.7 For any x,y and S C N, if a = |Vs(z)], then
(433) ¢§(2,9) <I(2,y; a).
Also, for any z,y and S,T C N SNT =0, ifa = |Vs(x) — Vr(z)], then

(4.34) qGr(z,y) <Igp(2,y; ).
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Proof Tt is obvious to see that -

(e,) ~ (w95 0) = H{Vs(@) - a}{Vs(e) —a— 1} <O

if a = | Vs(z)].
Also

Gr(e,9) = r(a,y5 @) = 3{Vs(e) ~ Vilz) ~ a}{Vs(2) — Vi(a) —a— 1} < 0

if a = |Vs(z) — Vr(x)J. '
, O

Lemma 4.7 gives sufficient conditions for generating the cutting planes. Therefore,
given a vector (Z,7), if we find S C N such that

45(z,9) > 0,
then we can generate the clique inequality
I5(z,y; [Vs(@)]) < 0

which cuts off (Z,7). ‘
Moreover, suppose that we find S, T C N SNT = 0 such that

95 (%,7) + 45 (%, 7) > 0.

Now, let us consider the clique inequality generated by the union of S and T. We see
that g2 7(z,y) can be calculated in the following way:

@) = F{Vaur(@)HVeur(s) - 1} - Bour()
= ¢5(=,9) + 65 (z,y) + Vs(2)Vz(2) — Esz(y)-

Then, we can obtain at least either the clique inequality

18 (2, y; [Veur(Z)]) <0

or the cut inequality
l.cst,T(may; LVS(E) - VT(T)J) <0,

which cut off the vector (Z,7).

In our cutting plane algorithms, we solve (1.13) as the initial relaxation problem
and repeatedly solve LPs by adding violated linear inequalities until a termination
criterion holds or no cutting planes are found. We adopt the following relative error

criterion

(4.35) f(z*) — €lf(=*)| < f1(Z,7),
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where (Z,7) is an optimal solution of the current LP, z* is a feasible solution of QP,
and 0 < € < 1. We note that since Z is a feasible solution of (P), f1(Z,7) and f(z*)
give a lower and an upper bounds of (P), respectively.

In our algorithm, we use the following procedures to generate violating inequalities
for a given point (Z,7).

Procedure TRI

First enumerate all triples i,j,k € N, and generate violating clique type
inequalities (3.20) with |S| = 3 and a = 1, then enumerate all triples
again and generate violating cut type inequalities (3.23) with |S| =1, |T| =
2 and a = 1. ' )

We note that it requires O(n®) computational time to perform this procedure and
that for each triple i, j, k, we can generate one clique type and three cut type inequal-
ities.

Procedure DIAG
1. For alli € N, if §;; < T;% then generate inequalities (3.25) by setting
T =T;.

2. For all pairsi,j € N, if Y ¥;; < Ui;° then generate inequalz’tie& (3.26)
by setting r¥ =755, 3 =7Ta.

3. If some inequalities have been generated, then terminate.

4. Let X be a matriz defined in Lemma 3.6. For all eigenvectors v which
are associated with negative eigenvalues of X, generate inequalities

(3.30).

We call the procedure DIAG since (3.25), (3.26) and (3.30) are the only inequalities
that contain “diagonal” variables y;;.

Procedure HYP

1. Enumerate all subsets S of N such that |S| < 3 and ¢§(z,y) > 0, and
let S be a family of these subsets.

- 2. For all disjoint subset S,T € S, generate inequalities
15ur(2,y; [Vsur(Z)]) <0
and/or
I5r(z,y;5 |Vs(@) — Vr(@)]) < 0.
Procedure HEU
The procedure consists of four subprocedures HEUI,. .., HEU4.
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HEU1 Ezecute the following n times.

step 1 Generate a subset S C N such that |S [=3 randomly

step 2 Foralli € N\ S calculate s; :=7% Zyu Let s* := max s;
jes - iEN\S

~and i* be the corresponding indez. e
step 3 If g* <0, guit the subprocedure. Otherwise let S := S U {i*}.
step 4 Generate (3.20) with S and o = |V5(Z)|. If S # N, go to
step 2.
HEU2 The same as HEU1 except that we let s; := Z(T—1)—2 Yies(Ti;—
Z;T;) in step 2. :
HEU3 Ezecute the following n times. _
step 1 Generate subsets S,T C N 'sueh that |S| = 1,|T| = 2 and
SNT =0 randomly.

step 2 For alli € N\ (SUT) calculate s; := —%; — ) G + 3. ¥y
j€s j€T

and t; = Uis — > T Let s* := max s; and &% be the

: J.sty’ jeZ;yJ ieN\(suT) S

corresponding indez. Similarly, let t* :== max ¢; and i} be the
ieN\(SuT)

corresponding indez. If s* > t*, go to step 3. Otherwise go to step
4 '
step 3 If s* <0, quit the subprocedure. Otherwise let S:=SU {15}
step 4 Ift* <0, quit the subprocedure. Otherwise let T := T U {iz}.
step 5 Generate (3.28) with S,T and o = |Vs(z)—Vr(Z)]. If SUT #
N, go to step 2.
| HEU4 The same as HEU3 except that we let s; = z(m -1)-2 Z(ytJ

JES
5-55,- )+2 Z('gij'—fﬁ,-) and t; .= F(T—-1)+2 Z(yﬁ —T,7;) -2 Z(yij—
JET ‘jJES ’ JE€T

Z;T;) in step 2.

In HEU1 (resp. HEU2), we maximize Ig (Z,%; 1) (resp. ¢ (%, 7)) increasing S one by
one. In HEUS (resp. HEU4), we maximize I$,(Z,7; —1) (tesp. q§ (%, 7)) increasing
S UT one by one.

4.2 Computational Experience

In this subsection, we show our computational experiences of the cutting plane methods
and the branch and bound methods. :

Test problems are generated as follows. The coeﬁic1ents Qi;;(1 <i<j<mn)and
ci(1 <1 < n) of the objective function in (1.1) are integers assigned randomly between
—100 and 100 with density d. We generate ten problems for each n and d. Table 4.1
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Table 4.1: Sign of the eigenvalﬁeé of Q

n =20 n =230 ‘ . n=40 | n =50

d | pos. l neg. [ zero | pos. l neg. [ 2ero || pos. l neg. I zero || pos. l neg. [ zero
01 79| 80| 41 135|136 | 2.9 | 194|185 | 2.1 | 25.0 I 25.0 l 0.0 l
02} 95101 | 0.4 150|150 | 0.0 || 19.9 201} 0.0 '
03| 97|103| 00| 150|150 | 0.0 || 19.6 | 20.4 | 0.0
0.4 10.0 |10.0 | 0.0 149 {151 | 0.0 | 19.9 | 20.1 | 0.0
0.5 | 10.0 | 100 | 0.0 || 145|155 | 0.0 || 19.8 | 20.2| 0.0
06| 98102 | 0.0} 146|154 | 0.0
0.7 101 | 99| 0.0 145|155 | 0.0
0.8 99101 0.0 150 15.0 | 0.0
0.9 { 10.0 | 10.0 | 0.0 | 14.8 | 15.2 | 0.0
10§ 99(101| 00| 149|151 | 0.0

displays t>hve average number of positive (pos.), negative (neg.) and zero eigenvalues of
Q. We can see that most of the randomly generated matrices () are full rank and have
almost the same number of positive and negative eigenvalues. All problems are solved
on a SUN SparcStation 1 and we use CPLEX 2.0 callable library as an LP solver.
Throughout the rest of the article we set € = 0.01. :

We consider the following four strategies (cut0, cutl, cut2, cut3) for the cut-
ting plane generating phase, which is denoted by CUT phase for short.

cut0 : generate no cutting planes, that is, just solve initial LP(1.13).
cutl : execute TRI :
cut2 : first execute TRI. If some cutting planes are found then qmt the phase,
’ “otherwise execute DIAG.
cut3 : first execute TRI. If some cutting planes are found then quit the phase,
~ otherwise execute DIAG. If some cutting planes are found then quit-
the phase, otherwise execute HEU.

~ We detect a violating inequality as a cutting plane if the distance between (Z,7)
and the inequality is no less than §. We first set 6 = 0.1 and dynamically change 6 from
one phase to the next. In our experiinents, we terminate the cutting plane algorithm
if no cutting plane is found with § = 107° or an € optimal solution is found. The total
number of inequalities added to the initial LP is limited to 1500. We prov1de a routine
for deleting inequalities whose slacks are greater than 0.01.

Results of the cutting plane method are given in Tables 4.2 ~ 4.4. In Tables 4.2.
and 4.3, m denotes the number of problems which are solved to € optimality, and Ave.
and-Max. denote the average and the maximum cpu time in seconds, respectively. In
Table 4.4, the average and the maximum number of the total generated cuttmg planes

are shown.



Table 4.2: The number of solved problems (m) and cpu time in seconds (1)

n =20 ;
cuto cutl cut2 cut3
. TIME TIME TIME TIME

I d I m | ave. | max. | m | ave. J max. | m | ave. | max. {| m | ave. | max.
0.1 8| 29| 401 8| 3.1 46 || 10| 3.4 6.2 10| 3.3 6.2
0.2 5| 4.9 5.9 6| 70| 201 10| 9.3 | 304 10| 9.4 | 30.3
03 4] 5.8 7.3 8§ 71 ) 111 10| 7.0 11110 | 7.0 11.1
0.4 3| 6.2 7.6 71113 21810 | 11.6 ] 22.3 | 10| 11.6 22.4
0.5 2| 6.3 8.1 4 (177 271101203 343 10| 203 34.2
0.6 2| 6.6 8.2 6154 2661 10 21.3 | 49.14 10} 21.4 | 50.1
0.7 04 6.6 8.3 31228 376110} 289 53.1} 10289 53.4
0.8 0] 6.7 7.7 71229 306 | 10 | 28.7; 67.4 | 10| 28.8 | 68.0
0.9 0] 6.8 7.7 31207 27510 23.8] 50.9 || 10 | 23.9 | 51.2
1.0 0] 6.5 7.1 6266 | 494 | 10303 75.2 | 10| 30.3 | 75.8

Table 4.3: The number of solved problems (m) and cpu time in seconds (2)

n =30

cut0 - cutl cut? cut3

TIME TIME TIME TIME
l d ] m | ave. | max. | m | ave. | max. | m | ave. | max. m | ave. max.
0.1 81154 | 205 | 8 159 214 10 16.2 24.4 {10 | 16.4 26.6
0.2 51243 | 29.3 91! 263 33.6| 10 25.7 33.0 | 10| 25.7 33.0
0.3 112721 29.1 6]139.3|279.1| 10| 1424 | 313.8 | 10| 142.4 | 312.9
0.4 0| 28.1] 30.6 711812 | 247.8 || 10 | 185.1 | 253.5 || 10 | 185.5 | 255.8
0.5 0284 31.6 41199.9 | 247.1 || 10 | 200.8 | 247.5 || 10 | 200.9 | 2474
0.6 01284 30.5 52256 |398.8 || 10 | 339.2 | 857.8 || 10 330.2 | 8614
0.7 01295 32.7 2| 259.8 | 500.1 || 10 | 507.3 | 2188.6 || 10 | 515.3 | 2262.3
0.8} 01309 335 512175 | 287.3 | 10 | 254.9 | 488.6 || 10 | 255.6 | 491.1
0.9 0311 329 71217.9 | 389.7 || 10 | 223.9 | 447.4 || 10 | 224.0 | 447.6
1.0 0315 34.0 4|320.8 5285 | 10 [ 380.0 | 752.3 || 10 | 380.9 | 755.4

181



Table 4.4: The number of generated cutting planes
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n =20 n = 30

cuti cut2 cut3 cutl - cut2 cut3

CuT cuT cuT cuT CuT CUT
[ d ] ave, l max. || ave. [ max. || ave. ] max. ave. l max. ave I max. ave | max.
0.1 1.0 9 8.7 51 8.7 51 0.0 0 9.2 71 9.2 71
0.2 89.5 686 || 109.1 749 | 109:1 749 77.0 386 81.1 386 81.1 386
0.3 99.6 440 || 104.5 440 || 104.5 440 | 1964.9 | 3307 {| 2000.6 | 3478 || 2000.6 | 3478
0.4 1| 220.2 630 || 234.2 656 || 234.2 656 || 2486.8 | 2914 || 2508.1 | 2914 || 2508.1 | 2914
0.5 || 490.9 760 || 535.6 -884 1| 535.6 884 || 2519.5 | 2807 || 2574.8 | 2888 || 2574.8 | 2888
0.6 || 414.1 630 i 444.0 685 || 444.0 685 || 2383.5 | 3168 || 2492.4 | 3651 || 2482.1 | 3548
0.7 || 579.2 625 || 615.6 711 || 615.6 711 || 2086.7 | 3067 || 2395.3 | 5947 || 2405.1 | 6045
0.8 || 566.4 614 || 584.1 | 685 || 584.1 685 [| 1663.1 | 2347 || 1646.3 | 1835 || 1646.3 | 1835
0.9 || 566.6 598 || 598.0 642 || 598.0 642 || 1559.1 | 1888 || 1553.7 | 1672 || 1553.7 | 1672
1.0 || 581.4 616 || 596.2 648 || 596.2 648 || 1707.9 | 2022 || 1627.6 | 1932 || 1627.6 | 1932

From these tables, we can see that the performance of the cutting plane meth-
ods depend on the density of the matrix ) as well as n. Note that algorithms given
by Hansen et al.[9] behave similarly, although their test problems are generated in a
somewhat different way from ours. When matrix @ is sparse solving (1.13) is sufficient
for most of the problems to obtain an ¢ optimal solution. Whereas, it is necessary
to add the elaborate cutting planes when the density increases. In our computational
experiments, all test problems are solved to € optimality by strategy cut2.

. See Table 4.5. Here, diag shows the results of the cutting plane method which

. uses procedure DIAG alone in CUT phase. cutl and cut2 are taken from Table 4.2.
This table indicates that combination of the triangle inequalities and the eigenvalue
inequalities is important to generate an € optimal solution.

Next, we show results of a branch and bound method for (P) combined with the
cutting plane method. The outline of the method is described as follows:

step 0 Let A := {(0,1)} and 2" := +oo0.

step 1 If N = 0, stop. Otherwise pick (4,2) € N: If |N| < n, the way to
pick is followed by a breadth first fashion. Qtherwise it is followed by
a depth first fashion. Let N := N\ {(¢,u)}.

step 2 Solve a (sub)problem

(Pr)

For this purpose, use a linear transformation to yield an equivalent

Minimize f(z) = 2TQz + Iz

Subject to {; <z;<wu;, 1=1,2,...,n.

problem
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Table 4.5: The effectiveness of the triangle inequalities

n = 20 )
diag cutl .cut2 ’
TIME TIME TIME
Ld l m | ave. max. || m | ave. | max. | m | ave. | max.
0.1} 10 3.5 6.5 8 3.1 4.6 || 10 3.4 6.2
0.2 )10 1554 | 14326 6| 7.0| 201} 10| 9.3| 304
0.3 9 70.2 | 259.6 8 71 11.1 ) 10 7.0 | 11.1
0.4 9 485.5 | 3723.9 71113 21.81{ 10 11.6 | 22.3
0.5 6 | 1338.3 | 5732.1 4 | 177 27110203 34.3
06| 7| 9176 | 7039.7 || 6 | 154 | 26.6 || 10 | 21.3 | 49.1
0.7 ) 7)1386.5|5208.3 | 3228 37.6( 10! 28.9| 53.1
08| 8| 748.8 (22769 | 7 (229 | 30.6 10| 28.7| 67.4
0.9 ] 8| 655.8 |2865.0 || 3207 27.5]( 10| 23.8| 50.9
1.0 8 549.9 | 2222.7 61266 4941 10| 30.3 | 75.2
, \ | Minimize f(z) = 27Q's' +T2' +d
(Pt,u)

Subject to 0<a}<1,i=1,2,...,n,

where d is a scalar. Solve (F;,) by the cutting plane method. Let
(z',y') be its solution. Then use the transformation again to obtain a
solution (Z,y) corresponding to (Py,). If 2* — €|z*| < f1(Z,7), go to
step 1. If f(Z) < 2%, let * :=7T and 2* = ().

step 3 Select a branching variable by the following rule [21]. Calculate

Islfé?sn{mln{(), Zle(yu - wk)mt}},

; . —
llsnkléln{nun{U,th(ykk )1}

If dy = 0, go to step 1. Otherwise let k*,£* be indices which give d;.
If k* = £* then #* = k*. Otherwise calculate '

dlzmin

i-1 n
dp(t) = D_min{0,2¢;e(;, — T;%:)} + ), min{0,2g,(3,; — 7Z;)}

j=1 j=t+1

+ min{0, qu(J,, — T7)}
for t = k*,¢* and let ¢* := argmin{d,(t) : t = k*,£*}. Let £ be the
same vector as £ except that £, = Z;., and ¥ be the same vector as u
except that @ = Z;. Let N := N U {(£,u), (£, %@)}. Go tostep 1. -

Note that there is a choice how to solve subproblems by the cutting plane method.
Since, as seen in the previous section, all test problems are solved to € optimality by
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cut2, cutl is used to seolve subproblems to compare with the cutting plane method
with cut2.

Tables 4.6 and 4.7 show the results, where BRANCH denotes the number of branch-
ing nodes and UPDATE denotes the number of updates of an incumbent solution z*
of (P). - S |

We also implemented a local search heuristics for (P). The branch and bound
method is modified as follows: ' :

o In step 0. ] : :
Solve (P) by a multiple start local search. Thus, let z* := f(z*) instead of
z* := 00, where z* is a solution of the heuristics.

e In step 2. o
Apply a local search starting from Z to obtain a better feasible point . Then the
last statement in step 2 becomes “If f(Z) < z* then let z* := Z and z* = f(Z) ”.

Tables 4.8 and 4.9 show that the local search procedures reduce a considerable
amount of cpu time.

To conclude, we show results of the branch and bound method with adopting heuris-
tics and cut2 in Tables 4.10 ~ 4.13. Compared with [9], our method needs more cpu
time. This is because we must solve many linear programming problems. Our method,
however, can be applied for more general quadratic programs which have linear and/or
quadratic constraints. Sherali et al. [18, 19, 21] proposed the linear programming re-
laxation for these problems, and then our proposed valid inequalities can be applied as
cutting planes since the valid inequalities for QP are also valid for general quadratic
programs. On the other hand, since QP strictly contains the new linearized set of
general quadratic programs in general, our proposed valid inequalities might not con-
tribute as the cutting plane. Therefore new valid inequalities including the structure
of linear and/or quadratic constraints should be proposed.
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Table 4.6: Result of the branch and bound method (1)

n = 20, cutl
BRANCH CUT UPDATE TIME
I d | ave. ; max. ave. max. || ave. | max. ave. max.
0.1 0.8 6 2.9 28 | 1.7 6 42| 13.2
02| 1.4 6| 218.1| 1485 || 2.0 4| 11.0| 393
0.3 04 2 99.6 | 440 || 1.6 2 7.2 | 11.0
04 0.6 4| 331.6 | 1670 || 2.1 6| 148 | 554
05 1.4 4| 1133.5 | 3245 || 2.9 5| 37.8|102.9
06| 3.2 20 || 890.6 | 4070 || 2.8 7| 66.3|376.4
07| 52| 16 3213.1| 8577 | 48| 13| 108.5 | 329.2
08| 20| 12/ 1616.5| 7536 | 2.9 71l 63.4 | 287.2
09| 28 8 | 2042.4 | 5070 | 3.1 5| 66.5|201.6
1.0 || 2.0 8| 1695.9 | 5481 || 3.0 5 77.1| 3055

Table 4.7: Result of the branch and bound method (2)

n = 20, cut1l
BRANCH CUT UPDATE TIME
t d [ ave. {max. ave, max. {| ave. | max. ave. | max.
0.1 0.4 2 0.0 0 1.3 3 16.0 | 21.6
0.2 || 0.2 2 77.9| 386 1.6 3 273 | 476
031 20! 12 2124.0 | 5540 || 3.4 71 317.6 | 1536.3
041 08 4| 3263.0 7272 || 3.4 7 2572 575.4
0.5 2.2 61 3951.9 | 8485 || 4.6 | 7| 401.7| 8856
0.6 || 2.4 8 |l 3026.3 | 8710 || 4.9 11 | 585.3 | 1930.5
0.7 | 5.8 18 || 2596.0 | 6069 | 6.5 13 || 1334.3 | 4450.6
0.8 3.8 16 || 1884.3 | 8050 | 4.4 10 || 733.2 | 2348.9
09| 1.0 4| 2716.3 | 5435 || 3.2 6| 368.9 | 957.2
1.0 5.6 20 || 1549.8 | 6498 || 5.7 15 || 1819.5 | 5967.3
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Table 4.8: Result of the branch and bound method with heuristics (1)

n = 20, cutl
BRANCH CUT UPDATE 'TIME
l d | ave. l max. ave. ] max. ave. max. ave. max.
0.1 0.2 2 1.0 91 060 0} 39| 9.0
0.2 0.8 4| 196.4 | 1425 || 0.2 11 11.7] 385
03 00 0 99.5 | 440 || 0.0 off 74| 11.1
0.4 || 0.2 2 317.3 | 1534 || 0.2 11145 48.0 |
05| 0.8 4| 962.2 | 3262 | 0.4 2 || 29.8 | 108.2
0.6 0.8 4| 843.2 | 2415 | 0.3 11293 726
0.7 2.0 6 || 1711.6 | 4074 || 0.4 3| 61.3 ] 166.1
0.8 || 1.0 4 |l 1150.2 | 2991 || 0.4 3| 4711393
0.9 1.0 41 1131.6 | 2802 | 0.3 1 42.0 | 1240
1.0 || 1.0 4|l 1167.0 | 3048 | 0.7 2 || 54.5 | 179.8

Table 4.9: Result of the branch and bound method with heuristics (2)

n = 30, cutl
BRANCH | . CUT UPDATE TIME
| d l ave. I max. ave. max. || ave. | max. || ave. max.
01 02| 2 0.0 0 02 2 19.9| 339
02| 00 0 39.5 | 386 0.1 1] 274 38.0
03| 02| 2] 24198 7936 | 0.2 111727 | 626.5
04| 04 2 || 3104.7 | 6017 || 0.4 112304 | 449.7
05| 04 2 | 3191.0 | 5580 || 0.3 2 || 252.7 | 463.8
06 || 1.4 8 |l 3224.7 | 9977 || 1.1 5 || 476.7 | 1503.1
0.7 || 1.6 8| 2099.6 | 5570 | 09| ~ 31 6653 3028.4
08| 1.2 6 || 2397.4 | 5437 || 0.5 3| 414.5 | 1193.5
09 0.0 0| 1561.9 | 1888 || 0.1 1 2144 | 365.8
1.0 1.6 8 || 2062.2 | 9047 | 0.9 6 || 972.7 | 3744.8
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Table 4.10: Final result of the branch and bound method with heuristics (1)

n = 20, cut2

‘ BRANCH cuT UPDATE TIME

} d I ave. l max. | ave. | max. || ave. | max. || ave. | max.
0.1 0.0 0 4.8 48 | 0.0 04 3.3 4.8
0.2 | 0.0 0| 1025 | 748 | 0.1 1 7.6 | 21.5
0.3} 0.0 0 99.5 | 440 | 0.0 0 74| 11.1
04 0.0 0] 230.8| 656 | 0.1 1 12.0 | 23.1
0.5 0.0 0 504.8| 821 0.2 1) 180 27.6
0.6} 0.0 0| 431.3 | 683 0.1 1] 16.6 | 28.9
0.7 0.0 0] 6056 689 0.2 2] 246 | 36.1
0.8 | 0.0 0| 577.7 | 653 | 0.2 2| 24.3 | 37.3
0.9 || 0.0 05863 | 618 | 0.0 0| 223 | 36.2
1.0 | 0.0 .01 593.0| 645 || 0.5 1) 274 51.3

Table 4.11: Final result of the branch and bound method with heuristics (2)

n = 30, cut2
BRANCH cuT UPDATE TIME
[ d ‘ ave. I max. | ave. | max. || ave. max. | ave. | max.
0.1 0.0 0 3.4 34| 0.0 0 18.6 25.6
0.2 0.0 0 395 | 3861 0.1 1 27.5 38.2
0.3 0.0 0 1973.7 |-3475 || 0.2 11 139.3 | 288.9
0.4 0.0 0] 23294 | 2802 | 0.4 1 168.5 | 212.1
0.5 0.0 0 || 2444.8 | 2785 || 0.1 111958 2414
06| 0.0 0] 2343.0 | 2908 || 0.2 | 11231.2] 3954
0.7 4 0.0 0 || 1988.3 | 2680 || 0.3 12859 669.4
0.8 0.0 0| 1622.1 | 1832 || -0.1 11 213.9 | 293.6
09| 04 4 | 2273.0 | 8902 || 0.3 2 1 634.9 | 4527.0
1.0-4 0.0 0| 1582.3 | 1743 || 0.1 1 296.2 | 499.9
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Table 4.12: Final result of the branch and bound method with heuristics (3)

n = 40, cut2
BRANCH CUuT UPDATE TIME
[ d [ ave. ! max. ave. | max. || ave. | max. ave. max.
0.1} 0.0 0 149.0 | 1490 || 0.0- 0 73.6 | 192.4
0.2 0.0 01 3199.9 | 6358 || 0.2 1 454.2 | 956.0
0.3 0.0 0 || 5335.8 | 7640 | 0.3 1| 741.4 | 1101.7
04| 0.6 6 || 4224.7 | 5275 || 1.1 7 || 1242.2 | 6269.4
0.5 0.0 0 || 4531.0 | 5113 || 0.1 1 818.7 | 1315.7

Table 4.13: Final result of the branch and bound method with heuristics (4)

, n = 50, cut2
BRANCH CUT UPDATE [ = TIME
[ d | ave. I max. || ave. J max. || ave. T max. || ave. I max.
[0.1] 00| o973 973 01| 1] 181.8]269.7]
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